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Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers
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We present a powerful computational approach to simulate the threshold behavior of photonic-crystal
quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations
representing a system of thousands of statistically independent and randomly positioned two-level emitters are
solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch
equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of
each QD dipole (artificial atom) is contained self-consistently within the model. These Maxwell-Bloch equations
are implemented by using Lumerical’s flexible material plug-in tool, which allows a user to define additional
equations of motion for the nonlinear polarization. We implement the gain ensemble within triangular-lattice
photonic-crystal cavities of various length N (where N refers to the number of missing holes), and investigate
the cavity mode characteristics and the threshold regime as a function of cavity length. We develop effective
two-dimensional model simulations which are derived after studying the full three-dimensional passive material
structures by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain
the correct point-dipole radiative decay rate from Fermi’s golden rule, which is captured naturally by the FDTD
method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths greater than
N = 9, which we identify as a consequence of the complex spatial dynamics and gain coupling from the
inhomogeneous QD ensemble. This behavior is not expected from simple rate-equation analysis commonly
adopted in the literature, but is in qualitative agreement with recent experiments. Single-mode to multimode
lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal
analysis of the average decay rates, we also show how the average radiative decay rate decreases as a function
of cavity size. In addition, we investigate the role of structural disorder on both the passive cavity and active
lasers, where the latter show a general increase in the pump threshold for cavity lengths greater than N = 7, and
a reduction in the nominal cavity mode volume for increasing amounts of disorder.
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I. INTRODUCTION

Microcavity photonic crystals (PCs) are a natural advance-
ment to mirror-based feedback systems as many technologies
shrink to the nanoscale. The vertical cavity surface emitting
laser (VCSEL) was successfully demonstrated in 1989 [1], and
has found applications in telecommunication systems, optical
interconnects, spectroscopic sensing, and optical image pro-
cessing. In 1994, Dowling et al. proposed a one-dimensional
(1D) PC operating near the photonic band edge [2], making
use of slow-light modes to increase the power emitted by such
lasers, which has been one of the limitations of microcavity
lasers [3]. Experimentally, slow-light band edge lasers have
now been demonstrated in both two-dimensional (2D) [4–
12] and three-dimensional (3D) [13–15] architectures, while
over the past decade, significant progress has been made in
the optimization of these lasers [15–18], allowing for the
investigation of new operation regimes such as single emitter
lasing [19], ultrahigh speed modulation [20], and self-pulsing
[21]. To directly model the optical properties of open-system
microcavity structures, finite-difference time-domain (FDTD)
techniques are often employed since such open cavities
support quasinormal modes (QNMs) that have a finite lifetime
due their coupling to a continuum of modes with outgoing
boundary conditions [22]. For example, quasinormal modes
are obtained from the mode solutions to the Helmholz equation
with open boundary conditions [23], resulting in a complex

eigenfrequency for each cavity mode. To numerically model a
gain medium within the cavity, various techniques have been
implemented ranging from the simple inclusion of a negative
imaginary component in the refractive index [24] to including
rate equations embedded in the FDTD algorithm [3,25,26],
or with the finite element method [27]. It is also common
to adopt simple rate equations for the population density of
carriers and photon flux [28,29], which can quickly connect
to experimental data. It is, however, still a major challenge to
model arbitrarily shaped gain materials coupled to arbitrarily
shaped cavity structures, which is desired for many quantum-
dot (QD) microcavity structures, especially as the modal
properties of the laser cavity change drastically as a function
of position and size (which results in spatially dependent
radiative coupling and gain dynamics). Semiconductor QDs
are now increasingly used as the underlying gain material
in microcavity lasers, due to their superior room-temperature
operation [30], tunability [31], unique atomlike density of
states and carrier dynamics [32], and excellent temporal and
spatial stability [30,33]. To develop a theoretical model of
the light-matter interactions, one approach is to model their
collective gain more appropriately as an ensemble of effective
two-level atoms (TLAs) [34–36].

The simplest implementation of a TLA coupled to electro-
magnetic fields is achieved with the optical Bloch equations
(OBEs), which adds appropriate linear and nonlinear inter-
actions between the dipole-induced polarization and electric
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field, giving rise to the Maxwell-Bloch (MB) equations when
combined with the Maxwell equations [37]. Using an effective
TLA, positive population inversion can be achieved, e.g., by a
phenomenological incoherent pump rate that mimics ultrafast
relaxation rates from higher-lying levels to the lasing exciton
state, thus eliminating the need for additional energy levels.
This simple model of an artificial atom, implemented with
Maxwell’s equations, has the distinct benefit of allowing one
to study general light-matter interactions without using either
of the rotating-wave approximation or the slowly-varying-
envelope approximation, which have already led to a wide
range of new effects such as the dynamic nonlinear skin effect
[38] and carrier-wave Rabi flopping [39,40], even with simple
1D equations of motion. Moreover, when studying quantum
information systems that are dominated by radiative decay,
it is critical to preserve the coherent radiative contributions
that a MB analysis provides [41], without recourse to adding
in phenomenological damping constants. Otherwise, if non-
radiative processes dominate, a more straightforward MB
formalism may be used, in which phenomenological damping
terms like pure dephasing are implemented [42,43]. Direct
MB simulations have been successfully used for a number
of years. For example, Anderson and Cao used a 1D FDTD
scheme to simulate stochastic noise in macroscopic atomic
systems [44]; Andreasen et al. carried out FDTD simulation
of thermal noise in open cavities [45]; while Sukharev studied
the interaction of chirped femtosecond laser pulses with
hybrid materials comprised of plasmon grating structures and
resonant molecules [46].

In many nanophotonic cavity structures, it is critical
to go beyond the 1D models and the commonly adopted
simple rate equations; e.g., Sukharev and Nitzan have studied
atomic samples interacting with materials using a 2D MB
model [47]; Pusch et al. studied amplification and noise in
gain-enhanced plasmonic materials using a 3D model [48];
Lopata and Neuhauser [49] studied the effect of nonlinear
excitations of a dipolar molecule on plasmon transfer across
a pair of spherical gold nanoparticles using a split-field
FDTD-Schrödinger approach; Gray and Kupka [50] carried
out FDTD studies of a variety of silver cylinder arrays with
nanometer-scale diameters (nanowires) interacting with light;
and Dridi and Schatz [51] introduced a model for describing
plasmon-enhanced lasers that combines rate equations with
FDTD for describing plasmon-enhanced lasers. Many of the
radiative decay processes are also affected by unavoidable
fabrication disorder, and even minute (nm-scale) levels of
disorder can play an important role in understanding the rich
physics of slow-light systems [52–58]. Deliberate disorder can
be added to a system to gain access to novel effects such as
reduced laser thresholds in random laser systems [24], brought
on by Anderson localization [59]. Indeed, there is continued
interest in understanding Anderson localization modes and
random lasing [60–62], which has recently been studied in
various disordered PC waveguide systems [56,58,63].

