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Quantum-enhanced accelerometry with a nonlinear electromechanical circuit

Kurt Jacobs,1,2,3 Radhakrishnan Balu,1,4 and John D. Teufel5
1U.S. Army Research Laboratory, Computational and Information Sciences Directorate, Adelphi, Maryland 20783, USA

2Department of Physics, University of Massachusetts at Boston, Boston, Massachusetts 02125, USA
3Hearne Institute for Theoretical Physics, Louisiana State University, Baton Rouge, Louisiana 70803, USA

4Computer Science and Electrical Engineering, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
5National Institute of Standards and Technology, Boulder, Colorado 80305, USA

(Received 12 December 2016; revised manuscript received 19 July 2017; published 28 August 2017)

It is known that placing a mechanical oscillator in a superposition of coherent states allows, in theory, a
measurement of a linear force whose sensitivity increases with the amplitude of the mechanical oscillations, a
uniquely quantum effect. Further, entangled versions of these states across a network of n mechanical oscillators
enable a measurement whose sensitivity increases linearly with n, thus improving the classical scaling by

√
n.

One of the key challenges in exploiting this effect is processing the signal so that it can be readily measured;
linear processing is insufficient. Here we show that a Kerr oscillator will not only create the necessary states,
but also perform the required processing, transforming the quantum phase imprinted by the force signal into a
shift in amplitude measurable with homodyne detection. This allows us to design a relatively simple quantum
electromechanical circuit that can demonstrate the core quantum effect at the heart of this scheme, namely
amplitude-dependent force sensitivity. We derive analytic expressions for the performance of the circuit, including
thermal mechanical noise and photon loss. We discuss the experimental challenges in implementing the scheme
with near-term technology.
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I. INTRODUCTION

The uniquely quantum-mechanical properties of meso-
scopic systems have the potential to improve sensors far
beyond what is possible with classical devices [1–4]. This
potential is one of the driving forces in the development
of controllable quantum systems [5–25]. Here we present a
relatively simple superconducting circuit, consisting of two
superconducting nonlinear oscillators coupled to a nanome-
chanical resonator, that can be used to harness the ability of
superpositions of coherent states to perform accelerometry in
a uniquely quantum-enabled manner. The requirements for
implementing this circuit are not far from present technology;
the required components have been demonstrated in recent
experiments [26–30].

To understand the difference between quantum and classical
force detection, the first thing to note is that the accuracy of a
classical force measurement is not affected in any way by the
energy of the oscillator used to detect the force. The reason for
this is that the amount by which an applied force causes the
position and momentum of an oscillator to deviate from their
free evolution is independent of their initial values. Consider
an oscillator with frequency ω driven by a resonant force
F (t) = F cos(ωt). Denoting the (dimensionless) position and
momentum of the oscillator by x and p, respectively, the free
evolution of the (undamped) oscillator in phase space is merely
a rotation about the origin. Moving into this rotating frame,
and assuming that the damping rate of the oscillator is small
compared to ω, the action of the force is merely to shift the
momentum of the oscillator by an amount proportional to F t

in which t is time. The signal is the shift in p, and since this
transforms back and forth between x and p due to the rotation
in phase space, the force is usually measured by measuring
the resulting shift in x. The initial energy of the resonator thus
has no effect on the sensitivity of the force measurement. Note

that this is very different from the measurement of a phase
shift. A phase shift causes a displacement in phase space equal
to the phase shift multiplied by the initial amplitude of the
resonator, and so the signal is proportional to the square root
of the oscillator’s energy.

It turns out that a remarkable property of quantum mechan-
ics provides a means to measure a force via an oscillator in a
way in which the signal induced by the force is proportional
to the square root of the energy. As a result, the accuracy of
the measurement can be increased by increasing the amplitude
of the oscillator’s initial state. This effect can be achieved
by preparing the oscillator in a superposition of two coherent
states. Such states, in which a mechanical oscillator is in “two
places at the same time,” are often referred to as “cat” states,
and they have been generated in electrical oscillators using
a Kerr nonlinearity [31,32]. The difference between quantum
and classical systems under the influence of a force is that
while both undergo a shift in phase space, a quantum system
is subject to a second distinct kind of change, being a change
to the phase of the state. In particular, the action of a force
F (t) = cos(ωt) over a time �t on a coherent state |α〉 (in the
frame rotating with the oscillator) is given by

e−iFx �t/h̄|α〉 = ei Re[α]δ|α + iδ〉, (1)

where δ is the induced momentum shift in units of the
dimensionless momentum, p̃:

δ = F�t√
2mωh̄

, (2)

p̃ = −i(a − a†). (3)

The shift induced in phase space is the same as that for a
classical oscillator and is given by δ, whereas the shift to the
global phase of the coherent state is δ Re[α]. Unlike the shift
in phase space, this shift is proportional to Re[α] and thus to
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the amplitude of the oscillator. While the global phase of a
quantum state has no physical meaning in itself, the induced
phase shift becomes observable when the state of the oscillator
is a superposition of more than one coherent state. The action
on the cat state,

|α〉c ≡ [|α〉 + i|−α〉]√
2

, (4)

is

exp

(
− iFx�t

h̄

)
|α〉c = [|α + iδ〉 + ieiθ |−α + iδ〉]√

2
, (5)

where the shift in the quantum phase of the cat state is

θ = 2δ Re[α], (6)

and we have factored out an unimportant global phase. It
is important to note that the quantity we refer to here as
the quantum phase, being the phase difference between two
components of a superposition, is not (in general) the same as
the phase of the oscillator. The latter is changed by the free
evolution of the oscillator, and for the coherent state |α〉 is
given by the phase of the complex amplitude α. For the cat
state |α〉c the average phase of the oscillator is undefined, since
the phase distribution has peaks at arg(α) and arg(α) + π .

