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Stochastic electrodynamics simulations for collective atom response in optical cavities
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We study the collective optical response of an atomic ensemble confined within a single-mode optical cavity
by stochastic electrodynamics simulations that include the effects of atomic position correlations, internal level
structure, and spatial variations in cavity coupling strength and atom density. In the limit of low light intensity,
the simulations exactly reproduce the full quantum field-theoretical description for cold stationary atoms and
at higher light intensities we introduce semiclassical approximations to atomic saturation that we compare with
the exact solution in the case of two atoms. We find that collective subradiant modes of the atoms, with very
narrow linewidths, can be coupled to the cavity field by spatial variation of the atomic transition frequency and
resolved at low intensities, and show that they can be specifically driven by tailored transverse pumping beams.
We show that the cavity optical response, in particular both the subradiant mode profile and the resonance shift
of the cavity mode, can be used as a diagnostic tool for the position correlations of the atoms and hence the
atomic quantum many-body phase. The quantum effects are found to be most prominent close to the narrow
subradiant mode resonances at high light intensities. Although an optical cavity can generally strongly enhance
quantum fluctuations via light confinement, we show that the semiclassical approximation to the stochastic
electrodynamics model provides at least a qualitative agreement with the exact optical response outside the
subradiant mode resonances even in the presence of significant saturation of the atoms.
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I. INTRODUCTION

The advent of optical cavities revolutionized the study
of quantum interactions of light and atoms by enabling the
study of a single quantized light field with matter [1,2]. More
recently, advances in trapping cold atoms [3,4] in single-mode
high-finesse optical cavities have greatly enhanced the control
and tunability of such systems. Current experiments are now
able to work with quantum degenerate atoms [5–12] coupling
the study of quantum optics with quantum many-body physics.

Confining many atoms and light inside a cavity can lead
to a response that is very different from that of a single
atom. The typical signature of such collective behavior occurs
when the emission rates of collective modes are enhanced
(superradiant) or suppressed (subradiant) compared to the
emission from a single atom, and cannot be accounted for by
a model of atoms which scatter light independently. Within an
optical cavity these collective effects can lead to phenomena
such as superradiant lasers [13] or realizations of the Dicke
model [14]. In multimode cavities, approximate descriptions
of many-atom systems have been shown to result, e.g., in a
rich phenomenology of different quantum phases [15,16]. The
wide variety of physics accessible by cavity-atom systems has
necessitated a number of different treatments for the studies
of many-particle interactions with the cavity field [17–35],
including studies of cavity optomechanics [36–39]. Cold
atomic ensembles trapped inside or close to the waveguides
and fibers form a closely related system where the light
field mediating interactions between atoms is confined in one
dimension [40–46].

Strong collective optical response of cold and dense atomic
gases in free space has attracted considerable experimental
interest [47–55]. The atoms can exhibit collective radiative
resonance linewidths and line shifts, and experience recurrent

scattering where light is scattered more than once by the
same atom, related effects of which have been actively
investigated theoretically in cold atom vapors [56–78]. In free
space the light-induced resonant dipole-dipole interactions
are of finite range, resulting in light-mediated interactions
that depend on the positions of the individual atoms in the
ensemble. The combination of recurrent scattering and the
position-dependent light-mediated interactions can lead to a
correlated atom response that dramatically differs from that
predicted by mean-field theoretical models of continuous
medium electrodynamics in which such effects are ignored
[66,67].

In a cavity, the optical response can be quite different
from that of free space. Even a single atom can experience
recurrent scattering by repeatedly absorbing and emitting the
same photon. Quantum effects can more clearly manifest
themselves owing to the directed light confinement. In contrast
to atoms in free space, the sole common electromagnetic mode
of a single-mode optical cavity allows long-range scattering of
light between atoms without attenuation. As a consequence,
collective radiative effects can be important in a cavity even if
the interatomic spacing is larger than a wavelength. However,
the collective phenomena are simplified due to the absence of
attenuation in the scattered light, considerably suppressing
the spatial dependence of the light-mediated interactions.
Consequently, in some limits, exact solutions may be obtained
in cavities, for example, when all atoms experience an identical
cavity field and trapping potential [79]. However, modern
experiments can involve atomic distributions which are broad
compared to the cavity wavelength. As a result, spatial
variations in coupling strengths, densities, and detunings
may become important [1], leading to position-dependent
correlations between individual atoms.
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In this paper, we calculate the optical response of a
many-atom cavity system where we include the position-
dependent correlations between pointlike atoms that are
generated by light-mediated interactions in the cavity. We
develop a semiclassical stochastic electrodynamics simulation
method that includes recurrent scattering processes between
the atoms, atomic saturation, internal level structure, and the
atom statistics. Crucially, the description can incorporate the
effects of spatial variation of the atom distribution, the cavity
mode, and the detuning, so that the atoms no longer are
assumed to experience identical fields or potentials. We derive
the semiclassical approach from a quantum field-theoretical
analysis for the coupled theory of atoms and the cavity field,
with an approach analogous to the one we have previously
implemented for the interaction of light with an atomic ensem-
ble in free space [70]. In the limit of low light intensity, the
stochastic electrodynamics simulation technique exactly re-
produces the full quantum field-theoretical description for cold
stationary two-level atoms [59,70]. At higher light intensities
where saturation is important, we implement the semiclassical
approximation that neglects quantum fluctuations between
the levels. For quantum degenerate atomic ensembles the
quantum statistical position correlations between the atoms
can be incorporated in the simulations of the optical response,
provided that one can synthesize the corresponding stochastic
ensemble of atomic positions.

Using the stochastic electrodynamics simulations, we
discuss the eigenmode structure of the cavity-atom system,
with particular emphasis on the collective atomic modes that
can be excited. The most commonly studied optical response
of the system can be considered to be due to a collective
mode with superradiant characteristics: the cavity optical field
induces this collective mode to decay much faster than would
be the case for an isolated atom, known as cavity-enhanced
spontaneous emission [1]. We show that, together with this
superradiant mode, there exist subradiant collective modes
with extremely narrow linewidths, and that these subradiant
modes can be coupled to the cavity light by introducing a
spatial variation in atomic transition frequency. The subradiant
modes can have distinct spatial profiles, allowing targeted
excitation by suitably tailored transverse pump beams, and
their long decay times also provide an opportunity for
cavity light storage mediated by collective atomic excitations,
provided that the decay to other modes than the cavity mode
is suppressed, e.g., by a regular arrangement of atoms.

Since our stochastic electrodynamics are semiclassical
outside of the low-intensity limit, we also compare such
simulations against the exact quantum treatment obtained by
solving the full coupled equations for the atomic correlation
functions governing the optical response [57] for a tractable
two-atom system. Such comparisons not only inform about the
validity of the numerical approximation, but also reveal quan-
tum features in the two-atom response of the cavity system.
The semiclassical stochastic simulations are able to capture the
broad behavior of the optical response when it is dominated by
the superradiant collective mode, although we find pronounced
quantum features in the intensity resonance profile in the
full quantum treatment, and these features are beyond the
description of the semiclassical treatment. Quantum effects
are even more significant when subradiant modes dominate the

response, and the stochastic simulations do not give a quan-
titative agreement outside of the low-intensity limit. For fre-
quencies detuned from collective atomic mode resonances, the
stochastic simulations agree well with the full quantum results.
The existence of quantum features in the collective cavity-atom
response indicates the tendency of an optical cavity to enhance
the effect of quantum fluctuations via light confinement.

While the general techniques developed here can be used for
any cold atom system in a cavity, the simulations we present
in this paper specialize to systems in which the atoms are
additionally confined in a lattice potential along the cavity
axis. A crucial advantage of our simulation technique is that
the quantum statistical position correlations of the atoms are
accounted for by means of the stochastic sampling procedure, a
necessary feature to consider for cavities containing quantum
degenerate atomic gases. We show that the optical response
can act as a diagnostic for the atomic many-body phase by
considering the different behavior of atoms in Mott insulator
(MI) or superfluid states within the lattice potential. We show
that both the subradiant spectrum and the resonance shift of the
cavity mode are appreciably altered by the different position
correlations of those states. By comparing the coherently and
incoherently scattered light, we also find how the difference
between the total scattered light intensity and the coherently
scattered light intensity is sensitive to the atom statistics,
indicating how the fluctuations of the atomic positions are
mapped onto the fluctuations of the scattered light.

We begin in Sec. II by deriving the full quantum field-
theoretical formalism for atom-cavity system. Specializing
in Sec. III to a system of two-level atoms, we discuss
the stochastic method that allows an efficient numerical
simulation. In Sec. IV we calculate the eigenmode structure
of the cavity-atom system, before studying the two-atom case
and the comparison between stochastic simulations and the
full quantum field-theoretical treatment in Sec. V. Finally,
in Sec. VI we show how the different atomic many-body
correlations in MI and superfluid states can easily be accounted
for in the stochastic simulations, and their effects on the optical
response of the system.

II. HAMILTONIAN AND EQUATIONS OF MOTION

A. System

We consider atoms confined within an optical cavity of
length L. We assume tight confinement in the transverse
dimensions such that the motion of the atoms is restricted
to a single transverse mode, one which is sufficiently narrow
that the coupling of atoms to the cavity depends only upon
the longitudinal position along the cavity axis x ∈ (0,L). The
system then reduces to a one-dimensional (1D) problem for
atomic quantities integrated over the transverse dimensions,
such as the atomic polarization P̂(x). We include two pumping
mechanisms, both at frequency �, a direct cavity axis pump of
strength η and a beam illuminating the atoms in the cavity from
a transverse direction with a strength, shape, and polarization
incorporated into h(x).

Within the dipole approximation, and expressing the Hamil-
tonian in the length gauge from the Power-Zienau-Woolley
transformation [80–82], the interaction between the atoms and
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cavity light modes may be given by the 1D Hamiltonian density

Hint = − 1

ε0
P̂(x) · D̂(x) . (1)

Here, D̂(x) is the electric displacement, which is the basic
dynamical variable for light, and which can be separated into a
sum of the positive and negative frequency components D̂

+
(x)

and D̂
−

(x) respectively, with D̂
+

(x) = [D̂
−

(x)]†. The positive
frequency component can be written in terms of the cavity-
mode photon annihilation operators âq :

D̂
+

(x) =
∑

q

ζq êq âq(t)fq(x) , ζq =
√

h̄ε0ωq

2L
, (2)

where êq is the mode polarization, and fq(x) encapsulates the
spatial variation of the cavity mode. We specialize now, and
in the remainder of this paper, to the case of a cavity with a
single-mode relevant mode, and for clarity drop the index q,
however, the treatment that we subsequently develop could, in
principle, be extended to treat multimode cavities.