With the current trend of miniaturized semiconductor laser
systems, there is now a need for more sophisticated models of
PC lasers beyond the simple rate-equation picture [28,64],
where the emitters’ coherence is assumed to be in steady
state or adiabatically eliminated, leading to coupled equations
between the available energy levels without any information
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FIG. 1. Top-down view region of an L5 (a) and L7 (b) PC slab
cavity. (c) First fundamental mode (M1) profile |E(r)|, inside an L5
cavity, computed by 3D FDTD simulations. The circle outlines where
etched holes exist within the homogeneous background material,
which has an index of refraction of n = 3.17 in 3D simulations. The
two white lines in the x − z spatial profile represent the characteristic
length lz,V we use to relate 2D mode volumes to 3D calculations (see
Sec. II). The slab has lattice pitch a = 438 nm, radius r = a/4, and
height h = 250 nm. The mode profile measured at the center of the
3D slabs (in the z direction) is very similar to an effective 2D mode
profile with the same properties, except n = 2.54 (see text).

regarding the system coherence. In many cases, this may
fail to describe emerging experiments. For example, a recent
investigation of lasing threshold as a function of band-edge
proximity, performed by increasing a triangular lattice PC
cavity length, found counterintuitive results [13]: rather than a
decreasing gain threshold for increasing cavity length, which
is predicted by simple laser theory, there existed a threshold
minimum around the L8-L9 cavity length scale, where LN

denotes a cavity of length N (missing holes in the lattice),
and cavity lengths ranging from L3–L20 were created. Two
example schematics are shown in in Figs. 1(a) and 1(b).
These cavities have fundamental cavity modes (M1, M2, . . .)
confined within the cavity region, as shown in Fig. 1(c) for
an L5 cavity. In the theoretical analysis of a 2D square-based
PC microcavity laser, a similar trend is observed, but only for
systems with low optical density of states (DOS) [3]. Since the
DOS and LDOS (local DOS) of band-edge cavities are so high,
the results of Ref. [13] were partly explained by a heuristic
model of disorder-induced backscattering and outscattering
of the Bloch mode into modes above the light line (which
is known to occur in longer-length PC waveguides). In such
a model, disorder shifts some of the lasing mode near the
band edge into the regime where it is no longer confined to
the cavity structure, and this shift is felt more strongly by
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longer cavity modes (slower light is more sensitive to disorder),
which exist deeper in the slow-light regime, thus creating an
optimal pump threshold by minimizing both reflection losses
and backscattering losses.

In this paper, we present a systematic numerical study of
a QD ensemble in triangular-lattice PC cavities, and explore
the lasing threshold behavior as a function of PC length. We
closely follow the designs and recent experiments of Xue et al.
[13], and also partly explore the role of structural disorder on
the lasing threshold in PC cavities, which were credited to be
likely responsible for the unusual gain threshold dependence
on cavity length. Using Lumerical’s FDTD material plug-in
tool, which allows a user to include unique polarizations in
simulation objects [65], we investigate the gain and lasing
behavior of effective 2D cavity laser structures, modeled
after full 3D passive simulations. Although we use Lumerical
FDTD, the general technique can naturally be adopted with any
general FDTD (or time-dependent Maxwell) solver. The user-
controlled plug-in tool returns MB dynamics by solving the
OBEs (for each QD), and includes radiative decay, local gain,
and inter-QD coupling that is fully captured self-consistently
by the FDTD method, as well as pure dephasing included
as a phenomenological decay rate, and an incoherent pump
term which effectively models a three-level gain system for
each QD. The OBE plug-in has the distinct advantage of being
completely general, solving lasing dynamics and gain coupling
with zero a priori knowledge (other than inherent properties
of the QDs), when compared to traditional rate equations
[28,29], and they easily capture the statistical behavior of a
QD ensemble as well.

The remainder of our paper is organized as follows: In
Sec. II, we introduce the cavity parameters and model the
basic cavity properties of the 2D simulations after obtaining
the results for passive 3D (slab) structures. In addition, we
investigate the role of fabrication disorder of the PC lattice,
and model 2D after 3D simulations once more. In Sec. III, we
introduce our model OBEs, and discuss their implementation
within the plug-in tool as a source for nonlinear polarization. In
Sec. IV, we discuss the dipole moment used in our simulations
and explain how to obtain the correct 3D radiative decay
of a point dipole in an effective 2D model. In Sec. V, we
discuss the implementation of QDs in the FDTD method, and
model our radiative decay after 3D simulations. In Sec. VI,
we outline and discuss the results of including an active QD
ensemble (including 14 000–24 000 randomly positioned QDs
with random center frequencies) for various cavity lengths,
extracting pump thresholds, and investigating different models
of the plug in. We connect our results to the recent experiments
of Xue et al. [13] and standard rate equations, and provide
insights into the gain threshold dependence on cavity length.
We summarize in Sec. VII. In the Appendix, we exemplify
the role of structural disorder on the gain threshold and
lasing modes, and highlight a number of effects such as mode
localization for increasing disorder.

II. PASSIVE CAVITY SIMULATIONS: EFFECTIVE 2D
SIMULATIONS AND ROLE OF FABRICATION DISORDER

Full 3D simulations of passive PC slab structures (i.e., with
no gain material) form an appropriate starting point to model

N N

M1

FIG. 2. Passive cavity simulations for an LN cavity in a triangular
PC cavity with lattice pitch a = 438 nm, radius r = a/4, height
h = 250 nm (in 3D), and refractive index n = 3.17 or 2.54 for 3D
and 2D simulations, respectively. (a) Comparison of the fundamental
mode’s peak frequency as a function of cavity length, for 2D and
3D simulations, with experimental data points from 13 for reference.
(b) Run-time requirements using 16 cores with 1024 Mb of memory,
for a single passive 2D or 3D simulation, without QD mesh
requirements, as a function of cavity length (see text).

planar PC slabs with no active QDs, as they produce the main
mode characteristics and allow for additional key parameters
such as Q,Veff , and local density of states (LDOS). However,
2D simulations take significantly less time to run, and can be
modeled after 3D simulations to capture the key properties
of PC slab modes with similar peak properties, such as mode
frequency [shown in Fig. 2(a)] and Q factors (studied later),
at a fraction of the computational cost [see Fig. 2(b)]. This
is important for developing effective 2D models for the full
Maxwell OBEs with gain materials and many thousands of
OBEs (i.e., one OBE set for each QD). It should also be noted
that Fig. 2(b) is obtained for passive structures only, and to
accurately include QD dipoles in our simulation, we require
a finer spatial mesh of more than twice what is typically used
in passive simulations. As such, the simulations performed
with a QD ensemble require significantly longer to run than
is represented in Fig. 2(b), so that the lasing dynamics may
eventually reach steady state (SS). For example, each of our 2D
L15 lasing simulations (shown below) takes roughly 20 hours
to run, when 16 computational cores are used with 1024 Mb of
memory each. This increased run time is roughly 400 times the
passive simulations shown in Fig. 2(b). As such, for this first
study, we chose to develop an effective 2D FDTD method when
using the OBEs, which makes it easier to carry out a systematic
sweep of various system parameters such as cavity length and
pump powers, especially important for high-Q cavity modes
which take a long time to reach SS.