The phase signal θ comes with a limitation not shared by
the classical shift δ. Since θ appears as a phase shift between
two nearly orthogonal states, it is essentially a rotation in a
two-dimensional state space. Because of this, each single-shot
measurement gives just 1 bit of information regarding θ . Thus
while the precision of the force measurement via the cat state
can be made much smaller than the classical value by using
α � 1, it cannot be smaller than ∼1 (see below). Thus the
quantum method will beat the classical method per shot when
the force to be measured is sufficiently small that the classical
single-shot error is much larger than unity, meaning that the
momentum shift �p = F�t � √

mωh̄/2.
We note that squeezed states also provide a way to

realize quantum-enhanced sensitivity at the Heisenberg limit
(meaning a sensitivity that scales as the square root of the
mechanical energy [33,34]). Nevertheless, cat states have a
number of potential advantages over squeezed states: cat
states can be prepared in a time that is independent of
amplitude, the enhancement from squeezed states is limited
by the degree of squeezing, and the cat-state method can be
generalized to provide an additional quantum enhancement
of

√
N by using entangled cat states of N oscillators. It is

also important to note that the (quantum-enhanced) scaling
of sensitivity with phonon number that we consider here is
quite distinct from that of the precision of an interferometer
(in that case with a photon number). The latter scaling is
often discussed in the context of force measurement [e.g.,
Laser Interferometer Gravitational-wave Observatory (LIGO)
[21,35,36]] because interferometers are used in this context to
make position measurements on mechanical oscillators. The
pulsed measurement method we consider here does not use
either a position measurement or an interferometer. As such,
the resources involve the mechanical amplitude instead of that
of the auxiliary cavity modes of interferometric schemes.

A key question when using a cat state for force metrology
is how to extract that quantum phase information from the

cat state. This information cannot be extracted by a phase
measurement because it does not change the phase of the
oscillator. To date, one method for doing this has been proposed
using an ion trap [37,38]. In this case, the internal states of
the ions are used to create the initial cat state, and the phase
information is then written onto the internal states of one of
the ions for read-out. The scheme we present here works in
quite a different way, and the required control operations are
significantly simpler.

In Sec. II we show how a Kerr nonlinearity transforms the
force signal imprinted on the superposition into a change in
the average phase of the oscillator, and how the force can
be inferred from homodyne measurements. In Sec. III we
discuss an implementation of the metrology scheme using
an electromechanical circuit, and in Sec. IV we analyze the
functioning of this circuit including the effects of thermal
noise and photon loss. In Sec. V we see how this circuit would
perform if implemented with physical parameters similar to
those achieved in recent experiments. Section VI concludes
with some remarks on future directions.

II. SIGNAL PROCESSING WITH A KERR NONLINEARITY

We now show that a Kerr nonlinearity [39–41] can be used
to translate the force signal discussed above—the phase of the
superposition—into a shift of the average value of the phase
of the oscillator. Conveniently, the Kerr nonlinearity will also
generate cat states from initial coherent states. Let us define
the two operators

V ≡ exp

(
− iFx�t

h̄

)
= exp(−iδx̃) = D(−iδ), (7)

U ≡ exp[−i(π/2)(a†a)2], (8)

in which x̃ = a + a† is the dimensionless position and

D(β) = exp(βa† − β∗a), (9)

is the standard displacement operator. The operator V gives
the action of a resonant force F for a time �t , and the operator
U gives the action of a Kerr nonlinearity for the time required
to produce a cat state. Specifically, U |α〉 = |α〉c.

To show that a Kerr nonlinearity will transform the quantum
phase θ into an average phase shift of the oscillator, we apply
the force to an initial cat state |α〉c followed by the Kerr
evolution

U † = exp[i(π/2)(a†a)2] = exp[−i(3π/2)(a†a)2]. (10)

We then calculate the average value of the quadrature,

X = x̃

2
= a + a†

2
, (11)

in the resulting state. We have

〈X〉 = 1
2 (〈α|cV †U )X(U †V |α〉c)

= Re [〈α,θ |c(UaU †)|α,θ〉c ], (12)

in which we have defined

|α,θ〉c = [|α + iδ〉 + ieiθ |−α + iδ〉]√
2

. (13)

023858-2



QUANTUM-ENHANCED ACCELEROMETRY WITH A . . . PHYSICAL REVIEW A 96, 023858 (2017)

Possibly the simplest way to evaluate the last line of Eq. (12)
is to rewrite the operator expression UaU † by noting that it
is merely the operator a evolved by the Kerr nonlinearity.
The equation of motion for a under the Hamiltonian HK =
h̄q(a†a)2, given by

ȧ = i[a,q(a†a)2] = 2qi(a†a)a, (14)

can be solved because a†a is a constant of the motion for this
evolution. The result is

UaU † = i exp(iπa†a)a ≡ iGa. (15)

We can now use the fact that G|α〉 = |−α〉 to evaluate the last
line of Eq. (12), which gives