Defining g(x) = ζf (x)ê/h̄ε0, such that for a Fabry-Perot
cavity g(x) = g0 sin(qx), while for a ring cavity we may have
modes g(x) = g0e

±iqx , then the Hamiltonian density of Eq. (1)
becomes

Hint ≈ −h̄[g(x) · P̂
−

(x)â(t) + g∗(x) · P̂
+

(x)â†(t)]. (3)

Here, we have additionally made the rotating wave approxima-
tion. We note that, in principle, counter-rotating terms could
be included in a treatment analogous to that below, and may
be required to consider very strong coupling.

Factoring out the dominant driving frequency time
dependence for all time-dependent operators, the full
Hamiltonian for the system in the rotating frame of the pump
may be written [83]

H =
∫

dx(Hg + He)

− h̄

∫
dx h(x) · P̂

−
(x) + h∗(x) · P̂

+
(x)

− h̄

∫
dx[g(x) · P̂

−
(x)â + g∗(x) · P̂

+
(x)â†]

− h̄�câ
†â − h̄η(â + â†), (4)

where �c = � − ωc is the detuning of the cavity mode
from the pump. Here, the second line includes the transverse
pumping of the atoms, and the last line describes the cavity
mode and its direct pumping with strength η. In the first
line, Hg and He are Hamiltonian densities for atomic fields
governing the ground and excited levels, respectively. In many
realistic experimental situations, the internal sublevel structure
may allow multiple transitions to be driven by the cavity
mode. We include the sublevel structure by defining quantum
field operators ψ̂gν(x) and ψ̂eη(x) for the sublevels involved
in the transition |g,ν〉 → |e,η〉. For the case of the linear
Zeeman shift caused by a magnetic field of strength B(x) the
effective 1D atomic Hamiltonian densities are then given by

Hg = ψ̂†
gν(x)

[
μBB(x)g(g)

l ν
]
ψ̂gν(x), (5)

He = ψ̂†
eη(x)

[
μBB(x)g(e)

l η + h̄ω0
]
ψ̂eη(x), (6)

where g
(g)
l and g

(e)
l are the Landé g factors [84] for levels g

and e, and ω0 is the resonance frequency of the |g〉 ↔ |e〉
transition in the absence of any magnetic field.

In this notation, the polarization operator P̂
+

can be
represented as a sum over contributions from the different
possible transitions

P̂
+

(x) =
∑
ν,η

dgνeηψ̂
†
gν(x)ψ̂eη(x) ≡

∑
ν,η

P̂
+
νη(x), (7)

P̂
+
νη(x) ≡ dgνeηψ̂

†
gν(x)ψ̂eη(x), (8)

where dgνeη represents the dipole matrix element for the
transition |e,η〉 → |g,ν〉:

dgνeη ≡ D
∑

σ

êσ 〈eη; 1g|1σ ; gν〉 ≡ D
∑

σ

êσC(σ )
ν,η. (9)

Here, the sum is over the unit circular polarization vectors
σ = ±1,0, and C(σ )

ν,η denote the Clebsch-Gordan coefficients
of the corresponding optical transitions. The reduced dipole
matrix element is represented byD (here chosen to be real) and
deηgν = d∗

gνeη. The light fields with the polarizations ê± and
ê0 drive the transitions |g,ν〉 → |e,ν ± 1〉 and |g,ν〉 → |e,ν〉,
respectively, in such a way that only the terms σ = η − ν in
Eq. (9) are nonvanishing.

The open nature of the cavity system is important to
consider, and the effect of transmissive loss of photons from
the cavity mode through the end mirrors at a rate κ may be
included by considering the evolution of the density matrix �̂:

d�̂

dt
= 1

ih̄
[H,�̂] + κ(2â�̂â† − â†â�̂ − �̂â†â). (10)

The equation of motion for �̂ can be used to derive equations
of motion for the cavity field â(t) also incorporating, e.g., the
backaction of quantum measurement [1].

B. Equations of motion for quantum field operators

1. Light

We may now calculate equations of motion for the atomic
and cavity-mode operators. From the equation of motion for â,
and assuming that κ is large compared with the other relevant
frequency scales of the system, we adiabatically eliminate the
cavity field. In the limit that fluctuations from the emitting
atoms dominate, we obtain the dependence of â on the atomic
polarization

â = âF + i

κ̄

∫
dx P̂

+
(x) · g∗(x), (11)

where

1

κ̄
= κ + i�c

κ2 + �2
c

, (12)

and âF represents the free field that would exist if there were
no atoms present.

2. Matter

Substituting Eq. (11) into the equations of motion for
the atomic operators, and assuming that the atomic motional
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state is unchanged by the scattering of light [85], leads
to

˙̂ψgν(x,t) = i�gνψ̂gν + ih∗(x) · dgνeηψ̂eη(x)

+ 1

κ̄∗

∫
dx ′dgνeη · G∗

c (x,x ′)P̂
−

(x ′)ψ̂eη(x)

+ ig∗(x) · dgνeηâ
†
F ψ̂eη(x), (13)

˙̂ψeη(x,t) = i�eηψ̂eη + ih(x) · deηgνψ̂gν(x)

− 1

κ̄

∫
dx ′deηgν · Gc(x,x ′)P̂

+
(x ′)ψ̂gν(x)

+ ig(x) · deηgνψ̂gν(x)âF

− 1

κ̄
deηgτ · Gc(x,x)dgτeζ ψ̂eζ , (14)

where repeated indices ζ,τ are summed over. The atom-light
detuning is denoted by the expressions

�eη = � − (
ω0 + μBBg

(e)
l η/h̄

)
, (15)

�gν = − μBBg
(g)
l ν/h̄, (16)

where we have again factored out the dominant pump
frequency �. We have also defined the cavity propagator

Gc(x,x ′) = g(x)g∗(x ′). (17)

Due to the ability of the cavity to mediate long-range photon
exchange between atoms, this propagator depends only upon
the positions x and x ′, rather than the distance |x − x ′|
which would appear in free space [70]. Additionally, we have
reordered the free-field contribution âF (â†

F ) to the right-
(left-) hand side. We will assume the free field to be in
a coherent state and this ordering means that the free-field
operators will appear as multiplicative classical coherent fields
〈âF 〉 = aF = iη/κ̄ after expectation values are taken. The
commutator

[ψ̂gν(x),âF ] = − i

κ̄
g∗(x) · dgνeηψ̂eη(x), (18)

which is required for the reordering is readily obtained from
Eq. (11) by observing that atomic operators must commute
with â at equal times.

C. Cavity-atom optical response for two-level atoms

1. General two-level atom case

Finally, combining the above equations of motion for
atom fields, and reordering the free-field contributions, results
in the coupled equations for the polarizations and one-
body correlation functions which together give the optical
response of the system. We give the full expressions in
Appendix A, but for clarity we now simplify to the case
of atoms which are well described by a two-level model,
coupling to a single-mode optical cavity, a case which we
use in the remainder of the paper unless otherwise specified.
The two-level optical response is governed by the coupled

equations

d

dt
P̂ +(x) =

[
i�̄ − D2

κ̄
Gc(x,x)

]
P̂ +(x)

+ D2

κ̄

∫
dx ′Gc(x,x ′) ψ̂†

e (x)P̂ +(x ′)ψ̂e(x)

− D2

κ̄

∫
dx ′Gc(x,x ′) ψ̂†

g(x)P̂ +(x ′)ψ̂g(x)

− iD2[ψ̂†
e ψ̂e − ψ̂†

gψ̂g][g(x)âF + h(x)], (19)

d

dt
ψ̂†

e ψ̂e = − d

dt
ψ̂†

gψ̂g

= − 2D2Re

[
1

κ̄

]
Gc(x,x)ψ̂†

e ψ̂e

− D
κ̄

∫
dx ′Gc(x,x ′) ψ̂†

e (x)P̂ +(x ′)ψ̂g(x)

− D
κ̄∗

∫
dx ′G∗

c (x,x ′) ψ̂†
g(x)P̂ −(x ′)ψ̂e(x)

+ ig(x)P̂ −âF − ig∗(x)â†
F P̂ +

+ i[h(x)P̂ − − h∗(x)P̂ +], (20)

where we have defined the two-level atom versions of Eqs. (7)
and (17) by P̂ + = Dψ̂

†
gψ̂e and Gc(x,x ′) = g(x)g∗(x ′), with

g(x) = g(x) · deg/D and h(x) = h(x) · deg/D. The detuning
�̄ = �e − �g now represents simply the detuning between
the pump frequency and the atomic resonance frequency. In
the presence of a spatially dependent applied magnetic field
strength, �̄ can be spatially dependent [see Eqs. (5) and (6)],
however, for brevity we will not generally indicate the spatial
dependence unless relevant.

In this two-level model, the origin of the terms in these
equations may be discussed transparently. In Eq. (19), the
last line represents the interaction of an atom at point x with
the transverse driving field h(x) and the driven field of the
cavity âF . The effect of saturation is accounted for by the
factor of (ψ̂†

e ψ̂e − ψ̂
†
gψ̂g). The second and third lines include

the effect of a dipole at point x ′ interacting with an atom
at point x via the cavity mode, an interaction governed by
the propagator Gc(x,x ′). Finally, the term proportional to
Gc(x,x) in the first line arises from the reordering of the
free-field contribution. In free space, the similar procedure
resulted in terms corresponding to both the spontaneous
emission and the Lamb shift [70]. In the cavity, the term
has the form of a self-interaction of a dipole at x via the
cavity field. However, the real and imaginary parts could
alternatively be expressed as the position-dependent cavity-
enhanced emission rate D2|g(x)|2κ/(κ2 + �2

c) and Lamb shift
D2|g(x)|2�c/(κ2 + �2

c) [86], respectively.