In order to introduce an accurate effective 2D cavity
simulation, similar to the PC cavity experiments of Xue et al.
[13], we first capture the basic cavity physics using passive
3D slab simulations. The cavities are assumed to be made
of InP, with a standard hexagonal lattice PC cavity, without
any hole shifts or modifications to optimize the cavity Q.
The lattice pitch is a = 438 nm, with hole radius r = a/4,
slab height h = 250 nm, and refractive index n = 3.17 [13].
The PC band gap (TE-like) is roughly 185–215 THz, and the
QDs have parameters similar to InAs. Our simulations are run

023859-3



WILLIAM CARTAR, JESPER MØRK, AND STEPHEN HUGHES PHYSICAL REVIEW A 96, 023859 (2017)

N

M
L

FIG. 3. (a) Impact of intrinsic levels of structural disorder (red
circles) on 3D FDTD PC cavity simulations as a function of cavity
length, averaged over 20 instances (red dotted-dashed line), compared
to ordered simulations (dashed black line). (b) Schematic top view
of the disordered cavity simulation with the disordered holes (red
circles) over-top the ideal air holes (black holes), and the background
slab (gray); this is a zoom-in region and in the simulations use a larger
domain seen in Fig. 5(b).

using Lumerical’s [65] FDTD software, with open boundary
conditions via perfectly matched layers (PMLs).

An example of the L5 cavity is displayed in Figs. 1(c)
and 3(b). We simulate cavity lengths ranging from L5–L15
skipping even cavity lengths, and measuring the resulting Q

factors for all fundamental modes observed in the simulations.
The cavity modes are excited by a dipole source defined by
a fixed carrier frequency with a temporal Gaussian envelope,
located along the center axis of the cavity, shifted from the
central y axis to avoid emitting at the antinode points of
even cavity modes (i.e., M2, M4, etc.). To capture the modal
properties of each cavity, two simulations are run; the first
simulation uses an electric-field time monitor to measure the
first few dominant mode eigenfrequencies ω̃μ = ωμ − i�μ,
where ωμ is the peak frequency, and �μ = ωμ

2Qμ
is defined by the

mode broadening and the cavity quality factor Q; the second
simulation measures each mode’s spatial QNM profile f̃(r)
using a discrete Fourier transform (DFT) monitor. Typically,
three–five modes are measured in the frequency range of
interest, depending on the cavity length, as longer cavities have
stronger higher-order modes, and more frequencies within the
simulation bandwidth.

Using the cavity mode profiles and their corresponding
eigenfrequencies, we can calculate the cavity Green function
(GF) using a QNM expansion [66]

G(r,r′; ω) =
∑

μ

ω2 f̃μ(r)f̃μ(r′)
2ω̃μ(ω̃μ − ω)

, (1)

where μ uniquely identifies each mode, and the modes are
normalized by [67]

〈〈f̃μ|f̃μ〉〉 = lim
V →∞

∫
V

εr (r)f̃μ(r) · f̃μ(r)dr

+ i
c

2ω̃μ

∫
∂V

√
εr (r)f̃μ(r) · f̃μ(r)dr = 1, (2)

where εr (r) is the relative permittivity of the cavity, and ∂V

denotes the border of volume V , in the appropriate limit [68].
With the normalized modes, we are able to calculate accurate
effective mode volumes [67], which are defined from

V −1
eff = Re

{
εr (rc)f̃2

c (rc)

〈〈fc|fc〉〉
}
, (3)

where rc is an antinode point of interest within the cavity
structure. Having the GF defined at all locations of r and r′
allows us to, e.g., plot the LDOS at any location (i.e., without
having to do further dipole calculations), and normalizing by
the free-space GF defines the projected LDOS to have units
equivalent to the Purcell factor (PF), defined as [69]

PF = 3

4π2

(
λ

n

)3
Q

Veff
, (4)

where λ is the wavelength and the Q is for the resonant mode of
interest. This expression characterizes the enhanced radiative
decay with respect to a homogeneous medium and assumes a
dipole in resonance with a single cavity mode and perfectly
matched to the field maximum and polarization. Furthermore,
if the dipole is exposed to pure dephasing, the expression
assumes that the dephasing rate is much smaller than the cavity
decay rate (which we note is not the case for the simulation
studies later) [64].

Next, to identify the role of fabrication or structural disorder
on the passive 3D structures, we model intrinsic fabrication
disorder by shifting the center of each hole by a random amount
�r characterized by the standard deviation σDis of a random
number generator. The direction of each hole’s shift is also
randomized, by defining a random number between [−π,π ],
thus giving equal probability for a shift in any direction.
Figure 3(b) depicts an exaggerated disorder instance for an
L5 cavity. The required numerical size of the PC (to mimic
an infinite PC system) was determined by increasing the
simulation’s spatial size until the largest (dominant) Q-factor
value converged, and the simulation size increased as the cavity
length increased to prevent spurious Q-factor measurements.
The intrinsic disorder is set to be σDis = 0.005a, as determined
from related experimental far-field intensity spectra compared
to FDTD simulated spectra for varying amounts of disorder
[70]. Figure 3(a) depicts the measured Q factors of 20 instances
of disorder at each cavity length, showing the impact of
disorder is very minimal at smaller cavity lengths, and impacts
the L15 Q factor by only about 15%. These disordered
statistics are consistent with the other findings of similar PC
cavity investigations [71], for the same range of Q.

Given the measured eigenfrequencies and (effective) mode
volumes for passive 3D simulations, effective 2D simulations
are subsequently optimized to closely match the Q factor,
mode volume, and peak frequency trends of the full 3D sim-
ulations. First, the 2D simulations use an effective refractive
index of n = 2.54 to shift the peak frequencies to match the
3D simulations, which use n = 3.17. Fitting this effective
refractive index optimized both the location and separation
between the first and second fundamental modes M1 and
M2, respectively, so that any mode coupling affects would
be representative of their 3D counterparts. This is mainly why
Fig. 2(a) is not simply an optimized overlap between 2D and
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FIG. 4. (a)–(c) Q and Veff modeling of effective 2D system
compared to full 3D simulations, without disorder. (d) Disorder
statistics of �Dis = � − �0, for the L15 cavities of varying amounts of
2D disorder, referenced to the 3D intrinsic disorder of σDis = 0.005a.

3D simulation trends. In addition, to account for the leakage
that occurs in 3D simulations (in that case through vertical
decay), the size of the 2D PC in the x direction was set to allow
cavity decay that was similar to the 3D leakage. This can be
seen in Fig. 4(a), where the 2D and 3D Q factors are compared.
In Fig. 4(b), we also compare 2D and 3D mode volumes,
which requires a characteristic length scale lz,V to convert the
2D mode area Aeff,2D into a volume Veff,2D = lz,V Aeff,2D. This
length scale is chosen to be 205 nm [see Fig. 1(c) in Sec. I],
which is slightly less than the height of the 3D PC cavities. We
chose this length scale as it gives a reasonable Q/Veff fit, as
shown in Fig. 4(c), while also containing the majority of the
3D mode volume (more than 85%). Given the complexity of
the calculations that follow, this is an appropriate effective 2D
model to capture the 3D slab cavity effects.

To appropriately model fabrication disorder in the effective
2D model, we compared the statistical average and variance
of the L15’s 3D simulation to varying amounts of structural
disorder for the corresponding 2D simulation. Taking the
normal definition of our Q factor to be Q = ω

2�
, we can

capture the disorder statistics using �, as ω is roughly constant
with increasing disorder. Defining � = �0 + �Dis, where �0 is
the ideal structure’s broadening [full width at half-maximum
(FWHM)] and �Dis is additional broadening due to structural
disorder, we plot 〈�Dis/�0〉 for the 3D data collected in
Fig. 3(a) and compare it to 100 instances of 2D simulations
with σDis = [0.0025,0.005,0.01,0.02] (400 simulations total),

as shown in Fig. 4(d). In our 2D simulations, intrinsic disorder
is seen to be best modeled (namely, more similar to 3D) by
σDis = 0.01a.