〈X〉 = Re[〈α,θ |ciGa|α,θ〉c]

= e−2δ2{α cos(4αδ) − δ[sin(4αδ) − e−2α2
]}. (16)

We see that the amplitude quadrature contains the force signal,
δ. However, for a good metrology scheme, the quantity we
measure should be sensitive ideally to first-order changes in
the signal. We can arrange this by applying an “offset” force
to apply an initial phase of θ0 = −π/4 prior to the action of
the force F . This means applying a force that shifts the value
of δ by δ0 = θ0/(2Re[α]) = −π/(8Re[α]). Note that due to
the appearance in 〈X〉 of the Gaussian factor e−2δ2

, we want to
keep |δ0| � 1, which requires that we choose α � π/8 ≈ 0.4.
The result is

〈X〉 = e−2(δ0+δ)2{α sin(4αδ) + δ[cos(4αδ) − e−2α2
]}. (17)

Restricting the size of the measured force so that αδ � 1, and
allowing α to be large enough to neglect the term e−2α2

, we
obtain

〈X〉 = e−2δ2
0 [α(4αδ) + δ] + O[(4αδ)2], 4αδ � 1. (18)

It might appear from the above expression that the average
value of X is proportional to the square of α. Nevertheless, we
will find that the sensitivity of the measurement is proportional
to α, not α2.

While the mean value of 〈X〉 in the processed state contains
the force signal, the distribution of X is multipeaked. Using
the fact that

U †|α〉 = [|α〉 − i|−α〉]/
√

2, (19)

the processed state |ψ〉 = U †V U |α〉 is given by

|ψ〉 = (|α + iδ〉 − ieiθ |α − iδ〉)/2

+ i(|−α + iδ〉 + ieiθ |−α − iδ〉)/2. (20)

As long as δ is sufficiently small, we can approximate this state
by

|ψ〉 ≈
(

1 − ieiθ

2

)
|α〉 + i

(
1 + ieiθ

2

)
|−α〉

≈
(

[1 + θ ] − i

2

)
|α〉 + i

(
[1 − θ ] + i

2

)
|−α〉, (21)

in which the last line requires θ � 1. Since the coherent states
|±α〉 give Gaussian wave functions for the observable X,
centered, respectively, at ±α, the distribution for X has two
peaks. We see that the reason the average value of X is shifted

away from zero is that the weights of the two peaks are no
longer equal. It is the difference in the weighting of the peaks
that carries the information about the force signal θ .

As long as Re[α] � 5, the two peaks are well separated.
Upon making a measurement of X, we obtain a value greater
than zero with probability p+ ≈ (1 + θ )/2. Determining θ is
therefore the problem of determining the probability of an
unfair coin. We also see that one of the factors of α in the
expression for 〈X〉 is merely due to the placing of the peaks of
the distribution at ±α. This is irrelevant to the determination
of the probability p+, however, which is why the sensitivity
scales as α even though 〈X〉 is proportional to α2.

To determine p+, we make M measurements of X, and the
resulting estimate for δ is calculated from

S = m

M
− 1

2
= 2α

[
1 − 1

(2α)2

]
δ, (22)

in which m is the number of times we obtain the result X >

0. The error in S is due to the fluctuations of m/M , whose
standard deviation for large m is

σ =
√

(1/2 + S)(1/2 − S)

M
= 1

2
√

M
(23)

as long as S � 1.
Two additional properties of the above scheme are worth

noting. The first is the way in which the force appears in the
phase shift, 4αδ. Since this phase shift is proportional to Re[α],
and complex number α rotates at the mechanical frequency,
the detection scheme filters the force signal: a constant force
produces no signal if it acts for an integral number of periods,
whereas the shift produced by a force at the mechanical
frequency simply grows with time. The scheme thus filters
the force in a band around the mechanical frequency, where
the bandwidth is inversely proportional to the time the state
spends in the mechanics. This filter is also nonlinear. The
second property is that the filter is phase-selective: because
the phase shift is proportional to the real part of α, it primarily
detects the quadrature that is in phase with the resonator. To
measure both quadratures, one could either use two devices or
shift the phase of the mechanical oscillator periodically.

III. CIRCUIT IMPLEMENTATION

A. Unidirectional coupling via an isolator

To implement the metrology procedure described above,
we need to somehow prepare a mechanical resonator in a
cat state. To prepare such a state requires a nonlinear device,
and thus something other than the mechanical resonator itself.
The approach we take is to use a nonlinear (Josephson)
electrical oscillator to prepare the state and then transfer it
to the mechanical oscillator. Implementing such a transfer
requires coupling the mechanical oscillator to an “auxiliary”
electrical oscillator with a very large photon number. This
high amplitude is required to achieve a sufficiently strong
coupling with the mechanics. There is a catch, however:
directly coupling a nonlinear oscillator to the linear auxiliary
(so as to pass the cat state to the latter) necessarily imbues
the auxiliary with some nonlinearity. This nonlinearity in turn

023858-3



KURT JACOBS, RADHAKRISHNAN BALU, AND JOHN D. TEUFEL PHYSICAL REVIEW A 96, 023858 (2017)

FIG. 1. An electromechanical circuit diagram that shows the lay-
out of the component systems required to make a quantum-enhanced
measurement of a force using a “cat” state. To implement such
a measurement requires that the coupling between the component
systems be turned off and on in a specified sequence. For simplicity,
we have not explicitly included in the circuit the means by which this
coupling is controlled. In the text, we describe four ways in which
this can be achieved.

prevents the drive signal from preparing the auxiliary in a high
amplitude state.