2. Limit of low light intensity

The system simplifies greatly in the limit of low light
intensity, where we may work to first order in the excited
level operator ψ̂eν or driving field operator âF . In this limit,
the excited-state density operator vanishes, the ground-state
density operator is invariant, and it remains only to treat the
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equation for the atomic polarization operator, which becomes

d

dt
P̂ +(x) =

[
i�̄ − D2

κ̄
Gc(x,x)

]
P̂ +(x)

− D2

κ̄

∫
dx ′Gc(x,x ′) ψ̂†

g(x)P̂ +(x ′)ψ̂g(x)

+ iD2ψ̂†
gψ̂g[g(x)âF + h(x)]. (21)

Taking expectation values of both sides of this equation gives
the equation of motion for the polarization P (x) ≡ 〈P̂ +(x)〉,
from which the optical response is readily calculated from
Eq. (11). However, the equation of motion for 〈P̂ +(x)〉 depends
on the two-body correlation

P2(x; x ′) ≡ 〈ψ̂†
g(x)P̂ +(x ′)ψ̂g(x)〉. (22)

The equation of motion for P2 may be derived in an analogous
manner

d

dt
P2(x; x ′) =

[
i�̄ − D2

κ̄
Gc(x ′,x ′)

]
P2(x; x ′)

− D2

κ̄
Gc(x ′,x)P2(x ′; x)

− D2

κ̄

∫
dx ′′Gc(x ′,x ′′) P3(x,x ′; x ′′)

+ iD2〈ψ̂†
g(x)ψ̂†

g(x ′)ψ̂g(x ′)ψ̂g(x)〉
× [g(x ′)âF + h(x ′)], (23)

and so depends in turn upon a three-body correlation

P3(x,x ′; x ′′) ≡ 〈ψ̂†
g(x)ψ̂†

g(x ′)P̂ +(x ′′)ψ̂g(x ′)ψ̂g(x)〉. (24)

This continues up to the N th order, leading to a hierarchy
of equations of motion for differing orders of correlations,
which we give explicitly in Appendix B. Similar hierarchies,
but with greater complexity, are encountered outside of the
low-intensity limit or in the case of multilevel atoms [57].

In Eq. (23), the term proportional P2(x ′; x) on the right-
hand side represents recurrent scattering processes where an
excitation between the atoms at the positions x and x ′ is
repeatedly exchanged by the scattering of the same photon. In
a high-finesse cavity, even a single atom can undergo recurrent
scattering by repeatedly absorbing and emitting the same
photon. In cavity quantum electrodynamics, this is referred
to as the cooperative regime [1]. In the case of interaction of
light with atomic ensembles in free space, the cooperative
terminology for scattering has traditionally had a notably
broader meaning [87].

It rapidly becomes prohibitive to tackle the full hierarchy,
and instead the problem can be approached by a perturbative
expansion, for example, in the small parameter ρ3D/k3, which
is valid at low atom densities [56,60,88,89]. Rather than such
a perturbative approach, the field-theoretical model can be
mapped onto stochastic electrodynamics that is reminiscent of
stochastic Langevin equation approach to a diffusion equation
[59,70]. The formalism of Ref. [70] was derived for free-space
light propagation, presenting techniques which exactly solve
the free-space counterparts of Eqs. (A1) for the case of atoms
with a single ground level in the limit of low light intensity,
and which provide approximate but numerically practical

solutions outside of this limit. Analogous approaches can also
be introduced for light propagation in confined 1D waveguides
[46]. Here, we derive the stochastic electrodynamics for a
cavity system in a semiclassical approximation. We consider
explicitly only the case of two-level atoms, however, the
multilevel generalization follows from Eqs. (A1) and the
discussions in Ref. [70].

III. STOCHASTIC ELECTRODYNAMICS SIMULATIONS
OF TWO-LEVEL ATOMS

A. Stochastic sampling

Taking expectation values of Eqs. (19) and (20) leads to
a hierarchy of coupled equations of motion for correlation
functions describing the optical response of two-level atoms
in a cavity. Computationally efficient solutions, particularly
when spatial variation of the atom density, cavity mode, and
detunings are nontrivial, are provided by stochastic simulations
of the optical response: A set of N discrete atomic positions
{X1, . . . ,XN } is sampled from the thermal equilibrium N -body
joint probability distribution function for the atoms. For each
such realization of atomic positions, we solve the optical
response for the hypothetical model of N atoms pinned to the
fixed positions {X1, . . . ,XN }. Subsequent ensemble averaging
over many such independent realizations gives the quantum
expectation values for the quantities governing the optical
response of the ensemble.

The appropriate N -body distribution governing the position
sampling is that representing the thermal equilibrium state of
the atoms in the absence of light, prior to the introduction of any
pump beams into the cavity. Since we have assumed that the
atoms are stationary, this distribution function for the discrete
position sampling is invariant. The subsequent introduction of
light can induce a collective optical response, as governed by
the equations of motion (19) and (20). These equations can
be integrated, or solved in the steady state, for each single
realization of discrete positions. The optical response of the
ensemble, including the effects of quantum statistical density
correlations and light-induced atomic correlations, results
from the subsequent averaging over many such realizations.

In principle, any density correlations can be included in
the distribution function from which positions are drawn,
for example, Fermi-Dirac statistics can be modeled using a
Metropolis algorithm [46,59]. However, many situations of
interest can be sampled more straightforwardly: for an uncor-
related ensemble of classical atoms or an ideal Bose-Einstein
condensate (BEC) the sampling reduces to independently
sampling the position of atom i from the ground-state atomic
density distribution of the ensemble in the absence of light.
Since we here concentrate on stationary atoms whose center-
of-mass position is constant and only the internal electronic
state of the atoms evolves as a function of time, the total
one-body density ρ1(x) is given by this initial ground-state
atom density at all times.

To carry out this procedure, we first need to find the
equations of motion for the atoms and light for each stochastic
realization of atomic positions, which can be obtained from the
expectation values of Eqs. (19) and (20) conditioned upon the
set of positions {X1, . . . ,XN }. The conditioned expectation
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values of one-body operators can be written in terms of
one-body internal-level density matrix elements

〈ψ̂†
e ψ̂e〉{X1,...,XN } =

∑
j

ρ(j )
ee δ(x − Xj ), (25)

〈ψ̂†
gψ̂g〉{X1,...,XN } =

∑
j

ρ(j )
gg δ(x − Xj ), (26)

〈P̂ +(x)〉{X1,...,XN } = Dê
∑

j

ρ(j )
ge δ(x − Xj ), (27)

where ρge is the matrix element 〈g|ρ̂|e〉 which is related to
〈ψ̂†

gψ̂e〉.
Equations (19) and (20) then lead to the coupled set of 2N

nonlinear equations for a single realization of atomic positions

d

dt
ρ(j )

ge =
[
i�̄ − D2

κ̄
|g(Xj )|2

]
ρ(j )

ge

+ D2

κ̄

∑
l �=j

Gc(Xj,Xl)
(
2ρ(j )

ee − 1
)
ρ(l)

ge

− iD
(
2ρ(j )

ee − 1
)
[g(Xj )aF + h(Xj )], (28a)

d

dt
ρ(j )

ee = −2D2 κ

κ2 + �2
c

|g(Xj )|2ρ(j )
ee

−2 Re

⎡
⎣D2

κ̄

∑
l �=j

Gc(Xj,Xl)ρ
(j )
eg ρ(l)

ge

⎤
⎦

+ 2 Re
[
iDg(Xj )ρ(j )

eg aF

]
− 2 Re

[
iDh∗(Xj )ρ(j )

ge

]
. (28b)

Here, we have used a semiclassical factorization approxi-
mation for all conditioned expectation values of two-body
correlation functions, e.g.,

〈ψ̂†
e (x)P̂ +(x ′)ψ̂e(x)〉{X1,...,XN }

= D
N∑

j,l=1
j �=l

ρ(j,l)
ee;geδ(x − Xj )δ(x ′ − Xl),

ρ(j,l)
ee;ge � ρ(j )

ee ρ(l)
ge . (29)

Such an approximation means that the stochastic equations are
not able to fully reproduce all the light-induced correlations
in the system. However, the semiclassical approximation
provides the means to include saturation effects in our
stochastic electrodynamics while avoiding the need to solve the
full hierarchy of equations of motion for quantum correlation
functions discussed in the previous section. Furthermore, the
semiclassical approximation does not neglect all correlations
since light-induced correlations that depend on the spatial
positions of the atoms are included. In Sec. V we compare in
detail the effect of the semiclassical approximation to the full
quantum field-theoretical solution for the case of two atoms
in a cavity, and show that the semiclassical approximation
to the stochastic electrodynamics can still describe strong
cooperative effects.

Ensemble averaging the single realization results from
Eqs. (28) over many stochastic realizations of atom positions

allows the calculation of physical observables. We could also
extend the stochastic electrodynamics to include quantum
effects beyond the semiclassical factorization of Eq. (29).
This constitutes of including the correlation functions between
the different internal atomic levels, as described in Ref. [70]
for multilevel atoms in free space. In the lowest order, such
correlation functions include the pair correlations between the
internal levels of all atom pairs.

We note that in a cavity, the cavity field itself may be
a significant contribution to the confining potential for the
atoms, in addition to any external potential. In such a situation,
a self-consistent solution must be found, such that the cavity
amplitude reflects the assumed N -body distribution function
from which the atomic positions are sampled.

B. Limit of low light intensity

A limit which is both useful and important conceptually is
that of low light intensity. In this limit, dropping terms of higher
than first order in the light-field amplitude or excited-state
operators leads to the simpler linear equation for the atomic
ensemble in a single stochastic realization of atomic positions

d

dt
ρ(j )

ge =
[
i�̄ − D2

κ̄
|g(Xj )|2

]
ρ(j )

ge

− D2

κ̄

∑
l �=j

Gc(Xj,Xl)ρ
(l)
ge

+ iD[g(Xj )aF + h(Xj )]. (30)

To first order in light-field amplitude, 〈ψ̂†
e ψ̂e〉 vanishes and

〈ψ̂†
gψ̂g〉 is invariant. Each stochastic realization in this limit

is equivalent to solving the response of a model of linear
harmonic oscillators at positions X1, . . . ,XN within an optical
cavity. The importance of the limit of low light intensity is
that, in contrast to the case where saturation is non-negligible,
for atoms with a single relevant electronic ground level the
stochastic solutions can be shown to fully reproduce the
dynamics of the full hierarchy of correlation functions [90],
and so in this limit the accuracy of the stochastic method is
limited only by the statistics of the number of realizations
that are generated. In the following section, we calculate the
eigenmodes of the cavity-atom system, analyzing the limit of
low light intensity in detail.