III. EFFECTIVE TWO-LEVEL ATOM MODEL
AND POLARIZATION PLUG-IN EQUATIONS

Here we describe a simple effective gain model for typical
experimental QDs [72]. We assume QDs that can be described
as effective TLAs, where the physics of higher-order energy
levels is effectively ignored (or adiabatically eliminated), and
we use an incoherent pump term P to create a positive
population inversion and thus gain [73]. While one could
implement an optically driven multilevel system [48], in reality
the level structure of the QDs is quite rich and vary from dot to
dot, so it would not be very meaningful; in addition, as long as
the relaxation rates from the higher-lying levels are sufficiently
fast, an effective two-level model is expected to be accurate
and sufficient for our current study.

To derive the OBEs, we use a master equation to solve for
the density matrix of each TLA, and treat the electromagnetic
field classically. Starting with the system Hamiltonian of a
TLA, with a dipole moment d defined by a ground state
|0〉, and excited state |1〉, with energy difference ω0, and
interacting with an electromagnetic field E, we have the system
Hamiltonian

H = h̄ω0

2
σz − h̄
(t)(σ+ + σ−), (5)

where the Rabi frequency 
(t) = d(t)·E(t)
h̄

describes the field
interaction with the dipole moment, σz is the z− component
Pauli matrix, and σ+ and σ− are the raising and lowering
operators of our TLA, respectively. We stress that the electric
field E(t) is solved self-consistently by FDTD (including the
dipole field), while d and ω0 are set by the material plug-in
equations, which solve the OBEs derived from the master
equation of this Hamiltonian. One can think of this Rabi field
as the local or self-consistent Rabi field. Since our QDs of
interest are modeled at room temperature, the dominant source
of damping is due to nonradiative processes, in particular pure
dephasing. The dissipative nature of our QDs environment
is included phenomenologically using Lindblad superoper-
ators L, defined as L(O)ρ = OρO† − 1

2 (O†Oρ + ρO†O).
Traditionally, when a TLA interacts with degrees of freedom
such as photons, phonons, other collective modes, molec-
ular vibrations, rotations, and translations, it experiences a
broadening of its absorption linewidth directly proportional
to the total dephasing rate [74]. This broadening has two
main contributions in QDs: an inherent relaxation rate �R

determined by the TLA’s environment (e.g., for maximum
coupling �R ∝ Q/Veff) captured by the FDTD method at
all positions, and a pure dephasing rate γ ′ which is related
to the temperature, and to coupling to lattice vibrations
in the solid (phonons), and charge noise. We add pure
dephasing phenomenologically to our system Hamiltonian via
the Lindblad superoperator γ ′L(σ+σ−).

To achieve positive population inversion, we include the
Lindblad term PL(σ+), which is responsible for pumping the
excited QD lasing state. We neglect any influence from the
pump field on additional dephasing [73] (since our largest P
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is around 8 ns−1, while our γ ′ is 1.5 ps−1). In the usual way,
we use the quantum Liouville equation ρ̇ = −i

h̄
[H,ρ] with the

Lindblad terms to derive equations of motion for the density
matrix. The master equation is now given by

dρ

dt
= −i

h̄
[H,ρ] + PL(σ+)ρ + γ0L(σ−)ρ + γ ′L(σ+σ−)ρ,

(6)

where γ0 ≈ 0.1�hom [75] (�hom ≈ 0.4 ns−1 is the decay rate
in a homogeneous medium, defined later) is the decay rate
associated with out-of-plane decay (i.e., via radiation modes
above the slab light line), ρ is a 2 × 2 matrix (for each QD) with
diagonal elements ρ11 and ρ00 associated with the probabilities
of being in the excited and ground states, respectively, and
off-diagonal elements ρ01 = ρ∗

10 associated with the system’s
coherence. We define inversion as ρ11 − ρ00 = 2ρ11 − 1 since
ρ11 + ρ00 = 1. Solving Eq. (6), we find equations of motion
for ˙ρ11 and ˙ρ01:

dρ11

dt
= −2
ρIm

01 + P (1 − ρ11) − γ0ρ11, (7)

dρRe
01

dt
= −ω0ρ

Im
01 − P + γ ′

2
ρRe

01 − γ0

2
ρRe

01 , (8)

dρIm
01

dt
= ω0ρ

Re
01 − P + γ ′

2
ρIm

01 + 
(2ρ11 − 1) − γ0

2
ρIm

01 , (9)

where we have separated ρ01 into its real Re[ρ01] = ρRe
01 and

imaginary Im[ρ01] = ρIm
01 parts, thus leaving three coupled

equations with only real parameters (per QD); this is done for
numerical convenience. Together, these equations define the
optical Bloch equations (OBEs) which describe the quantum
nature of an effective TLA interacting with a completely
general classical electric field via FDTD. This formalism
neglects a small frequency shift from the self-field of the
emitter, which arises due to the numerically divergent in-phase
contribution at the location of the emitter [76], though this has
negligible influence on our findings, especially with eventual
random center frequencies for each QD emitter.

In deriving Eqs. (7)–(9), we have not made any ap-
proximations other than those defined by the model itself
(i.e., only two energy levels). This is unusual compared to
standard textbook derivations [77,78], which often invoke
a rotating-wave approximation; however, this is done as a
result of assuming some form for the electric field, whereas
we have not assumed any information regarding our quickly
varying electric field. Instead, we leave our OBEs quite
general, such that the FDTD algorithm captures the light-
matter physics experienced by our TLA in a self-consistent
way, including radiative decay and dipole-dipole interactions
between different QDs. To include the OBE in the FDTD
simulations, we use Lumerical’s user-defined-material plug-in
tool [79], which allows for the creation of customized material
responses, written in C++. The plug-in code is called at each
time step n, and is used to update the electric field En by
the polarization density Pn output by the plug-in script. In
general, this is written as UnEn + Pn

ε0
= V n, where Un and

V n are inputs provided by Lumerical’s software, and En is
updated along the x, y, and z axes.

To determine the polarization density P output by our
OBEs, we use p = er(ρ01 + ρ∗

01) = 2er Re[ρ01], such that the
polarization density P = Np is given by

P = 2dN Re[ρ01], (10)

where er = d is the dipole moment associated with our atom,
which assumes our dipole moment is equally strong in all
directions, while N is the relevant density of the QD being
polarized, defined by

N = V −1
QD = δ(z − z′)/(�x�y), (11)

where V −1
QD is the inverse QD volume (i.e., VQD is the same for

each QD, and is defined by the Yee cell volume, or area in this
2D case), and �x, �y are the Yee cell dimensions of the FDTD
simulation. We note that the assumption to have an equally
strong dipole moment in all directions is not representative
of natural QD ensembles, and future works could include
statistical variations of the dipole moments direction. However,
since the optical modes are strongly polarized in a particular
direction, we do not expect that it would make much difference
to our simulations below. Finally, to implement the OBEs
numerically, we use the fourth-order Runge-Kutta method,
thus storing only the previous time-step values ρn

11, ρ
Im,n
01 , and

ρ
Re,n
01 , when updating ρn+1

11 , ρ
Im,n+1
01 , and ρ

Re,n+1
01 , and P n using

Eq. (10).