Our solution is to couple the nonlinear oscillator to the linear
oscillator via a transmission line that includes a circulator.
This effectively decouples the circuits of the two oscillators
electrically while allowing a (one-way) transfer of energy via
a traveling wave from the nonlinear oscillator to the auxiliary.
To process the signal that is picked up by the mechanics, we
must again pass the state to a nonlinear electrical oscillator.
To do this, we couple the mechanical oscillator to a second
linear oscillator, and we couple this oscillator to a second
nonlinear oscillator via a second transmission line. This time
the direction of the circulator is chosen to transfer the state from
the second auxiliary to the second nonlinear oscillator. The
resulting superconducting electromechanical circuit is shown
in Fig. 1. We achieve the one-way connections by attaching all
the components to a single circulator.

B. Implementing “pulsed” control

To implement the metrology procedure with the above
circuit, we first create a cat state in the nonlinear oscillator on
the left hand side in Fig. 1, which is composed of a Josephson
junction in parallel with an inductor [41–43]. Creating this cat
state involves driving the oscillator to prepare a coherent state
with moderate amplitude in a time short compared to that of
the Kerr nonlinearity, and then waiting the requisite time to
allow this nonlinearity to create the cat state. The cat state
must then be transferred to the mechanical oscillator in which
it spends some time, and then to the nonlinear oscillator on the
right in Fig. 1 via the second transmission line. The state is
then processed by being left in this nonlinear oscillator for the
required time, and it is subsequently transferred back to the
transmission line to propagate to a homodyne measurement
apparatus.

The operation of the circuit that we have just described
involves a time-dependent or “pulsed” operation in which the
cat state is transferred between the various component systems
at specified times. In Fig. 1 we have not, however, explicitly
included in the circuit the means to accomplish this control;
as displayed, the coupling between the component systems
is fixed. To implement the pulsed operation, we must have a
way to effectively turn the coupling on and off between the
components. We now describe four ways in which this could
be done.

(1) Parametric circulator. It was discovered fairly recently
that circulators and other nonreciprocal devices can be realized
with simple networks of linear oscillators [44,45]. By giving
the oscillators in the network different frequencies, and
coupling them using “parametric” driving, one is able to turn
the resulting pairwise couplings on and off and control the
functioning of the circulator. This could be used to control
which circuit elements are connected by the circulator, and
it would have the added advantage that the direction of the
circulation could be reversed, allowing the use of a single Kerr
circuit for both preparation and readout.

(2) Tunable Kerr oscillator. If we replace the Josephson
junctions in the Kerr oscillators with SQuID loops, the
frequencies of these oscillators can be controlled by changing
the flux through the loops. One can then tune the Kerr circuits
in and out of resonance with the linear oscillator to effectively
control the coupling.

(3) Tunable electromechanical circuit. We can tune the
electromechanical part of the circuit (the mechanical oscillator
and linear superconducting oscillator to which it is coupled)
in and out of resonance with the Kerr circuits by applying a dc
voltage to the drum capacitor. In this way, we can effectively
change the coupling between these elements [46,47].

(4) Indirectly couple the Kerr oscillators. One way to
control the coupling between the Kerr oscillators and their
respective transmission lines is to couple them to these lines
indirectly. To do this, one couples each Kerr oscillator to a
linear oscillator, which is then coupled to the transmission
line. One can then turn the coupling on and off between the
Kerr oscillator and its linear oscillator by using a parametric
drive. By having the linear oscillator strongly coupled to a
line, this oscillator allows a rapid transfer between the Kerr
oscillator and the line when the coupling is turned on [48].

IV. CIRCUIT PERFORMANCE IN THE PRESENCE
OF NOISE AND LOSS

We now analyze the functioning of the circuit in Fig. 1, with
the primary purpose of examining the effects of thermal noise
in the mechanical oscillator and photon loss (damping) in the
superconducting components. It turns out that, with a single
simplification, it is possible to derive analytic expressions for
the behavior of the circuit in the regime in which the number
of photons lost from the Kerr oscillators remains small. The
simplification involves treating the transfer of the state between
each of the nonlinear oscillators and the mechanics as the
action of a state-swapping interaction given by

HI = ih̄g(a†b − b†a), (24)
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in which a and b are, respectively, the annihilation operators
for one of the Kerr oscillators and the mechanical mode. In
fact, this simplification does not modify the process in any
fundamental way. Since the transfer process is linear (and
passive), no matter how exactly the time evolution of the
transfer proceeds, the result is a transformation of the form

b(t) = c1a(0) + c2b(0) (25)

after some time t , in which c1 and c2 are complex numbers. A
complete transfer from a to b means that c2 = 0. If the process
involves loss, then |c2|2 + |c1|2 < 1, and we can model this
loss by including an additional mode c that absorbs the lost
energy. Making the assumption that the transfer is due to the
Hamiltonian HI merely fixes the precise manner in which the
coefficients cj (t) change with time. This Hamiltonian produces
a sinusoidal evolution for the coefficients, and it provides an
example that elucidates how the measurement result depends
on this evolution and the force signal.