The stochastic electrodynamics equations (30) or (28)
describe the optical response of an atomic ensemble in a
cavity. The initial distribution of the atoms and their quantum
statistics before the light enters the system can be sampled
from the appropriate joint probability distribution of atomic
positions, provided that such a distribution can be synthesized
[59]. The ensemble averaging the time evolution is then
reminiscent of the stochastic Langevin equation solution to
the diffusion equation. Many-atom cavity responses can also
be simulated using stochastic phase-space methods based
on the Wigner representation of the atomic and light fields
[25,26]. Here, the initial quantum distribution of the atoms is
also represented by stochastic sampling in the corresponding
Langevin equation, obtained from the appropriate phase-space
distribution. Each stochastic realization of the atomic wave
function is then evolved according to the dynamical equations
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that also include a stochastic Wiener noise increment, resulting
from the dynamics that is conditioned on the leaking of photons
out of the cavity. However, in the phase-space approach the
emphasis is on the center-of-mass motion of the atoms, and
the atomic polarization is treated as a continuous field, an
approximation that generally neglects the position-dependent
light-induced correlations that we investigate in this paper.

IV. EIGENMODES AND OPTICAL RESPONSE
OF THE CAVITY SYSTEM

A. Eigenmodes in the limit of low light intensity

1. Structure of the eigenmodes

In the limit of low light intensity, the equation of motion
for the polarization density [Eq. (30)] for a single realization
of discrete atomic positions can be written in the form

d

dt
ρ(j )

ge =
N∑

l=1

Mj lρ
(l)
ge + F (j ), (31)

where F involves only the driving field terms. The matrix
M therefore accounts for the cavity-mediated interparticle
interactions, along with the single-particle cavity evolution
and self-interaction of the atom with the cavity field. The
eigenmodes of M are then instrumental in understanding
the response of the atomic ensemble at a given cavity-pump
detuning. In general, we find N eigenmodes, however, only
one of the N eigenvectors is certain to have a nonzero overlap
with the cavity mode g(x) and therefore to couple to the cavity
mode. This mode involves all atoms collectively polarized with
directions determined by the local sign of g(x), and represents
the strongest possible collective coupling of atoms to the cavity
mode. It is characterized by a decay rate (linewidth) of the
order of Ng2

0/Re[κ̄] and frequency (line shift) Ng2
0/Im[κ̄], it

therefore decays much faster than would be expected for a
single atom, and represents a superradiant mode.

In contrast, the other N − 1 modes are subradiant, charac-
terized by much narrower linewidths. In fact, in the absence of
some nonperiodic dependence on g(x) generally the subradiant
modes are completely orthogonal to the cavity mode and hence
are infinitely long lived (trivially, since we neglect in our
model any loss other than to the cavity mode). The exception
to this statement occurs when the atomic detuning �̄(x) is
spatially varying. Such a detuning is generally introduced by a
trapping potential and can be tailored in practice by employing
a magnetic field strength gradient.

Since M includes �̄(x), any change in the detuning per-
turbs the eigenmodes of the system. If �̄(x) is not uniform or of
a form proportional to g(x), then the perturbation of the eigen-
modes is not merely a trivial frequency shift. Instead it results
in the coupling of subradiant modes to the cavity mode and
therefore in nonzero decay rates for the subradiant modes. Con-
sequently, in subradiant mode results presented in this paper we
necessarily rediagonalize M for each different �̄(x) consid-
ered. Of course, realistic systems will always have some subra-
diant mode decay even in the absence of coupling to the cavity
due to loss to free-space modes transverse to the cavity. We
do not include any such loss mechanism in our model, which
allows easy identification of decay to the cavity mode, and sub-
sequent measurement via the cavity output. The limit of weak
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FIG. 1. Normal modes of the cavity-atom system for a system
of eight atoms confined by an optical lattice potential and in a
MI state of one atom per site. The bare superradiant atomic mode
(green, dotted-dashed line) and cavity mode (red, dashed line) are
dressed by the atom-light interaction to form the dressed states which
exhibit an avoided crossing (solid black lines, shading represents the
linewidths of the associated mode). In contrast, the subradiant modes
remain at fixed �̄0 for all ωc, their position is represented by the
horizontal black line, as they cannot be resolved on this scale. System
parameters for this simulation are g0/κ = 0.9, �̄1/κ = 1.4 × 10−3,
κ = 342ωR where ωR is the cavity-mode recoil frequency. The atoms
are confined about each lattice site �i with a density distribution
|φi(x)|2 ∝ exp{−[(x − �i)/(0.08λ)]2}.

transverse decay may be approached, for example, by trapping
the atoms in lattices with subwavelength spacing [75,77].

In addition to the collective atomic superradiant and
subradiant modes, the cavity mode itself has a resonance (at
�c = 0 in the absence of atoms). The full cavity-atom system
therefore admits N + 1 normal modes, whose nature may
be mixed. In particular, the superradiant atomic and cavity
modes exhibit an avoided crossing near �̄ = �c = 0, leading
to the characteristic “vacuum Rabi splitting” [1,91] behavior
illustrated in Fig. 1. In contrast to the superradiant mode,
the subradiant modes remain unperturbed by the cavity-mode
frequency. In the remainder of the paper, when considering
collective atomic modes we will generally work in the weak-
coupling regime where the cavity mode is far detuned from
resonance such that the atomic modes can be considered in
isolation.

2. Lattice system

As an example, we consider a small system of eight atoms
confined in a lattice commensurate with the cavity mode, such
that atoms are confined near maxima of |g(x)|, and we will
assume that the atoms are in a Mott insulator (MI) state [92]
of exactly one atom per lattice site. In practice, a harmonic
potential is often used in conjunction with an optical lattice
and leads to a “wedding cake” MI ground state of differing
occupancies. A system of one atom per site can then be
achieved by manipulating the sites with excess occupancy
[93]. The quantum phase of the atomic ensemble can be
important in determining the optical response, and it plays
a central part in our stochastic method since it determines the
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FIG. 2. Distribution of eigenmode decay rates � and frequencies
δ, for an ensemble of individual realizations of stochastic atomic
positions. The superradiant mode is shown in (a) and (b) while
the seven subradiant modes are illustrated in (c) and (d). System
parameters as for Fig. 1, with �cp = −100κ and �̄0 = 0 and a linear
gradient of the detuning �̄1/κ = 1.4 × 10−3.

joint-probability distribution from which single realizations
of atomic positions are sampled. For an MI state with one
atom per site, the stochastic sampling for each site is similar
to that for independent atoms [64,70]: We take the atoms
to be confined along their one degree of freedom (x) by an
external lattice potential commensurate with the cavity mode,
giving rise to Wannier functions φi(x) = φ(x − �i) centered
at antinodes �i of the coupling strength g(x) = g0 sin(kx) in a
Fabry-Perot cavity. Here, φ(x) is given by

φ(x) � 1(
πL2

x

)1/4 exp

(
− x2

2L2
x

)
, (32)

where Lx governs the confinement of the well, and the linear
density of a single atom in site i is |φi(x)|2. A single realization
of discrete atomic positions for the stochastic method of
Sec. III is then found by sampling a single position from the
distribution |φi(x)|2 for each occupied lattice site. Later, in
Sec. VI we will contrast these results with those for atoms in
an ideal superfluid state.

In order to couple the subradiant atomic modes to the cavity
optical response, we apply a simple linear gradient to the
detuning, such that �̄(x) = �̄0 + �̄1x/λ. Ensemble averaging
the eigenmodes found from many stochastic realizations
of discrete atomic positions leads to the distributions of
eigenmode decay rates and frequencies shown in Fig. 2. A
single superradiant mode appears, whose distribution of decay
rates and frequencies mirrors closely the real and imaginary
parts, respectively, of the distribution of

∑
j g2(Xj )/κ̄ . In

addition, there are also seven nontrivial subradiant modes
with linewidths three orders of magnitude smaller than the
superradiant mode. In this example, the subradiant modes are
conveniently separable in frequency, but this is not generally
the case. The linear detuning gradient used here is responsible
for the uniform frequency spacing of the subradiant modes,
and increasing the number of atoms in the system will lead to
additional subradiant modes with the same spacing.

B. Optical response in the low light intensity limit

In the previous section we illustrated the calculation of the
many-atom collective eigenmodes in the cavity system, where
the atomic detuning is subject to a linear spatial variation that
couples the subradiant eigenmodes to the cavity mode. Next,
we show that these modes, when coupled in this manner, can
be excited and identified in the optical response to incident
light. We then show that these modes can also be preferentially
excited by suitable transverse light.

When coupled to the cavity mode, each of the collective
modes can be excited by axially pumping the cavity on
resonance with the corresponding mode frequency. Figure 3
demonstrates the resonances in the steady-state cavity
intensity |〈â〉|2, directly proportional to the transmitted light
intensity, obtained from an ensemble of stochastic realizations
of Eq. (30) for each value of the axial pump frequency. A
full scan of frequencies for a given atom-cavity detuning
shows a broad cavity mode resonance, with a linewidth of
approximately κ , a superradiant mode with a linewidth of
∼Ng2

0/Im[κ̄], and the very narrow and comparatively weakly
excited subradiant modes.

While the subradiant modes only couple weakly to the
cavity mode, they can also be excited by a suitably tailored
transverse pump h(x). Under an ensemble average of many
realizations, the spatial profile of the centermost of the
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FIG. 3. Spectra for the optical response of the many-atom cavity system. Resonance peaks in the steady-state cavity light intensity |〈â〉|2
due to the resonance with (a) cavity mode (the superradiant mode resonance is also resolvable near �̄0 = 0), (b) the superradiant mode, and
(c) the subradiant modes. Parameters as for Fig. 1, but with �ca = �̄0 − �cp held constant at −100κ while the pump frequency �̄0 is scanned.
Results calculated in the limit of low light intensity.
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(b)

−0.6 −0.4 −0.2 0
0

0.5

1

Δ̄0/(g2
0/Im[κ̄])

O
ve

rl
ap

Θ
i

(c)

FIG. 4. (a) Subradiant mode spatial profile (blue, solid line) corresponding to the centermost mode in Fig. 2(d) and transverse pump
profile h(x) tailored to excite this mode (red, dashed line). For comparison, the spatial profile of the superradiant mode is also shown (green,
dotted-dashed line). Note that the imaginary part of each profile is negligible. (b) Response of the steady-state cavity light intensity to the tailored
transverse pump beam as a function of pump-atom detuning �̄0. (c) Overlap of the excited polarization density P (x) with the spatial profile of a
particular collective mode Pi(x), defined as �i = | ∫ P (x)P ∗

i (x)dx|/√∫ |P (x)|2dx
∫ |Pi(x)|2dx. Overlaps are shown for the targeted subradiant

mode (blue, solid line) and the superradiant mode (red, dashed line), and clearly show a predominant excitation of the desired subradiant mode.

subradiant modes in Fig. 2(d) corresponding to the linearly
varying detuning can be determined, and is shown in Fig. 4(a).
In contrast to the superradiant mode in which the polarizations
of neighboring lattice sites are out of phase, in this case the
subradiant mode has the centermost sites in phase [the exact
distribution depends on the spatial form of �̄(x) along with
the other spatial dependence in the system]. A simple tailoring
of a transverse beam h(x) which might predominantly excite
this mode is suggested by the step function in Fig. 4(a) [94].
Using this transverse beam as the only pump mechanism, and
calculating the steady-state cavity intensity as a function of
pump frequency, we see in Fig. 4(b) that indeed the targeted
(centermost) subradiant mode is strongly excited at the appro-
priate resonance frequency. The neighboring subradiant mode
also shows a weak response, but no other subradiant modes are
appreciably excited. In order to demonstrate that the subradiant
mode has indeed been excited, in preference to the superradiant
mode, Fig. 4(c) shows the overlaps of the excited polarization
density P (x) with the spatial profile of the superradiant and the
targeted subradiant modes. Over the frequency range where
the subradiant mode shows a strong response, it can clearly be
seen that the superradiant mode is only negligibly excited. The
subradiant mode excited by this tailored transverse pump beam
has a decay rate distribution peaked at 8.5 × 10−4g2

0/Re[κ̄]
[see Fig. 2(c)], which is more than three orders of magnitude
smaller than that of the superradiant mode.