IV. DIPOLE MOMENT MODEL AND RECOVERING THE
CORRECT RADIATIVE DECAY FROM A POINT DIPOLE

In the dipole approximation, where we assume that
interacting electromagnetic fields have negligible variation
over each quantum emitter, we define the oscillator strength
F of the InAs QD, as F(ω) = �rad,hom(ω)/�HO(ω) [80],
where �rad,hom(ω) is the homogeneous medium’s radiative
decay rate, which includes information about the excitonic
degrees of freedom, and �HO(ω) is the radiative decay rate
of a classical harmonic oscillator of elementary charge. This
approximation is valid because of the typical small size of the
QDs, ∼15 nm in diameter (and a few nm in height) [72].
Following Ref. [80], F(ω) is proportional to independent
electron and hole envelope function Fe(r0,r), and Fh(r0,r),
respectively, in the strong confinement regime, given by
F(ω) = Ep

h̄ω
|∫ d rFe(r0,r)Fh(r0,r)|2, where Ep is the Kane

energy of the QD material. The wave-function overlap IWF =
|∫ dr Fe(r0) rFh(r0,r)|2 is a relatively constant function with
respect to QD size, and is mainly dependent on the emission
energy of the QD [81]. A QD emitting at 190 THz (0.79 eV),
which has an electron-hole overlap IWF > 0.8 [81]. In addition,
the Kane energy of bulk InAs to be 21.11 eV [82]. Thus, we
assume QDs with an oscillator strength of roughly 17.2 when
assuming a wave-function overlap of 80%.

The dipole strength d of our modeled QDs can be calculated
directly by the oscillator strength, given by [83]

d2 = e2h̄

2mω
F , (12)

where e is the elementary charge and m is the free-electron
mass. Using our oscillator strength F = 17.2, we calculate a
dipole moment of 43.88 D (or 0.91 e-nm).
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L

FIG. 5. (a) Quantum-dot dipoles located at Ey along the Yee
cell, randomly positioned with no nearest neighbors, with a density
of 540 μm−2. The grid dimensions are dx = 16.8462 nm and
dy = 14.5892 nm, while the QD size is made smaller than this to
emphasize its location at only a single grid point; however, its size is
effectively dx dy. (b) Quantum-dot gain setup: the orange border is
PML boundary conditions, the gray bar on the left is the initial source
pulse, which stimulates the optically pumped QD gain region in the
center, the yellow rectangle denotes the index and DFT monitors,
the yellow cross is a time monitor, and the orange line on the right
is a power line monitor that captures the average power out of the
cavity, over the last 10 ps. The total number of QDs in this particular
simulation is 14 029 (for reference, L15 simulations have ≈24 000
QDs).

V. QUANTUM-DOT MODELING IN FDTD
AND SIMULATION SETUP

To model QDs in FDTD, the TLA plug-in is implemented
at a single Yee cell dipole with an area (in 2D) equal to the
Yee cell. We choose to implement QDs at Ey field points,
seen in Fig. 5(a), as our cavity modes primarily exist in this
direction. To better model the QD dimensions, we reduce the
mesh steps �x,�y to 16.85 and 14.59 nm, respectively, which
is asymmetric to maintain uniform meshing across all etched
holes (in a triangular lattice). The QDs are then added to our
gain region randomly, with an area density NQD = 540 μm−2.
The only restriction placed on the QD locations is that no two
QDs may be side by side. Each QD field location is given a

background index that matches the substrate material, which is
a good approximation since the QD material has an index very
near the slab structure. To ensure that no QD is created within
the etched holes of the PC, a mesh order is assigned to the QDs
to be the second last material added to the system, with etching
as the final material, added over-top of all previous indices.

An example simulation setup is shown in Fig. 5(b), which
has the following simulation features: a time monitor at its
center, an index, and a DFT monitor around the cavity in
yellow (inner rectangle) to capture the electric field profiles, a
gain region made as small as possible (e.g., the smallest region
with the same steady-state output as larger gain regions) to save
meshing memory overhead, an incident plane-wave pulse on
the left, a power line monitor on the right, and PML boundary
conditions all around. The plane wave is angled slightly to
excite both Ex and Ey field components, and the power line
monitor only captures the last 10 ps of power emitted by the
cavity. This is consistent across all cavity lengths simulated,
while the time each cavity simulation is run for is determined
by how long it takes to reach steady-state lasing.

Since real QD materials have a large fluctuation in the
QD emission frequencies, each QD has its energy spacing ω0

randomly drawn from a normal distribution to better represent
slight variations in the QD size that occurs in practice.
Thus, nonuniform emission lines lead to inhomogeneous
broadening, which can be modeled with parameters obtained
from experimental data. At room temperature, InAs QDs are
dominated by pure dephasing γ ′, typically around 1.5 THz
(or 6 meV) [33], and the overall inhomogeneously broadened
spectra are roughly 10 THz (or 40 meV), as shown by the
QD ensemble electroluminescence in Ref. [72]. Thus, we
assign each QD a resonant frequency that is selected randomly
from a Gaussian distribution modeled after experimental
photoluminescence spectra. This model is shown in Fig. 6(a),
where the Gaussian distributions variance is 6.6 THz, with
mean ω0. In this way, both QD position and resonant frequency
are stochastically modeled.

To further connect our 2D simulations to the 3D dipole
interactions, we first model radiative decay using Fermi’s
golden rule in 3D, which is is well known [84]:

�a(ra) = 2

h̄ε0
{da · Im[G(ra,ra; ω)] · da}, (13)

where G is then projected in the dominant field direction (in
our PC cavities, that is the y direction), at the location of
the dipole emitter. This definition of radiative decay assumes
we are in 3D space, and our GF has units of inverse volume
(m−3), while the dipole moment has units Coulomb meter
(Cm), and the overall decay rate has units of inverse seconds
(1/s). Assuming radiative decay is calculated with the same
formula in 2D, it is then required to introduce an effective
length lz as our GF loses a spatial dimension from 2D to 3D.
That is, we define

�2D,eff = �3D, (14)

where �2D,eff is the radiative decay rate obtained in the 2D
simulations. To achieve this, we use the radiative decay rates
of free space such that �2D,free space/lz = �3D,free space, which
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FIG. 6. (a) Modeled QD ensemble (dashed and dotted-dashed
lines) for 10 (green chain) and 10 000 (magenta dashed line)
QDs, for typical room-temperature inhomogeneous broadening. The
individual QD line shape is given by the orange (light) line, with
γ ′ = 1.5 THz. The y-shows a normalized photoluminescence (PL)
for individual (solid line) and ensembled (dashed or dotted-dashed
lines) QDs. The number of QDs in each simulation is on the order
of 10 000. (b) Fundamental mode comparison between full-dipole
expansion (blue line) and QNM theory (orange dashed line) for low-Q
cavity, with a reduced PC membrane. The projected LDOS has been
normalized to represent PF.

defines an effective length lz as

lz = �2D,free space

�3D,free space
= G2D,free space

G3D,free space
. (15)

The free-space Green function in 2D is derived as
Im{Ghom

2D } = 1
8

ω2

c2 (for TE modes), while in 3D we have

Im{Ghom
3D } = n

6π
ω3

c3 [85]. Using these definitions in Eq. (15),
then

lz = 3π

4n

c

ω
, (16)

and the effective radiative decay rate in our simulations is

�2D,eff(r) = 8nω

3πh̄ε0c
{d · Im[G2D(r,r; ω)] · d}. (17)