For purposes of theoretical analysis, we can combine the
first and second nonlinear oscillators into a single oscillator
that prepares the initial cat state and receives the state back
from the mechanics. We can therefore break the metrology
process into three parts: (i) The cat state is created in the
nonlinear resonator. During this step, the state is subject to
damping, so we need to examine the dynamical creation
process. (Note that we do not need to explicitly consider the
damping that acts during the creation of the initial coherent
state in the nonlinear oscillator because this damping effects
only the final coherent amplitude of this state.) (ii) The cat
state is transferred into and back out of the mechanics via the
action of the linear interaction HI. During this process, the
state is subject to loss in the transmission line that acts as
additional damping. While the state resides in the mechanics,
it is acted on by the force as well as any thermal noise to
which the mechanics is subjected. The mechanical damping
is much smaller than the electrical damping, and we ignore it.
(iii) The state now resides back in the nonlinear oscillator and
is acted upon by the Kerr evolution as well as the damping of
the oscillator. At the end of step (iii), the nonlinear oscillator
contains the cat state in which the force signal is encoded in
the amplitude difference between the two components of the
cat state, and which is measured with homodyne detection.

A. Evolution of the Kerr oscillator

When damping is included, the evolution of the nonlinear
oscillator can no longer be solved analytically. Nevertheless,
it is possible to obtain an analytical solution when only a
small number of photons are lost during the evolution. The
Hamiltonian of the Kerr oscillator is

HK = h̄ωa†a + h̄μ(a†a)2, (26)

where μ is the rate (or “frequency”) of the nonlinearity.
We will work in the interaction picture with respect to the
linear oscillation at frequency ω, so that the Hamiltonian is
effectively

HKI = h̄μ(a†a)2. (27)

When we include damping of the oscillator at the rate κ , the
full evolution is given by the master equation

ρ̇ = − i

h̄
[HK,ρ] − κ

2
(a†aρ + ρa†a − 2aρa†). (28)

Most readers will probably be familiar with the “quantum
jump” description of a Lindblad master equation, in which the
evolution is described in terms of individual “trajectories” in
which photon emissions (the “jumps”) happen at a sequence
of randomly sampled times. Fewer will be familiar with the
version of this trajectory description in which the (stochastic)
evolution equation for the trajectories is linear. Such “linear
quantum trajectories” are obtained by fixing the average rate
of photon emissions at κ , and omitting to normalize the
state following each emission. The normalization (specifically,
the square modulus) of the evolving state then furnishes the
missing information regarding the probability with which a
given sequence of emission times (a given trajectory) will
actually occur, since by fixing the emission rate one does not
sample the trajectories with the correct probabilities.

Using the linear formulation of quantum-jump trajectories,
we can break the evolution up into classes of trajectories
defined by the number of emissions that occur. For the present
system, the evolution of each class can be solved analytically,
although the complexity of the solutions increases with the
number of emissions. When there are no emissions, the
evolution is given by replacing the Hamiltonian with

Heff = h̄μ(a†a)2 − h̄
κ

2
a†a, (29)

and the probability with which this evolution occurs is merely
the square norm of the state at time t . Note that if we define

W (t) ≡ exp(−[i/h̄]Hefft), (30)

then

W (τ ) = UY, (31)

where τ = π/(2μ) and we have defined

Y = e−(κτ/2)a†a. (32)

When there is a single photon emission at a time s during the
evolution, the state at time t is

|ψ̃s(t)〉 = W (t − s)aW (s)|ψ(0)〉. (33)

Note that the state at time t is now parametrized by s. The
probability density P (s) that the state is |ψ̃s(t)〉 at time t is
the probability per unit time that an emission occurs under the
fixed emission rate κ , multiplied by the square norm of |ψ̃s(t)〉.
The total probability for a single emission during the interval
[0,t] is thus

p1(t) = κ

∫ t

0
|〈ψ̃s(t)|ψ̃s(t)〉|2ds. (34)

We can now calculate the state that is prepared by the
nonlinear oscillator for the cases in which 0 and 1 photons
are emitted during this preparation. When no photons are lost,
we use the fact that

e−i(κt/2)a†a|α〉 = ξ |ηα〉 (35)

023858-5



KURT JACOBS, RADHAKRISHNAN BALU, AND JOHN D. TEUFEL PHYSICAL REVIEW A 96, 023858 (2017)

with

ξ = exp

(
[η2 − 1]

2
e|α|2/2

)
,

(36)
η = e−κτ/2,

to obtain

W (t)|α〉 = ξ

[ |ηα〉 + i|−ηα〉√
2

]
= ξ |ηα〉c. (37)

To calculate the final state when there is a photon emission at
time 0 � s � τ , we first swap the operator a through W (s) to
obtain

W (τ − s)aW (s) = −iηUY 2e−iμsa†aa. (38)

The state at time τ , given a photon emission at time s, is thus

|ψ1〉 = −iηαξ

[ |η2αe−iφ〉 − i|η2αe−iφ〉√
2

]
, (39)

where the angle through which the coherent states are rotated
is φ = μs so that

0 � φ � π. (40)

Under the assumption that κτ � 1, the distribution of emission
times s, and thus the distribution of φ in the interval [0,π ], is
approximately uniform. We see that a photon emission during
the preparation of the cat state rotates the cat state by a random
phase up to 180◦. This is very useful information, and we will
return to it later.