C. Eigenmodes in the saturated case

Outside of the limit of low light intensity, where it is
necessary to include the effects of saturation, the description
of the optical response becomes more complicated. We must
consider the coupled system of 3N nonlinear equations of
motion (28) for ρ

(j )
ge , ρ(j )

eg = ρ
(j )∗
ge and ρ

(j )
ee . Given a steady-state

solution v0 of Eqs. (28), the response to a small perturbation
�v about that point is encoded in the Jacobian matrix J(v0)
evaluated at the steady state

d�v
dt

= J(v0)�v. (33)

The eigenmodes of J(v0) can be useful to describe the behavior
of the system near this steady state. We have 3N eigenmodes of

the atom system, which must then be coupled to the eigenmode
of the cavity. At low light intensities, ρ(j )

ee plays a negligible role
in the dynamics, and the eigenmodes can be grouped into sets:
N conjugate pairs, which are eigenmodes predominantly rep-
resenting response of ρ

(j )
ge and its conjugate, which tend in the

limit of low intensity to those discussed in the previous section.
There are then N eigenmodes which describe the response of
the (almost negligible) ρ

(j )
ee . The latter modes have eigenvalues

predominantly determined by the values of g2(Xj )/κ̄ for a
single realization, and so simply represent the self-interaction
of an excited-state atom via the cavity mode at point Xj .

V. COMPARISON OF SEMICLASSICAL APPROXIMATION
WITH FULL TREATMENT FOR TWO ATOMS

In this section, we compare the stochastic results including
saturation of Sec. III with the results of the full quantum field-
theoretical representation of the optical response for coherent
scattering for the simple test case of two atoms.

In Sec. II we derived quantum field-theoretical equations of
motion governing the optical response of an ensemble of atoms
in an optical cavity. We then discussed how these equations
can be simulated by stochastic electrodynamics simulations
in Sec. III. We noted that the factorizations similar to (29)
in the derivation of electrodynamics equations of motion
introduce semiclassical approximations to the calculations that
go beyond the limit of low light intensity. Even in the limit
of low light intensity, some approximate factorizations are
necessary to describe atoms with multiple electronic ground
levels [70]. Here, we compare the results of the stochastic
simulations with the full field-theoretical solution of a coupled
set of equations for correlation functions of atomic densities
and polarizations that does not rely on the factorization
approximation of Eq. (29). The full field-theoretical solution
is exact for atoms which are stationary regarding their center-
of-mass motion. In particular, we neglect the potential effect
of the cavity field on the atomic recoil or on the confining
potential experienced by the atoms.

Equations (19) and (20) show that single-particle correla-
tion functions, such as the polarization and level populations, in
general depend on second-order correlation functions. In turn,
each of these depends on higher-order correlation functions,
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leading to a hierarchy of equations of motion which continue
until the N th order. Although this is a full quantum field-
theoretical treatment for the system, it is not feasible to solve
this full hierarchy of coupled equations for large N , which mo-
tivates the method of stochastic electrodynamics simulations
discussed in this paper. However, it is feasible to analyze the
field-theoretical treatment for the simple test case of a pair of
two-level atoms, as described in Appendix B. We are therefore
able to compare the semiclassical approximation to the
stochastic electrodynamics (Sec. III) with the exact solution.

Again, we take the atoms to be confined in an optical lattice,
with linear densities in each site governed by the Wannier
functions of Eq. (32) for i = 1,2. We assume a MI state of
the atoms, with a single atom in each site. As explained in
the previous section, for the stochastic method the discrete
particle positions are then sampled from the corresponding
joint probability distribution for the ground-state densities in
the absence of cavity light

ρ2(x,x ′) = 1
2 [|φ1(x)|2|φ2(x ′)|2 + |φ2(x)|2|φ1(x ′)|2]. (34)

In the absence of cavity light, this expression must also be
equal to ρ tot

2 (x,x ′) in the atom number conservation condition
given by Eq. (B7). And, since we have assumed that the atoms
are stationary with respect to their center-of-mass motion, this
remains the case even once light enters the cavity. With this
identification, the full hierarchy of equations of motion for
this system can be solved as shown in Appendix B. Below, we
compare the two techniques for the different manifestations of
collective optical response.

A. Superradiant mode

As described in the previous section, a two-atom system
admits two collective atomic modes: the superradiant mode
along with a single subradiant mode. Figure 5 shows the
spectrum of the steady-state optical cavity response for the
two-atom system for different values of the pump strength
(or atomic saturation). We display the light intensity inside the
cavity close to resonance with the superradiant eigenmode. The
cavity is far detuned from the pump frequency so that the cavity
and collective atomic modes are only weakly coupled. In the
limit of low light intensity, the resonance peak is Lorentzian,
and we confirm that the stochastic electrodynamics converges
to the result obtained by solving the correlation functions. At
intermediate intensities, when the stochastic electrodynamics
is only approximate, the results become more complicated.
First, the results from the full treatment of correlation functions
show that structure appears in the resonance profile, with
two peaks becoming evident. This structure is a signature of
quantum effects which are not able to be accounted for by the
semiclassical approximation to stochastic electrodynamics.
The stochastic electrodynamics results do capture the peak
at higher �̄ reasonably well, however, the approximation to
factorizing two-body correlation functions cannot reproduce
the structure of the local minima and the peak at lower
�̄. As the intensity increases still further, the superradiant
peak broadens, the structure becomes less significant, and the
stochastic results once again give good quantitative agreement.

An advantage of the semiclassical approximation to
stochastic electrodynamics is the ability to include spatial
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â
2 /
|a

F
|2

Δ̄0/ωR

(e)

0 5 10
0

2

4

6

8

â
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FIG. 5. The spectrum of the steady-state light intensity inside
the cavity for two atoms, showing a resonance in intensity due to the
superradiant mode for a two-atom system, and including the effects of
saturation. Results are shown for full quantum field-theoretical results
(lines) and semiclassical approximation to stochastic electrodynamics
(circles) for the low-intensity limit (a) (and showing the full extent of
the resonance peak in the inset), and for pump strengths η of 0.05κ (b),
0.1κ (c), 0.2κ (d), 0.4κ (e), and 1κ (f) [note the change in scale for (e)
and (f)]. For (b)–(f) the peak saturations

∫ 〈ψ̂ †
e (x)ψ̂e(x)〉dx/N reached

for each intensity are, respectively, 0.2, 0.3, 0.42, 0.47, and 0.49. In the
low-intensity limit, the superradiant mode has no significant structure,
but once saturation is included a two-peak structure emerges in the full
quantum results. The semiclassical approximation is unable to capture
all of this detail, although it does well on the large detuning side of the
resonance. At higher intensities, the profile broadens and the structure
is lost, at these intensities the semiclassical approximation agrees well
with the exact results.

correlation effects in a tractable manner even in larger systems.
Spatial variation in atomic density, cavity coupling strength,
and detuning can lead to nontrivial effects in the polarization
response of the atoms. For example, since the cavity Lamb
shift [D2|g(x)|2�c/(κ2 + �2

c)] is a spatially varying quantity,
for a given pump frequency only certain values of x are
exactly in resonance with the local superradiant mode. The
polarization response P (x) of the atoms therefore exhibits
a nontrivial spatial structure, which changes as a function
of detuning from the superradiant mode frequency. Figure 6
shows the polarization density at a single frequency close to the
superradiant resonance frequency, with qualitative agreement
between the two approaches even at significant saturation.

The spatial nature of the cavity coupling strength also
affects the frequency of the eigenmode. One might expect
to estimate the mode position by a simplified two-atom
model in which spatial variations were averaged. When �c

is sufficiently large that κ̄ may be treated as approximately
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FIG. 6. Spatial profile of polarization density with the incident
light at the resonance of the superradiant eigenmode for two
atoms. The real (blue, solid line) and imaginary (red, dashed line)
components of P (x) are shown calculated using full quantum field-
theoretical treatment (left column) and the semiclassical approxima-
tion to stochastic electrodynamics (right column) for a frequency
of �̄0 = 4.74ωR . In the limit of low light intensity (top row) the
two methods yield the same result (apart from sampling noise). The
cusplike profile is caused by the spatial cavity Lamb shift causing
only a narrow spatial region to shift to resonance at any given
frequency. As the resonance is scanned in frequency from low to
high, the position of the cusps moves towards the center of the atomic
density where the cavity Lamb shift is greater. The second row shows
the case at higher intensities (η = 0.1κ), the effects of saturation
broaden the cusps in the profile found in the full treatment. Since the
semiclassical approximation fails to describe the quantum features of
the resonance profile in this frequency range (see Fig. 5), it also does
not give quantitative results for the spatial profile of P (x). It does,
however, give a reasonable qualitative agreement, with the right-hand
plot showing a similar profile to the full treatment but at a slightly
shifted frequency (�̄0 = 3.16ωR).

constant, this estimate of the superradiant resonance frequency
is found by integrating over Eq. (30) and solving the resulting
eigenvalue problem, resulting in a resonant frequency of
2D2Im[g2

av/κ̄], where g2
av = ∫

g2(x)ρ1(x)dx/2 is the average
cavity coupling strength experienced by an atom. In fact, this
estimate is not particularly good; a much better estimate arises
from setting g2

av = g2
0, i.e., setting the coupling parameter to

the maximum experienced by an atom, rather than the average.