To verify that this model indeed obtains the correct radiative
decay from a dipole, we scale our plug-in density Neff by
lz in Eq. (16), such that N−1

eff = �x�ylz, arriving at Neff =
1.743 × 104 μm−3 for ω = 190 THz. We then model our plug-
in material at a single Yee cell at the center of an L5 cavity, and
employ an initially excited state to measure the natural decay
of the TLA, and turn off phenomenological decays γ ′, γ0, and
the incoherent pump P . Thus, there are no phenomenological
terms in the OBE at all, either radiative or nonradiative. We set
the dipole moment magnitude to 43.88 D to mirror the values
that will be used in the ensemble simulations below. To initially
ensure we are not near the strong-coupling regime, we first set
up our 2D cavity to have a low-Q factor, by shortening the PC
membrane on either side of the cavity edge. We give the TLA
an initial polarization to simulate a dynamical decay from a
radiation reaction (which is known to give the same decay as
from vacuum fluctuations). From this simulation, we find very
good agreement between theory and simulation, where the GF
of our cavity is calculated with Eq. (1), which is shown to

FIG. 7. (a) Population ρ11 dynamics within an L5 low Q-factor
(≈400) cavity, solved by MBE without any decay terms, so all
phenomenological decay parameters are set to zero and the radiative
decay is captured self-consistently through the local electric field used
in the OBE solver. The OBEs are given initial conditions ρ11(t = 0) =
0.95, ρIm

01 (t = 0) = 0, and ρRe
01 (t = 0) = √

1 − 0.952/2, such that the
Bloch vector magnitude is set to unity (e.g., σ1 = 2ρ11 − 1, σ2 =
2ρRe

01 , and σ3 = 2ρIm
01 are the usual Bloch vector components with

magnitude σ 2
1 + σ 2

2 + σ 2
3 ). The analytic solution is determined by

�2D,eff , calculated by the QNM GF seen in Fig. 6(b). (b) Comparison
of high- and low-Q cavities for the 2D L5 cavity structure, which
were 47 000 and 430, respectively. All other parameters are the same
as in (a).

agree with numerically exact (i.e., full-dipole) simulations in
Fig. 6(b). Importantly, this accuracy will be maintained at any
spatial position within our simulation array of multiple dipoles.
We also stress that the FDTD also captures QD-QD radiative
interactions [86], which in a master-equation approach would
be computed from terms like

�ab(ra → rb) = 2

h̄ε0
{da · Im[G(ra,rb; ω)] · db)}, (18)

and a corresponding Lamb shift [87]. Clearly including such
terms in an ensemble of different QDs, in the many thousands
(and even in the tens), would be intractable in a standard
master equation approach. Dipole-dipole coupling has recently
been shown to have a strong impact on the subradiance and
superradiance on steady-state QD laser systems [88], thus
increasing the importance to model it correctly in such systems.

To fit our simulations for the single dipole �Num with �2D,eff ,
we match decay lifetimes as seen in Fig. 7(a). Note, the initial
decay of ρ11 is nonexponential because its inversion level
is positive, thus the electric field emitted initially grows in
magnitude as a consequence of the initial condition. Once our
QD becomes an absorber (ρ11 < 0.5), we start to recover the
expected exponential decay shape of radiative decay, which
eventually becomes fully exponential at t0. Finally, in Fig. 7(b),
we compare our low-Q cavity to the usual high-Q simulation,
and find the semiclassical analog of vacuum Rabi oscillations,
namely, we get periodic cycles of the population at a rate given
by 2g = 
Rabi [83,89], where g is the QD-cavity coupling
rate (which scales with d2/Veff) and 
Rabi is the width of the
frequency splitting in frequency space.
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VI. MAIN SIMULATION RESULTS OF GAIN THRESHOLD
FOR A QD ENSEMBLE IN PC CAVITIES

OF DIFFERENT LENGTH

A. QD ensemble

Using the QD ensemble defined above, we are now ready
to simulate gain in the 2D PC cavities, in a self-consistent way.
The simulation domain is described in Sec. V [see Fig. 5(b)].
The only parameter left undefined is the inhomogeneous
ensemble’s peak frequency ω0. As the homogeneous PC has a
band gap between 185–215 THz, the peak frequency should be
somewhere within this range. We define two different center
ω0 values to study two different gain models: ω1 = 187 THz
(gain model A) and ω2 = 197 THz (gain model B), which
results in two different gain spectra from the QD ensemble,
shown in Fig. 8(b). These two values were chosen to represent
two different gain regimes: mainly single-mode lasing over
all cavity lengths (which was seen and reported in Ref. [13])
performed by ω1 (model A), as the mode nearest resonance
is always the first fundamental mode; and a peak frequency
determined by the electroluminescence for the QD used in
Ref. [13], performed by ω2 (model B). Simulations with ω1

and ω2 are carried out with all other parameters equal for
consistency. Figure 8(a) compares the peak frequency of the
first five fundamental modes as a function of cavity length
to the resonant frequency of the two QD ensembles from
Fig. 8(b).

N

M1
M2

M3
M4

M5

FIG. 8. (a) Dependence of the cavity mode peak frequencies,
for each cavity length, to the resonant peak QD ensemble gain (or
PL) spectra. (b) Visualization of the normalized imhomogeneously
broadened gain spectra of the QD ensemble for ω1 (gain model A)
and ω2 (gain model B) taken from Fig. 6(a).

FIG. 9. Lasing dynamics (field in arbitrary units) of an L5 cavity
given a QD ensemble with ω1 (gain model A), as measured at the
center of the cavity (x = y = 0). The pump rate of 0.1 ns−1 does
not lase and only decays, while a pump rate 1 ns−1 is into the lasing
regime, as it increases in amplitude, followed by decay as it finds its
equilibrium, and a pump rate 8 ns−1 is clearly well into the lasing
regime.

Although the pumped QDs do not need any additional
optical source to achieve lasing, we find SS can be reached
much more quickly when an external (linear) plane-wave
source [seen in Fig. 5(b)] initially excites the cavity. The
downside of this approach is that some amount of power
will always be captured by the power monitor, which is
discussed in the next subsection. However, the lasing threshold
is determined by the slope taken from simulations that are
clearly lasing. The dynamics of each simulation is obviously
different depending on if the cavity is below, near, or above
threshold, as is shown in Fig. 9, where a pump rate of 0.1 ns−1

only decays, while 1 ns−1 increases, followed by decay as it
finds its equilibrium, and 8 ns−1 is well into the lasing regime,
finding equilibrium quickly.

The pump threshold Pth is defined by the usual method of
extending the linear region of a “light-in–light-out” (LL) curve
down to the x axis, as shown in Fig. 10 for ω1 (model A) [the
results for ω2 (model B) are qualitatively similar]. Comparing
the low-resolution transmission spectra, measured along a line
at the end of the PC membrane as depicted in Fig. 5(b), in
Sec. V, for the L7 and L15 cavities of these two different QD
ensembles, we see that ω1 is predominantly a single-mode laser
[Figs. 11(a) and 11(b)], while ω2 is more clearly multimode
[Figs. 11(c) and 11(d)]. A major advantage of our model is
that is is able to capture all optical modes that appear in the
light-matter coupling.