B. Swapping through the mechanical oscillator

In the second part of the process, the cat state is swapped
into the mechanical oscillator and back into the nonlinear
oscillator. We assume that either (i) the swap is fast compared
to the nonlinearity so that the evolution is effectively linear
during the swap, or (ii) the nonlinearity is tunable and can
be reduced effectively to zero during the swap. With these
assumptions, the evolution during the swapping operation is
linear, and because of this we can obtain a complete solution
including damping and thermal noise for the mechanical
oscillator.

As explained above, we model the dynamics of the swap
operation using the linear interaction Hamiltonian HI given
in Eq. (24). Since the frequency of the nonlinear oscillator,
�, is much higher than that of the mechanical oscillator, ω,
the interaction between the auxiliary and the latter must be
modulated (by modulating the drive on the auxiliary [41,49]) at
the frequency difference between them. With this modulation,
and using the rotating-wave approximation, in the interaction
picture with respect to the Hamiltonian

H0 = h̄�a†a + h̄ωb†b (41)

the Hamiltonian of the two-oscillator system becomes

H = ih̄g(a†b − b†a). (42)

Including damping and thermal noise, the full evolution of the
two oscillators is given by the quantum Langevin equations of

the input-output formalism as [41,50]

ȧ = − (κ̃/2)a + gb + √
κ̃ain(t), (43)

ḃ = −(γ /2)b − ga + √
γ bin(t) + eiωtf (t) + T(t). (44)

Here κ̃ models the combined damping coming from the
nonlinear oscillator, the auxiliary, and the transmission line,
γ is the damping rate of the mechanics, and ain and bin are the
quantum (vacuum) noise from the respective environments to
which the oscillators damp. The dimensionless version of the
force to be measured is f (t), which in terms of the real force
F is

f (t) = F (t)

√
2

mh̄ω
. (45)

We have split off the thermal component of the noise from
the input field bin so that T(t) is a classical white noise
describing the thermal fluctuations from the environment [51].
The various noise sources are described by the correlation
functions

〈ain(t)ain(t ′)〉 = 〈bin(t)bin(t ′)〉 = δ(t ′ − t), (46)

〈T(t)T(t ′)〉 = [2nT (�) + 1]δ(t ′ − t), (47)

in which nT (�) is the average thermal occupation number
of an oscillator with frequency � at the temperature of the
environment, namely

nT (�) =
[

exp

(
kBTenv

h̄ω

)
− 1

]−1

, (48)

in which Tenv is the temperature and kB is Boltzmann’s
constant.

Solving the above linear equations of motion, using
standard methods, one obtains(

a(t)
b(t)

)
= M(t)

(
a(0)
b(0)

)
+

(
Ain(t) + iδ′

Bin(t)

)
, (49)

where

M = e−�t

(
cos(νt) −i sin(νt)eiψ

−i sin(νt)e−iψ cos(νt)

)
(50)

and

� = γ + κ̃

4
, (51)

q ≡ γ − κ̃

4g
, (52)

ν = g
√

1 − q2, (53)

ψ = arg
[
q + i

√
1 − q2

]
. (54)

The driving terms produce the additional “displacements”
Ain(t), Bin(t), and δ′. The first two represent integrals over
the input vacuum fields, and the third is an integral over the
classical drives, which are the force and the thermal noise. We
will find that we do not need the first two since they will vanish
in the expectation value that we need to calculate. The third
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term is given by

δ′ = Re

{∫ π/ν

0
sin(νs)eiωs[f (s) + T(s)] ds

}
, (55)

which contains the force signal f (t) and the thermal noise
T(t).

A complete swap to and from the mechanical resonator is
achieved at time T = π/ν (or integer multiples thereof), at
which point we have

a(T ) = e−�T a(0) + Ain(T ) + iδ′. (56)

The fact that the magnitude of the coefficient of a(0) in the
above equation is less than unity implies that energy has been
lost from the system to the vacuum modes. We can simplify
the calculation of the signal in the next section by introducing
a unitary operator that generates the transformation a(0) →
a(T ). To do this, we must introduce an additional (fictitious)
mode or modes that receive the energy lost from the nonlinear
oscillator. Using a single mode, and denoting the annihilation
operator for this mode by c, we note that if we define

L = exp(ra†c − rc†a)D(−iδ′), (57)

then

L†a(0)L = cos(r)a(0) + sin(r)c(0) + iδ′. (58)

By choosing r to satisfy cos r = e−�T , we see that the
transformation generated by L is the same as that in Eq. (56)
except for the fact that we have replaced the vacuum field Ain

with the single vacuum mode c. Since neither of these terms
contributes to the signal, this difference is not important.

C. Calculating the signal

Now that we have captured the dynamics of the process
in terms of relatively simple operators W and L, calculating
the signal is feasible. We first calculate the signal given that
no photons are lost during the process. The initial state of
the Kerr oscillator is |α〉 and that of the fictitious auxiliary
we introduced above is the vacuum. The initial state of the
resonator can be omitted since it plays no role in the signal.
Writing the initial joint state as |α〉|0〉, when no photons are
lost the expression for 〈X〉 is

〈X〉0 = N−1Re[〈0|〈α|W †L†W a W †LW |α〉|0〉] (59)

in which N is the normalization discussed above, and it is
given by

N = 〈0|〈α|W †L†WW †LW |α〉|0〉. (60)