B. Subradiant mode

Excluding the internal structure of the mode spectral
response, the semiclassical approximation to stochastic
electrodynamics gives reasonable qualitative agreement for
the position and width of the superradiant mode. In contrast,
however, once saturation becomes important the semiclassical
approximation fails to describe the subradiant mode well.
Figure 7 shows the spectrum of the steady-state optical cavity
response for the two-atom system for different values of
the pump strength. Here, in order to provide some coupling
between the subradiant collective modes and the cavity mode
(see Sec. IV), we have added a differential atomic level shift
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â
2 /
|a

F
|2

Δ̄0/ωR

(b)

−0.4 −0.3 −0.2 −0.1
0

0.5

1

â
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FIG. 7. The spectrum of the steady-state light intensity inside the
cavity for two atoms showing the resonance due to the subradiant
mode. A shift of 0.5ωR has been added to the detuning of the atom
in the right-hand side well in order to enable the subradiant mode
to couple to the cavity mode. Results are shown for full quantum
field-theoretical results (lines) and semiclassical approximation to
stochastic electrodynamics (circles) for the low-intensity limit (a),
and the broadening of the resonance as pump intensity increases
outside of the low-intensity limit (b)–(f), corresponding to pump
strengths η of 0.05κ , 0.1κ , 0.2κ , 0.4κ , and 5κ , respectively. The
semiclassical stochastic treatment agrees with the full quantum
field-theoretical results in the limit of low intensities, however, once
saturation becomes significant the stochastic approximation is unable
to capture the subradiant profile, and already at 0.05κ the resonance
has diminished and broadened such that it is barely resolvable. At
very high intensities, once no subradiant mode is discernible, the
semiclassical approximation again becomes accurate.

between the two sites

�̄(x) = �̄ + 0.5ωRθ (x), (35)

where θ (x) is the Heaviside function and the center of the two
wells is at x = 0. By construction, the semiclassical stochastic
approach coincides exactly (within the sampling error) with
the full field-theoretical solution in the low-intensity limit, dis-
playing a resonance peak over an order of magnitude narrower
than that corresponding to the superradiant mode. In contrast to
the superradiant mode, increasing the intensity does not lead
to any additional internal structure of the resonance profile
in the results from the full quantum treatment. However, the
subradiant mode does broaden substantially as the saturation
increases. The semiclassical approximation clearly overes-
timates the broadening and resonance shift once saturation
is included. At very high intensities, the subradiant mode
becomes indistinguishable from the background created by the
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â

/|
a F

|2

−0.01

0

0.01

0.02

0.03

0.04

Δ
â†
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FIG. 8. Comparison for two atoms in a MI state in a cavity; full
quantum field-theoretical results obtained by solving the hierarchy
of equations of motion for correlation functions compared to the
results of the stochastic electrodynamics simulations. (a) Steady-state
intracavity light intensity 〈â†â〉 as a function of driving strength,
the coherent part of the intensity is plotted for the results of the
full hierarchy (solid line), stochastic results with 105 realizations
(red, circles), and results from simple model of a single atom
with coupling strength g0

√
Neff (green, dashed line). To highlight

the discrepancy between the solution of the full hierarchy and the
stochastic simulations with 105 realizations, the difference between
them �〈â†â〉 is plotted on the right-hand axis (blue dotted line).
(b) Steady-state total excited-state population

∫
ρee(x)dx for the

two-atom system [lines as in (a)], where ρee(x) = 〈ψ̂ †
e (x)ψ̂e(x)〉.

The difference in excited-state population between the full hierarchy
solutions and the stochastic simulations (right-hand axis). The system
was pumped along the cavity axis, on resonance with the cavity mode,
and the parameters used were g0D/κ = 42, �̄/κ = −4.2.

broadened superradiant mode and in this limit the semiclassical
approximation again provides good quantitative agreement.

C. Detuned from collective resonances

Detuned from any particular collective resonance, the semi-
classical approximation to stochastic electrodynamics works
comparatively well at all studied intensities. Figure 8 shows
a comparison with the full hierarchy of equations of motion
over a range of saturation strengths when the incident light
is detuned from any of the collective eigenmode resonances.
Agreement is excellent at high values of saturation, although
at intermediate intensities the semiclassical approximation
does lead to a small discrepancy with the full treatment.
It is instructive to compare these with other approximate
treatments. For N atoms in a cavity, each of which interact
with the cavity mode with identical coupling strengths g0, the
system reduces to the Tavis-Cummings model [79], and in the
limit of low light intensity this simplifies to give the equivalent
response to that of a single atom with coupling strength g0

√
N .

Motivated by this, a common simple approximate treatment of
spatial variations of coupling strengths g(x) is to solve a similar
model of a single atom with coupling strength g0

√
Neff , where

g2
0Neff = ∫

g2(x)ρ1(x)dx. The results of this approximation
are also shown in Fig. 8, and while they tend to the correct limit
for low light intensity, they are in general less accurate than
the results of the semiclassical electrodynamics simulations.

D. Comparison between correlation functions

In the semiclassical model for each stochastic realization
we solve the equations of motion for single-particle variables
for internal atomic states. Ensemble averaging over many

realizations of atomic positions establishes spatial correlations
between the atoms. However, not all the correlations that
result from the full quantum dynamics are incorporated. This
can be identified by comparing in more detail the equations
for internal atomic states for each stochastic realization in the
semiclassical approximation with the full quantum dynamics
of the internal states for fixed atomic positions.

In Eqs. (B4) and (B6), we give examples of the full quantum
equations of motion for two of the 16 possible two-body
correlation functions P2(x; x ′) and 〈: P̂ +(x)P̂ −(x ′) :〉, where
: · : represents normal ordering. The semiclassical factor-
ization approximation together with the stochastic sampling
technique synthesizes two-body correlation functions from the
products of one-body quantities evaluated for each stochastic
realization. For a single realization of atoms at the discrete
positions Xj and Xl , one can obtain the implied semiclassical
equations of motion for the products ρ

(j )
gg ρ(l)

ge and ρ
(j )
ge ρ(l)

eg [using
Eqs. (28)]. On the other hand, full quantum equations of motion
for the two-body quantities ρ

(j,l)
gg;ge and ρ

(j,l)
ge;eg can be derived

from Eqs. (B4) and (B5), respectively, evaluated at the same
discrete positions, by substituting

〈ψ̂†
g(x)ψ̂†

g(x ′)ψ̂e(x ′)ψ̂g(x)〉{Xj ,Xl}

= ρ(j,l)
gg;geδ(x − Xj )δ(x ′ − Xl)

+ ρ(l,j )
gg;geδ(x − Xl)δ(x ′ − Xj ),

and

〈ψ̂†
g(x)ψ̂†

e (x ′)ψ̂g(x ′)ψ̂e(x)〉{Xj ,Xl}

= ρ(j,l)
ge;egδ(x − Xj )δ(x ′ − Xl)

+ ρ(l,j )
ge;egδ(x − Xl)δ(x ′ − Xj ),

and similarly for all other two-body correlation functions.
Subsequently factorizing all two-body terms in the resultant
equations of motion [in the manner of Eq. (29)] leads
to terms consisting of products of one body quantities.
Comparing these equations with those obtained by making the
factorization approximation at the outset gives some insight
into the nature of the semiclassical approximation.

For both of these two-body correlation functions, the
semiclassical equations of motion reproduce the diagonal and
driving terms [those proportional to aF or h(x)] from the full
quantum treatment. In the case of dρ

(j,l)
ge;eg/dt the off-diagonal

term proportional to ρ
(j )
ee ρ(l)

ge is included, while the terms
missing from the semiclassical factorized version are identical
to those included but with a swap of coordinates Xj ↔ Xl . A
crucial aspect of the stochastic treatment is the averaging over
many such stochastic realizations. In the low-intensity limit,
it can be shown that, although not present in the factorized
version for a single realization, the swapped coordinate term
proportional to P2(x ′; x) in Eq. (B4) is included by means of
averaging over the stochastic samples [70].

In contrast, the semiclassical approximation to the equation
of motion for ρ

(j )
ge ρ(l)

eg does not reproduce any of the off-

diagonal couplings present in the full result for ρ
(j,l)
ge;eg . Since

in general in the full quantum picture all two-body correlation
functions are coupled, the missing terms mean the semiclassi-
cal approximation cannot reproduce the quantum correlations,
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FIG. 9. Magnitude of two-body correlation functions at two
different frequencies within the range of the superradiant mode
resonance. We show the magnitude of two of the two-body correlation
functions, P2(x; x ′) and 〈: P̂ +(x)P̂ −(x ′) :〉, calculated from the results
of the full treatment of all two-body correlation functions. The left
column shows the full quantum result, while the right-hand column
shows the semiclassical approximation to the correlation functions
in the stochastic electrodynamics. The upper two rows show the
behavior at a frequency corresponding to the left-hand peak of Fig. 5,
and it can be seen that the semiclassical approximation is less accurate
for this frequency. In contrast, the semiclassical approximation works
significantly better in the lower two rows, obtained at a frequency
corresponding to the right-hand peak of Fig. 5. These results were
obtained with η = 0.1κ . Note that due to the symmetry of the MI
system we show only one quarter of the full domain.

even when averaged over multiple realizations. However, in
the low-intensity limit the only two-body correlation functions
which are important for the cavity optical response are
P2(x; x ′) and P2(x ′; x), and hence the same factorization
approach is able to fully reproduce the correlations in this limit.

Figure 9 compares two different two-body correlation
functions obtained from the full treatment of the hierar-
chy of correlation functions with factorized semiclassical
approximations at two different frequencies near resonance
with the superradiant eigenmode and within the range spanned
by Fig. 5. It can be seen that when the semiclassical approxi-

mation to stochastic electrodynamics is least accurate, the full
two-body correlation functions exhibit structure that cannot be
reproduced by any factorization approximation. In contrast,
where the factorized and full correlation functions show
similar qualitative features the semiclassical approximation
agrees rather well with the full treatment for the optical
response of this collective mode.

In summary, while the semiclassical approximation to
stochastic electrodynamics has no effect in the limit of low
light intensity and the two methods are the same (beyond the
sampling noise), at intermediate intensities when saturation
effects become important the semiclassical approximation
only gives qualitative agreement for the excitation of the
superradiant eigenmode and is unable to describe the
excitation of the subradiant eigenmode. In the limit of very
high intensities, quantitative agreement is restored although
the collective features have become substantially power
broadened in this limit. Detuned from the collective modes,
the semiclassical approximation works well at all intensities.