B. Role of QD ensemble characteristics and a nonuniform
radiative decay rate

The pump thresholds for each cavity length were first
performed with several QD instances to check for significant
fluctuations in any of the trend lines. An example of this
can be seen in Fig. 12(a), where a reasonable variation
was seen between L13 and L15 pump thresholds. All other
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L5

L7

L9

L11

L13

L15

FIG. 10. Example lasing curve, or LL graphs of the ω1 QD
ensemble, where the dashed lines represent simulated data, and solid
lines are the linear fit used to extract pump threshold. The inset is a
closeup of the L5, L9, and L13 curves.

pump thresholds represent a single instance, and any error
or uncertainty in the computations of single instance gain
threshold is determined by the maximum and minimum
fitted slopes, and uncertainty in the y intercept. There is
some uncertainty in the y intercept due to artificial power
measurements at low pump strengths, which is caused by
the initial source amplitude continuing to leak into the power
monitor at the end of the simulation, due to the high-Q factors
of the cavities. As such, there exists a positive y intercept for
the measured power emitted by the cavity, when the pump rate
is set to zero. This can be seen in Fig. 13, which is an L9

L7

L7

L7

L15

L15

L7 L15

L15

FIG. 11. (a), (b) Example transmission measured at the output
power DFT monitor for lasing L7 (a) and L15 (b) cavities (P =
8 ns−1) the ω1 QD ensemble. (c), (d) Example transmission measured
with the ω2 QD ensemble.

N

N N

N

FIG. 12. Pump gain thresholds extracted from LL curves for
various setups. Error bars on individual instances are determined by
the maximum and minimum fitted slopes, and any uncertainty in the y

intercept due to artificial power measurements at low pump strengths
caused by early terminations of the simulations (as demonstrated in
Fig. 13). (a) The average (dotted black line) of only two QD instances
(orange lines) of ω1. (b) A comparison of ω1 (gain model A) and ω2

(gain model B) simulations. (c) A comparison of the sheet simulation
to the average QD simulations. (d) Thresholds given by simulations
with a phenomenological radiative decay rate �R , set to 0.05 THz,
for all QDs, for both ω1 and ω2 gain models.

simulation from one of the two QD instances for ω1 plotted in
Fig. 12(a), with an originally negative pump threshold due to
this artifact . To remove the artifact, we fit the low pump data
to a polynomial curve, and extract a fitted y intercept, which
we use to shift the original data to have a y intercept of zero.
The error of this fit is then added in quadrature to the slopes
error. The average threshold trend is shown in Fig. 12(a) for
ω1 simulations and compared to ω2 in Fig. 12(b).

Next, focusing on the dominant single-mode lasing regime,
we compare the QD ensemble with simulations that exclude
the ensemble statistics by replacing the active gain region with
a single plug-in sheet that uniformly excites the various cavity
modes. This “sheet” simulation has a pure dephasing value
equal to the inhomogeneously broadened ensemble of 10 THz,
a peak frequency of ω1, and a dipole moment d = 5.84 D
(which was found to model the average dipole moment of the
ensemble), and Neff = 1.045 × 105 μm−3, which was used as
a fitting parameter to get the L5 pump threshold behavior
similar to those with the QD ensemble value. The resulting
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FIG. 13. Example of y-intercept artifact in our simulations, which
is due to the large-Q factor of our cavities that inherently emit trapped
radiation beyond the end of the finite-time simulation.

pump threshold is shown in Fig. 12(c), compared to the average
QD ensemble, which shows a lesser plateauing effect, and
increasing pump threshold for increasing cavity lengths. We
observe that the spatial-dependent coupling of radiative decay
and gain coupling certainly has a qualitatively important role
on the gain threshold characteristics and such behavior would
be extremely difficult to capture in a simplified rate-equation
analysis. Moreover, our findings, though somewhat surprising,
are indeed consistent with the unusual experimental trends
found by Xue et al. [13], who attributed the threshold behavior
to structural disorder.

To better understand the effects of the FDTD computed
radiative decay rates as a function of cavity length (and the
general nonuniform sampling of a radiative decay rate), in
Fig. 12(d) we have introduced an additional phenomenological
radiative decay rate into the OBEs, �R using the Lindblad
superoperator �RL(σ−)ρ, and set �R = 0.05 THz (50 ps−1),
which is roughly 100 times smaller than the maximally coupled
QD decay rate, averaged over all cavity lengths. However,
typically, this will now be the dominant radiative decay
process in the simulation. By reducing the natural cavity
length dependence of the radiative decay captured by the
FDTD method, we see the effects of cavity resonance coupling
more clearly, which is reflected in the pump threshold trend
in Fig. 12(d). That is, the trend of model A’s pump threshold
now consistently decreases, as the on-resonant peak cavity PF
increases and the resonant mode M1 does not significantly
change its frequency position with respect to ω1. On the other
hand, the trend of ω2 is clearly impacted by how close any
particular mode is to resonance (e.g., highlighted by a dip in
the threshold between L9 and L11, as resonance conditions
are met, and a missing dip between L5 and L7, as resonance
conditions are removed). In either case, this fixed �R , even
though much smaller than γ ′, clearly has a qualitative influence
on the gain threshold characteristics and thus the nonuniform
sampling of such an effect is important.

C. Discussion and connection to simplified laser rate equations

Although it is difficult to identify the main process
responsible for explaining the qualitative difference in gain

threshold behavior shown in Fig. 12(c) (with a plateau) and
Fig. 12(d) (monotonous reduction), we speculate as follows: If
�R and the gain for all QD emitters is forced to be identical (i.e.,
not captured self-consistently), all emitters then contribute to
the pump rate and the gain. However, in the full calculations
only a fraction of the emitters actually contribute to the gain
since such values are still calculated from the actual field from
the self-consistent FDTD algorithm. Thus, only the fraction
of emitters contributing to the gain will be affected when the
cavity loss rate is changed with different cavity lengths. For
example, if the cavity length is increased and the Q factor
decreases, less gain is needed for lasing and the pump threshold
will decrease, but there is still a large background pump rate
due to all the emitters that do not contribute to the gain.
Thus, we suggest that if there is a fixed (and dominant) �R ,
then this relatively large background pump rate may act to
mask small absolute changes in the threshold gain [compare
absolute scales in Figs. 12(c) and 12(d)]. A possible reason
for the plateauing of the gain threshold is that the effective
gain seen by the QDs changes substantially depending upon
the cavity length. We elaborate on this point in more detail
below by connecting to common cavity laser rate equations.
In Ref. [13], it was shown that the experimental results could
be explained if one assumes a cavity loss rate that increases
with the group refractive index. However, this assumption, at
least for the passive cavity, is challenged by the simulation
results of Fig. 1. Using the simple rate equations, e.g., of
Prieto et al. [28] for the carrier and photon densities of a QD
PC cavity laser system (neglecting nonradiative decay in the
carrier density equation), then

dNe

dt
= Rp − Ne�R − gceff

(
Ne − Ne

0

)
Nph, (19)

dNph

dt
= �cfgceff

(
Ne − Ne

0

)
Nph + �cfβNe�R − Nph�c,

(20)

where ceff = c/neff, g is the differential gain coefficient, �c =
ωc/Q, and �cf is an effective confinement factor. From these
equations, they estimate an approximate pumping threshold
for lasing:

Pth ∝ Rth
p ∝ Ne

th(1 − β)�R, (21)

with the corresponding threshold density

Ne
th = Ne

0 + �c(N )

�cf(N )ceffg

= N0 + ωc(N )

Q(N )�cf(N )ceffg
, (22)

suggesting that Ne
th goes down as Q goes up (longer cavities),

implying that Pth should come down for increasing cavity
lengths. However, one also has to recognize that the �cf(N ),
with N the cavity length, will involve a complex spectral (and
spatial) coupling between the QDs and cavity mode(s). Our
simulations point to a clear failure of such simple rate-equation
approaches for these complex nanophotonic cavity systems,
that is perhaps caused by an overall decrease in the effective
gain caused by a spectral sharpening of the cavity modes,
in addition to possible disorder-induced scattering effects. To
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gain some insight into how the LDOS changes at the QD sites
for each cavity, below we show the main cavity mode radiative
decay rates.