The apparent simplicity of the expressions in Eqs. (59) and (60)
is somewhat deceptive: it is considerably more challenging to
evaluate than Eq. (16). We proceed by first applying LW to
the state |α〉. Using Eqs. (37) and (57), and defining

|β,θ̃ ,q〉 ≡ |β + q〉 + ieiθ̃ |−β + q〉√
2

, (61)

we have

LW |α〉 = ξ |zηα,θ̃ , − izδ′〉 (62)

with

z = cos(r) = e−�T , (63)

θ̃ = 2ηδ′Re[α]. (64)

To complete the calculation of N and 〈X〉0, we need to
calculate the expectation values of the operators

WW † = e−κta†a, (65)

W a W † = ie−κta†aae−iπa†a (66)

for the state on the right-hand side of Eq. (62). Since
these operators change the amplitude and normalization of
coherent states, but otherwise preserve their coherent-state
nature, calculating these expectation values finally reduces
to calculating four inner products between various coherent
states. Using the relation

〈α|β〉 = exp

(
− |α|2 + |β|2

2
+ α∗β

)
, (67)

a rather lengthy calculation gives

N〈X〉0 = η exp(−ε+|δ̃|2) exp(−ε−η2α2)

× [ηzα sin(2ε+ηα Re[δ′])

+ Re[δ̃] cos(2ε+ηα Re[δ′])], (68)

+ η exp(−(1 + η4)(η2α2 + |δ̃|2))z Re[δ̃]

× cosh(2[1 + η4]ηα Im[δ̃]), (69)

where the normalization is

N = exp(−ε−|δ̃|2)[exp(−ε−η2α2) cosh(2ε−ηα Im[δ̃])

+ exp(−ε+η2α2) cos(2ε−ηα Re[δ′])]. (70)

Here we have defined ε± ≡ (1 ± η2) and the force-induced
shift

δ̃ = δ′
0 + δ′, (71)

where δ′
0 = π/(4ε+ηα) is the offset shift required to provide

the optimal offset phase θ0 = −π/4, as discussed in Sec. II.
Naturally we wish to operate the device in the regime

in which the probability of photon loss is low. Making the
approximation that

γ τ � κτ � 1, (72)

we have

η ≈ 1 − κτ/2, (73)

ε+ ≈ 2η, (74)

ε− ≈ κτ, (75)

which gives the considerably simpler expression

〈X〉0 = ηe−2η|δ′ |2−κτα2
[zηα sin(4η2αδ′) + δ′ cos(4η2αδ′)]

in which z = e−�T . We have also dropped the part of 〈X〉0 that
is suppressed by the factor e−2α2

under the assumption that
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α � 1. Assuming in addition that αδ′ � 1, we obtain

〈X〉0 = zη2α(4η2αδ′) + ηδ′. (76)

Having calculated the signal when no photons are lost
from the system during the nonlinear processes, we must now
examine what happens when a photon is lost. Note that the
linear part of the evolution, that in which the state is swapped
though the mechanical oscillator, already takes into account
photon loss, so it is only when photons are lost during the
nonlinear evolution that we must now consider. We examined
this case in Sec. IV A, where we found that a single photon
emission during the evolution in the Kerr oscillator rotates the
cat state in phase space by a random phase, approximately
uniformly distributed between zero and π . For a uniform
random phase, the average signal is zero. Recall that the way
we obtain the force from the signal is to perform the process
multiple times, and the force is given by the number of times
the value of the signal is greater than zero. Specifically, it is the
imbalance between the frequencies of obtaining a positive and
negative signal. When a photon (and thus when any number
of photons) is lost during the process, these frequencies are
equalized, thus reducing the imbalance for a given force. Thus
if we know the probability that one or more photons will be lost,
we can obtain the formula for the force merely by correcting
for the reduction in the imbalance. The effect of photons on the
accuracy of the estimate is merely that the fractional error in
S increases (for a given number of repetitions) purely because
the average value of S is reduced.

Denoting the probability that one or more photons are lost
by P , the new formula for S is

S = 1

2
− m

M
= 2α′

[
1 + ηe�T

(2α′)2

]
(1 − P )δ′, (77)

in which

α′ ≡ η2α = e−κτ α, (78)

P = πκα2/μ. (79)

A key result of the above analysis is that (i) single-photon
emissions all but destroy the information in the measurement
result, but (ii) since multiple repetitions of the measurement
are required to obtain an accurate result, such emissions do
not significantly effect the measurement process as long as the
probability of an emission per shot, P , is much less than unity.
The effect of emissions is to reduce the quantum advantage
from a scaling of α to one of α′.

Making the approximations in Eqs.(72)–(75) to simplify
the form of 〈X〉0 is useful to gain insight, but we may want
to use the full expression when determining the force from
the signal. For the purposes of examining deviations from the
simplified formula, it is useful to write S in terms of 〈X〉0,
which is

S = 1

2
− m

M
=

(
(1 − P )

zη2α

)
〈X〉0. (80)

We now return to the question of the time dependence of
the transfer of the state between the oscillators. As explained
above, we assumed in our calculation that this transfer was
implemented by an interaction of the form given in Eq. (24).

During the transfer, if we think of the state as being “partially”
in the mechanical resonator, then the interaction we have
chosen fixes the way in which the amount of the state in this
resonator changes with time. Calculating the expectation value
of 〈X〉 with a specific form for this time evolution allows us to
see how the result will change if the time evolution of the swap
is modified. In general, since we are using a transmission line to
implement the state transfer, the time dependence will depend
on the exact protocol used. (The protocol involves effectively
turning the coupling on and off between each oscillator and the
transmission line to effect the transfer, and the time dependence
of the transfer is determined by the time dependence chosen
for the couplings.)