The semiclassical approximation to stochastic simulations
is designed to capture spatially dependent correlation effects
induced by the scattered light. In cavities such effects
are weaker than in free space, owing to the unattenuated
long-range dipole-dipole interactions between the atoms.
Furthermore, light confinement and directed light emission
enhance quantum effects in cavities compared with quantum
fluctuations in free space. Consequently, finding differences in
the cavity response of a small two-atom system between the
semiclassical approximation and the exact quantum result is
not entirely surprising, but such deviations are likely to become
smaller in larger atomic ensembles and in multimode cavities.

VI. DIAGNOSTICS OF ATOMIC QUANTUM PHASE

An advantage of the stochastic electrodynamics simula-
tions is that different atom distributions and statistics are
incorporated in the joint probability distribution from which
the stochastic realizations of discrete atomic positions are
sampled. In many situations, an independent atom sampling
can be employed; for example, for an ideal BEC or for
uncorrelated (in the absence of light) classical atoms confined
in an optical lattice potential, the positions are sampled
from a distribution proportional to the total linear density
ρ1(x) = ∑

i ni |φi(x)|2dx where φi(x) is the wave function for
site i with site population ni . In contrast, we described how to
simulate a Mott insulator (MI) state in Sec. IV.

The atom statistics can affect the cavity system response
when site-to-site spatial variation in the Wannier functions,
atomic detunings, or cavity coupling strength are present.
The optical response can therefore be used in principle as
a diagnostic tool to query the quantum phase of the atoms.
As another illustration of the stochastic electrodynamics
simulations we discuss two examples below where the MI
and BEC states differ: first, the distribution of subradiant
modes, and second the case of a cavity transmission spectrum
when some sites are masked from the cavity, following the
model of Ref. [95]. Off-resonance spontaneous scattering
in optical lattices has actively studied as a diagnostic tool
for quantum and thermal states of atoms; see for instance
Refs. [31,96–104].
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FIG. 10. Distribution of eigenmode decay rates � and frequencies
δ, for an ensemble of individual realizations of stochastic atomic
positions for eight atoms in a superfluid state in an optical lattice. The
superradiant mode is shown in (a) and (b) while the seven subradiant
modes are illustrated in (c) and (d); since it is now difficult to sort the
individual subradiant modes only the overall distribution is shown.
System parameters are identical to those for Fig. 2.

A. Subradiant modes for a BEC

In Fig. 2 we presented the subradiant modes which appear
when �̄(x) was not spatially constant but had a weak constant
gradient, for a system of 8 atoms in a MI state of 1 atom
per lattice site. Seven subradiant and one superradiant modes
are clearly (in this case) resolvable. The subradiant modes are
only coupled to the cavity mode when the detuning �̄(x) varies
between lattice sites. Since different atomic quantum phases
lead to different atom probability distributions, they will in turn
lead to different sampled detunings in the possible stochastic
realizations of atom positions. The nature of the subradiant
modes might therefore be expected to vary with the atomic
quantum phase.

Indeed, if we instead consider the same system as Fig. 2
but in a superfluid BEC phase, the site number fluctuations
significantly alter both the lifetimes and resonance frequencies
of the subradiant modes. Modes are no longer easily separable
in frequency, and the distribution of lifetimes acquires a two-
peak structure, as shown in Fig. 10. In contrast, the superradiant
collective mode is not significantly affected by the atomic
quantum phase since it is not greatly affected by any small
changes in �̄(x). For simplicity, we have assumed that the
lattice potential is unaffected by the spatially dependent �̄(x),
so that the Wannier functions for each lattice site are identical.

B. Number fluctuations in the cavity transmission spectrum

A clear example of the importance of the atomic quantum
phase was presented by Mekhov, Maschler, and Ritsch [95]
when they considered the transmission spectra of a cavity
containing an optical lattice commensurate with the cavity
mode, but such that only nA � nL of the total nL sites occupied
by atoms interact with the cavity mode (Ref. [95] proposes to
achieve this by tilting the axis of the 1D optical lattice with
respect to the cavity axis).

In contrast to most of the results in this paper, we con-
centrate in this section on the dressed mode of the cavity-atom
system which is dominated by the bare cavity mode (illustrated
by the red dashed line in Fig. 1). We work in the regime where
the bare atomic transition is detuned far from resonance with
the driving axial cavity pump, but where the cavity mode
itself is near resonant with the pump (|�̄| � |�c|). In the
absence of atoms, the empty cavity exhibits a resonance peak
in the transmitted photon intensity centered at �c = 0 with
a width dictated by the cavity loss rate κ . The presence of
far-detuned atoms in the cavity shifts the position of this
resonance, proportional to the number of atoms in the cavity
(with reference to Fig. 1, the shift is that of the dressed state
of the cavity-atom system from the bare cavity resonance).
This shift, together with the geometry of the system described
above, allows the signature of the atomic many-body state to
be seen in the cavity transmission spectrum.

For a MI state with exactly one atom per site, nA atoms
interact with the cavity mode to shift the cavity resonance
frequency. For an ideal BEC superfluid, however, site number
fluctuations mean that a given experimental realization can
involve any number of atoms between 0 and N , each realization
giving rise to a different resonance shift. The signature of the
superfluid state is therefore a comblike transmission spectra,
compared to the single-peaked response of the MI state.

Our stochastic simulations are well suited to tackle this
system, and the contrasting spectra between the two atomic
phases are shown in Fig. 11(a), Here, we have simulated a sys-
tem of 12 atoms within an optical lattice with narrow Wannier
functions and with only half of the sites of the optical lattice
able to interact with the cavity light. The numerical calculation
extends the results of Ref. [95] to situations where the atomic
transitions are allowed to be saturated by high-pump intensities
and the coupling strength is allowed to vary in space. In
Fig. 11(b), we show results for a lattice where the spatial widths
of Wannier functions are on the order of λ/2, leading to a range
of cavity coupling strengths g(x) experienced by the atoms. In
Fig. 11(c), we show the effect of significant saturation. For each
case, we show both the coherently scattered light transmission
∝|〈â〉|2 and the total intensity transmission ∝〈|â|2〉 that also
includes the incoherently scattered light component. The two
signals for the MI state are very similar, but they differ more
in the case of a BEC due to the fluctuating density, as in the
latter case the incoherently scattered light ∝〈|â|2〉 − |〈â〉|2 has
a stronger effect on the optical response.

In comparison to Fig. 11(a), both widening the widths of
the Wannier functions and including saturation can be seen to
lead to a loss of resolution in the comb shape for the superfluid
response and a broadening for the MI case. The larger width
of the Wannier function leads to a broadening of the resonance
peaks because the wider atom distribution samples a greater
range of cavity coupling strengths. Furthermore, since the
geometry of the system leads to a decrease in the total
experienced coupling strength, the peak is shifted to smaller
�c. The distribution of

∑
j g(Xj ) sampled is not symmetric,

and this is reflected in the appearance of the resonance
peak. Higher intensities decrease the resolution through
power broadening of the spectra. Nonetheless, although such
considerations may mean the distinctive comblike structure is
not always resolvable, the differing widths of the superfluid
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(b)

2 4 6 8 10
0

5

10

15

20

25

Δc/(g2
0/|Δca|)

â
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FIG. 11. Effect of number fluctuations on the steady-state cavity transmission spectrum due to different atomic many-body states. An
optical lattice of 12 sites and containing 12 atoms is placed in a cavity, but tilted so that 6 of the lattice sites are commensurate with the cavity
mode, but the remaining 6 sites do not interact with the lattice. The figures then show the transmission spectrum of the cavity-mode resonance,
which is shifted from �c = 0 by the presence of the atoms. (a) In the limit of low intensity, atoms in a MI state show no number fluctuations
and give a single peak (blue, solid line) while the number fluctuations from a perfect superfluid state give rise to a comb pattern (red, dashed
line). Here, atom densities in each lattice site �i have relatively narrow distributions |φi(x)|2 ∝ exp{−[(x − �i)/(0.02λ)]2} and η/κ = 2. (b)
Increasing the width of the density distributions in each site (|φi(x)|2 ∝ exp{−[(x − �i)/(0.08λ)]2}) causes much of the structure to be washed
out. The difference between atomic states is now mostly evident in the width of the spectrum. (c) At higher intensities, saturation effects further
wash out the earlier structure, here the system is pumped axially with η/κ = 20, for atom densities as in (b). The bands represent statistical
uncertainties due to comparatively low number of stochastic realizations, and are not resolvable in the low-intensity results. (d)–(f) as for
(a)–(c), respectively, but showing the coherently scattered light only, which is proportional to |〈â〉|2. Other system parameters for all cases are
g0/κ = 168, κ = −0.08g2

0/�ca .

and MI resonances mean that the spectra can still be used as a
diagnostic tool for the quantum phase of the atoms.

VII. CONCLUDING REMARKS

We have formulated stochastic electrodynamics for many-
atom systems in a cavity. In this work, the approach was
implemented in a semiclassical approximation that could be
extended also to include quantum fluctuations. However, in
the limit of low light intensity and for two-level atoms, the
presented simulations are limited in accuracy only by the
sampling error introduced by the finite number of stochastic
samples used. Our formulation of the stochastic simulations
has the advantage that atomic position correlations and spa-
tially dependent potentials and couplings are readily included.

We have shown that a system of atoms in a cavity
can exhibit a collective optical response with a strongly
enhanced superradiant mode, but also with a number of weakly
coupled subradiant modes with very narrow linewidths. These
subradiant modes can be coupled to the cavity response via
spatially dependent detunings, and can exhibit distinct spatial
profiles allowing them to be driven by tailoring the shape and
phase of a transverse optical pump.

This phenomenon also raises a possible mechanism for
the storage of light by many-body atomic excitations in the
cavity. Provided that a controllable spatially dependent level

shift can be introduced for the atoms when the cavity mode
is driven, the modes that are subradiant in the absence of
the spatially dependent shifts can be directly excited by the
driving field. The idea is related to the analysis of Ref. [105]
where a subradiant mode was driven in a planar optical lattice
in free space by coupling the different atomic polarization
components with the Zeeman level shifts. After a suitable
excitation pulse, the level shifts are turned off, such that
the finite, nonvanishing resonance linewidth of the excited
subradiant mode (of the case with spatially dependent level
shifts) is tuned as close as possible to zero. The excitation
may then become trapped in the subradiant mode in a way
that a decay via the cavity mode may in principle exhibit an
extremely long lifetime. The atoms may still decay via the
free-space modes perpendicular to the cavity, but such a decay
is sensitive to the spatial arrangement of the atoms, and the
decay can be weak for regularly spaced array of atoms with a
subwavelength lattice constant [75,77].