D. Role of spatially varying radiative decay rates

So far, we have exemplified our self-consistent numerical
approach that agrees quite well with experimental gain
threshold behavior without any structural disorder (which
somewhat contradicts earlier assumptions), yet it is not clear
why this happens. In an attempt to understand the changing
radiative decay rates (and more generally the LDOS, which
will also affect the QD gain) from an analytical perspective,
we can easily use the fundamental QNM spatial profiles to
compute �a(ra), using Eq. (18), and statistically sample a
wide range of spatial points subjected to the same frequency
averaging as described above for the QD ensemble (each
one assigned a random center frequency). In Fig. 14, we
demonstrate the M1 projected radiative decay rates sampled
over a wide range of spatial points with random frequencies
assigned as before; namely, we use the QNM expansion of the
GF, through Eq. (1), using just this normalized cavity mode.

FIG. 14. For each cavity length, we show an example instance of
the bar-graph statistics from 300 bins of the single-position radiative
decay rates overlapping with the fundamental (M1) cavity mode,
where the center frequencies of the dipole emitters are randomly
assigned as before. The total average enhancement rates for each
statistical distribution, using all spatial points in the spatial mode
active region, is shown in each panel (in units of γ0).

N

FIG. 15. Total ensemble average of the single QD radiative decay
rate for each LN cavity averaged over 50 statistical variations of
each instance shown in Fig. 14. In contrast to the peak Purcell factor
trends, we clearly see a decrease in the average radiative decay rate
for increasing cavity lengths that would be randomly sampled by
the QDs.

Instead of an increasing decay rate, we see a decrease of the
radiative decay rates for increasing length cavities since the
probability of spectrally overlapping with the larger-Q cavity
modes decreases. To help quantify this effect, we have repeated
these statistical simulations 50 times each and computed the
ensemble spatial average per LN cavity and confirm that
there is indeed a decrease as shown in Fig. 15. Thus, it
seems likely that this decreasing radiation decay rate causes
an increase in the threshold gain characteristics, and perhaps
will plateau as the average increase falls below γ0 (associated
with out-of-plane decay of the PC slab). While the rates are
much smaller than γ ′ (1.5 ps−1), they still play a key role in
determining the overall population decay. This view is further
supported by the calculations shown in Fig. 12(d), where
a fixed (and dominant) radiative decay rate �R = 0.05 ps−1

(�γ ′) increases the threshold currents by at least an order
of magnitude [cf. Fig. 12(c)], and completely changes the
threshold gain characteristics as a function of cavity length.

VII. CONCLUSIONS

We have developed a self-consistent numerical model to
describe an active QD ensemble coupled to PC cavities using
Lumerical’s plug-in tool within an effective 2D FDTD method
to investigate pump threshold as a function of cavity length.
Both multimode and (primarily) single-mode lasing was
found, depending on the peak frequency of the QD ensemble.
Studying the effects of our ensemble on the single-mode lasing,
we found a general plateauing (and possible increase) of the
pump threshold beyond L9, in qualitative agreement with
recent experiments. As such, we believe there is strong desire
to generalize the common rate equations for these complex
cavity systems. From a simple analytical modal theory of the
fundamental cavity mode, we have also demonstrated how the
overall radiative decay rates (and likely other related effects
such as the effective gain) can come down as a function of
cavity size, which is caused by a reduction in the spectral
overlap of the spectrally sharp cavity modes with respect
to the broad emission frequencies of the QD ensemble. In
the Appendix, structural disorder is also shown to generally
increase the pump threshold for cavities longer than L7,
again in good agreement with the experimental findings of
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Ref. [13], though it seems unlikely that disorder alone was
responsible for this effect (as our simulations without disorder
clearly show). Random localization due to disorder of the
lasing cavities modes is also seen, which could merit further
investigation, e.g., in the context of slow-light PC waveguides
[58,90] and active waveguides [91].
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APPENDIX: EXAMPLES OF SINGLE-INSTANCE
DISORDERED LATTICES ON THE GAIN

THRESHOLD BEHAVIOR

In this Appendix, we briefly assess the impact of single-
instance structural disorder on the lasing pump threshold,
namely, in the presence of the self-consistent gain dynamics.
As mentioned in Sec. II, the intrinsic level of disorder for
our effective 2D simulations is given by σDis = 0.01a (which
mimic the same effect as full 3D slab cavities properties).
To understand the effects of additional lattice disorder, we
increase this to σDis = 0.04a. Instances of these two disordered
simulations can be seen in Figs. 16(a) and 16(b), where
we again use ω1 as the peak frequency (gain model A).
A general increase to the pump threshold, which becomes
more prominent beyond L7, is clearly seen. These results
are indeed consistent with the experimental results from [13],
showing that the laser threshold plateaus for increasing cavity

N N

FIG. 16. Pump threshold trends for two disordered simulations:
intrinsic levels σDis = 0.01a (a), and larger than intrinsic disorder
σDis = 0.04a (b), demonstrating a general increase in the pump
threshold predominantly for cavity lengths greater than L7.

length. Our results show that the inhomogeneous nature of the
ensemble of quantum dots plays a strong role in this effect,
and may even dominate the effects of structural disorder.

Finally, we also look at the influence of increased disorder
(e.g., deliberate disorder) on our lasing mode profiles in the
possible regime of Anderson localization, or with strongly
localized modes. At L15, the M1 is the strongest mode

FIG. 17. (a) Projected LDOS along the y direction for the first
fundamental lasing mode of the L15 cavity, for the sheet active region
with peak frequency ω1, with increasing amounts of disorder. The
LDOS is normalized to free space such that our y axis is in units of
PF. All lasing modes are measured for simulations with incoherent
pump rate P = 8 ns−1, where the ordered simulation’s response is
in black, the intrinsically disordered simulation σDis = 0.01a is in
orange, and the additional disordered simulation σDis = 0.04a is in
magenta. (b)–(d) Mode profiles of M1 for the ordered (b), intrinsic
disordered σDis = 0.01a (c), and additional disordered σDis = 0.04a

(d) simulations.
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(highest Q) of all the cavity lengths, and also has the
longest mode profile, which makes it the best candidate for
localization. Sheet (uniform) gain is used in this analysis to
isolate the randomness in the systems to the disorder of the PC.
Figures 17(b)–17(d) depict the localization of the fundamental
mode as disorder is increased, although the overall PF is still
less than the idealized structure as shown in Fig. 17(a). The
projected LDOS is measured at the peak antinode location

for each mode, which is marked in each mode profile by the
small black “x” marker. This localization is random in nature,
which potentially limits the applications of such a mode, and
although the mode volume is reduced, the Q factor takes an
even greater hit. Note with greater disorder comes a larger Q

variance, as seen in Fig. 4(d), which does mean it is possible
for these localized modes to have reduced mode volume and
increased Q factors.
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