We see from the form of the signal δ′ that the time-
dependent envelope of the transfer, which is sinusoidal in our
treatment, appears in the time integral that gives the overall
phase generated by the force. This is easily understood: if
only a fraction of the state is contained in the mechanical
oscillator at a given time, then we would expect the effect of
the force to be similarly reduced. Thus the effect of changing
the time envelope of the transfer will be to change the envelope
functions that appear in the integral for the accumulated
phase shift δ′, and possibly to modify slightly the relative
contributions of the damping rates κ and γ to the overall
photon loss.

V. IMPLEMENTATION WITH THE PRESENT
TECHNOLOGY

We now consider the experimental parameters required to
realize the above scheme, while keeping the loss probability P

small. The primary requirement is that the Kerr rate μ should
be large compared to the photon emission rates α2κ and α2γ . In
recent experiments [27], typical values that have been achieved
for the mechanical oscillator are ω/2π = 10 MHz with
γ /2π = 10 Hz and an ambient temperature giving ñ = 50.
Linear electrical resonators have frequencies of 5–10 GHz and
damping rates around κ/2π = 100 kHz. As discussed above,
in the absence of an oscillator whose nonlinearity can be tuned
over a sufficiently large range, we employ a transmission line
to couple the Kerr oscillators to the mechanics. The transfer
rate, or effective coupling rate g, is then limited by the rate
at which the oscillators damp to the transmission lines. A rate
of g/2π = 500 kHz is certainly achievable [26,30]. The Kerr
nonlinearity can be made quite large (μ ∼ 50 MHz) without
difficulty, but it brings with it an increased loss rate, κ . Since
γ is typically much less that κ , it is the ratio of μ to κ that is
the key factor that limits the implementation.

To achieve a single-photon loss probability equal to P , we
need the ratio of μ to κ to be

μ

κ
= πα2

P
, (81)

in which α2 is the average number of photons in the resonator.
Thus to achieve P � 10% for α = 1.5 requires μ/κ ≈ 70.
This would be satisfied, for example, by an oscillator with the
pair of parameters μ/2π = 7 MHz and κ/2π = 100 kHz. With
a transfer rate g/2π = 500 kHz, the loss factors γ τ and κτ

are approximately 10−4 and 0.2, respectively, using the loss
rates presented above. This collection of parameters would,
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FIG. 2. Here we show the performance of a quantum nano-
electromechanical circuit designed to make a quantum-enhanced
measurement of a force (an accelerometer) in the presence of photon
loss. The y axis is the (dimensionless) measured signal, S [given by
Eq. (80)], divided by a quantity δ′ [Eq. (55)] that is essentially a filtered
version of the force (including any thermal noise). The dark (blue)
plot gives the ideal performance when there is no photon loss, and it
displays the linear dependence on the amplitude of the superposition
state, α, which is the distinct quantum effect. The physical parameters
are those given in Sec. V, but with no loss (κ = γ = 0). The
dash-dotted (mauve) curve is for the same parameters but with a loss
rate of μ/κ = 140 [κ/(2π ) = 50 kHz = 500γ ]. The dashed curve
has the same values for the parameters as the dash-dotted curve,
except that κ is increased by a factor of 2.

therefore, allow one to demonstrate an increase of the force
signal as a function of α, being the signature of the uniquely
quantum effect. In Fig. 2 we show the signal as a function of
α for the physical parameters described above, and for three
values of the photon loss rate κ with κ ′ = κ . For these plots,
we use the full expression for the signal S given by Eq. (80).

VI. CONCLUDING REMARKS

A superposition of coherent states, often referred to as a
“Schrödinger cat,” can be used to measure a linear force in a
way that scales with the amplitude of the probe oscillator. We
have presented a quantum electromechanical circuit that could
potentially be used to realize this measurement. The operation
of the circuit involves repeating a process in which a cat
state is produced, swapped into and back out of a mechanical
resonator, and then processed by a Kerr nonlinearity so that
the signal can be read out using a homodyne measurement.
Each time the process is repeated, the measurement provides
a binary result, and the relative frequency of the two outcomes
gives the estimate of the force.

The cat state is sensitive to an applied force because
the force induces a shift in the phase between the complex
amplitudes of the two components of the superposition. But
this signal is a phase shift in an effectively two-dimensional
Hilbert space, and it is for this reason that each repetition
of the measurement procedure provides no more than 1 bit
of information about the force. Thus while the use of cat
states can lead to increased sensitivity, many repetitions are
required to obtain high accuracy. This begs the question of
whether there might be other quantum states that are able to
provide more information (resolution) per measurement, and
ideally for which this resolution increases with the amplitude.
In fact, this question has recently been answered in the
affirmative by Duivenvoorden et al., who have called the
state in question a “grid” state. A natural direction for further
work is to explore the space of states with these properties,
and to find even simpler ways in which these states can
be used for accelerometry. In metrology, the simplicity of
the process is important in reducing the number of physical
parameters that must be controlled in order to realize the
potential gains in precision. While our primary motivation
was to present a relatively simple way to perform quantum-
enhanced accelerometry, we expect that our scheme still leaves
considerable room for improvement—at least, it seems that
simpler schemes should exist. The search for schemes with
increasing simplicity, and thus practicality, is an important
direction for future work.
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