The semiclassical stochastic method was compared with the
full quantum solution, revealing quantum features in the opti-
cal response. These are particularly prominent in the excitation
of narrow subradiant resonances at high intensities. We also
showed how the atomic quantum phase of the ensemble may be
discerned from the cavity optical response due to the different
atomic position correlations in differing phases. The quantum
statistics of the atoms inside the cavity is mapped onto the
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optical signal, and the statistics is reflected in different ways
in the coherently and incoherently scattered light.
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APPENDIX A: POLARIZATION AND CORRELATION
FUNCTION EQUATIONS OF MOTION

FOR MULTILEVEL ATOMS

Equations (19) and (20) gave the optical response for a
system of two-level atoms. For the case of multilevel atoms,
the response follows from the general equations of motion (13)
and (14), resulting in the coupled equations for the set of all
possible polarizations and coherences

d

dt
P̂

+
νη = i�̄gνeηP̂

+
νη − D2

κ̄
Pνη

ηζ Gc(x,x)dgζeτ ψ̂
†
gνψ̂eτ

− iD2Pνη
τνg(x)ψ̂†

eτ ψ̂eηâF + iD2Pνη
ητ g(x)ψ̂†

gνψ̂gτ âF − iD2Pνη
τνh(x)ψ̂†

eτ ψ̂eη + iD2Pνη
ητ h(x)ψ̂†

gνψ̂gτ

+ D2

κ̄

∫
dx ′Pνη

τνGc(x,x ′) ψ̂†
eτ P̂

+
(x ′)ψ̂eη − D2

κ̄

∫
dx ′Pνη

ητ Gc(x,x ′) ψ̂†
gν P̂

+
(x ′)ψ̂gτ , (A1a)

d

dt
ψ̂†

gνψ̂gη = i�̄gνgηψ̂
†
gνψ̂gη + 2 Re

[
1

κ̄

]
deζgν · Gc(x,x)dgηeτ ψ̂

†
eζ ψ̂eτ

− ig(x) · deτgνψ̂
†
eτ ψ̂gηâF + ig∗(x) · dgηeτ â

†
F ψ̂†

gνψ̂eτ − ih(x) · deτgνψ̂
†
eτ ψ̂gη + ih∗(x) · dgηeτ ψ̂

†
gνψ̂eτ

+ 1

κ̄

∫
dx ′deτgν · Gc(x,x ′) ψ̂†

eτ P̂
+
ψ̂gη + 1

κ̄∗

∫
dx ′dgηeτ · G∗

c (x,x ′) ψ̂†
gν P̂

−
ψ̂eτ , (A1b)

d

dt
ψ̂†

eνψ̂eη = i�̄eνeηψ̂
†
eνψ̂eη − 1

κ̄
deηgζ · Gc(x,x)dgζeτ ψ̂

†
eνψ̂eτ − 1

κ̄∗ dgζeν · G∗
c (x,x)deτgζ ψ̂

†
eτ ψ̂eη

+ig(x) · deηgτ ψ̂
†
eνψ̂gτ âF − ig∗(x) · dgτeν â

†
F ψ̂†

gτ ψ̂eη

+ ih(x) · deηgτ ψ̂
†
eνψ̂gτ − ih∗(x) · dgτeνψ̂

†
gτ ψ̂eη

− 1

κ̄

∫
dx ′deηgτ · Gc(x,x ′) ψ̂†

eν P̂
+

(x ′)ψ̂gτ − 1

κ̄∗

∫
dx ′dgτeν · G∗

c (x,x ′) ψ̂†
gτ P̂

−
(x ′)ψ̂eη , (A1c)

where the repeated indices ζ and τ should be implicitly summed over, and �̄aνbη = �bη − �aν . Here, we explicitly indicate only
the nonlocal position dependence of the atomic field operators, and we have also introduced the convenient tensor

Pνη
μτ ≡ dgνeηdeμgτ

D2
=

∑
σ,ς

êσ ê∗
ςC(σ )

ν,ηC(ς)
τ,μ . (A2)

Taking expectation values of Eqs. (A1) gives equations of motion for all one-body correlation functions, and knowledge of
those correlation functions solves the problem of optical response. However, as in the two-level case, the one-body correlation
functions depend in turn upon two-body correlation functions, leading to the hierarchy of equations of motion for multilevel
atoms. The number of correlation functions involved in the hierarchy increases rapidly with the number of levels present in the
atoms, and the complexity of the multilevel case can therefore be substantially greater than in the two-level case.

APPENDIX B: HIERARCHY OF EQUATIONS FOR THE OPTICAL RESPONSE OF ATOMS IN A CAVITY

1. Limit of low light intensity

In the limit of low light intensity, Eqs. (13) and (14), along with commutators such as (18), may be used to write the hierarchy
of coupled integral equations describing the optical response of an ensemble of two-level atoms in an optical cavity in the compact
form

Ṗ�(x1, . . . ,x�−1; x�) =
[
i�̄ − D2

κ̄
Gc(x�,x�)

]
P�(x1, . . . ,x�−1; x�) + iD2[h(x�) + aF g(x�)]ρ�(x1, . . . ,x�)

− D2

κ̄

�−1∑
k=1

Gc(x�,xk)P�(x1, . . . ,xk−1,x�,xk+1, . . . ,x�−1; xk)

− D2

κ̄

∫
dx�+1Gc(x�,x�+1)P�+1(x1, . . . ,x�; x�+1), (B1)
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analogous to the free-space case of Refs. [57] and [70]. Here, we have neglected all terms of greater than first order in the
light field amplitude of excited-state operators. Similar to Ref. [70], we have defined the �th-order one-dimensional correlation
functions in the limit of low light intensity as

P�(x1, . . . ,x�−1; x�) ≡ 〈ψ̂†
g(x1) . . . ψ̂†

g(x�−1)P̂ +(x�)ψ̂g(x�−1) . . . ψ̂g(x1)〉, (B2)

ρ�(x1, . . . ,x�) ≡ 〈ψ̂†
g(x1) . . . ψ̂†

g(x�)ψ̂g(x�) . . . ψ̂g(x1)〉, (B3)

and again used the definitions P̂ + = Dψ̂
†
gψ̂e, h(x) = h(x) · deg/D, g(x) = g(x) · deg/D, and Gc(x,x ′) = g(x)g∗(x ′).

Equation (B1) shows that, as in the free-space case, the �th-order correlation function P� depends on the integral over P�+1,
leading to a hierarchy of equations of motion which terminates only at � = N . Avoiding the need to solve this hierarchy of
equations, the stochastic technique presented in Sec. III gives a computationally efficient method to obtain the optical response.
For the low light intensity case corresponding to Eq. (B1), the stochastic method solves the linear set of equations (30) for
stochastic realizations of fixed-atom positions. An argument akin to that in Appendix B of Ref. [70] shows that subsequent
averaging over an ensemble of such realizations reproduces the full dynamics of the correlation functions as dictated by Eq. (B1).

2. Including saturation for a system of two atoms

Going beyond the limit of low light intensity to include the effects of saturation rapidly increases the complexity of the
hierarchy of equations of motion governing the correlation functions since one must now account for all 4n n-body correlation
functions for every n < N . However, for a small system of just two atoms the hierarchy terminates with the 16 equations of
motion for the two-body correlation functions 〈ψ̂†

i (x)ψ̂†
j (x ′)ψ̂k(x ′)ψ̂m(x)〉, where i,j,k,m can refer to the ground or excited

atomic state. In such a system, the direct steady-state solution of the full hierarchy for the optical response is therefore a realistic,
if somewhat tedious, approach.

The equations of motion for the two-body correlation functions may be derived using Eqs. (13) and (14), and terms
reordered using commutators similar to Eq. (18). For example, the equations of motion for the correlation functions
P2(x; x ′) = D〈ψ̂†

g(x)ψ̂†
g(x ′)ψ̂e(x ′)ψ̂g(x)〉 and 〈ψ̂†

g(x)ψ̂†
e (x ′)ψ̂g(x ′)ψ̂e(x)〉 are governed by

d

dt
〈ψ̂†

g(x)ψ̂†
g(x ′)ψ̂e(x ′)ψ̂g(x)〉

=
[
i�̄(x ′) − D2

κ̄
Gc(x ′,x ′)

]
〈ψ̂†

g(x)ψ̂†
g(x ′)ψ̂e(x ′)ψ̂g(x)〉

+D2G∗
c (x,x ′)

(
1

κ̄
+ 1

κ̄∗

)
〈ψ̂†

g(x)ψ̂†
e (x ′)ψ̂e(x ′)ψ̂e(x)〉 + D2Gc(x,x)

(
1

κ̄
+ 1

κ̄∗

)
〈ψ̂†

e (x)ψ̂†
g(x ′)ψ̂e(x ′)ψ̂e(x)〉

− D2

κ̄
Gc(x ′,x)〈ψ̂†

g(x)ψ̂†
g(x ′)ψ̂g(x ′)ψ̂e(x)〉

+ iD[a∗
F g∗(x) + h∗(x)]〈ψ̂†

g(x)ψ̂†
g(x ′)ψ̂e(x ′)ψ̂e(x)〉 − iD[aF g(x ′) + h(x ′)]〈ψ̂†

g(x)ψ̂†
e (x ′)ψ̂e(x ′)ψ̂g(x)〉

− iD[aF g(x) + h(x)]〈ψ̂†
e (x)ψ̂†

g(x ′)ψ̂e(x ′)ψ̂g(x)〉 + iD[aF g(x ′) + h(x ′)]〈ψ̂†
g(x)ψ̂†

g(x ′)ψ̂g(x ′)ψ̂g(x)〉 , (B4)

1

D2

d

dt
〈: P̂ +(x)P̂ −(x ′) :〉

= d

dt
〈ψ̂†

g(x)ψ̂†
e (x ′)ψ̂g(x ′)ψ̂e(x)〉 (B5)

=
{
i[�̄(x) − �̄(x ′)] − D2

(
Gc(x,x)

κ̄
+ Gc(x ′,x ′)

κ̄∗

)}
〈ψ̂†

g(x)ψ̂†
e (x ′)ψ̂g(x ′)ψ̂e(x)〉

+D2Gc(x,x ′)
(

1

κ̄
+ 1

κ̄∗

)
〈ψ̂†

e (x)ψ̂†
e (x ′)ψ̂e(x ′)ψ̂e(x)〉

− D2

κ̄∗ Gc(x,x ′)〈ψ̂†
e (x)ψ̂†

g(x ′)ψ̂g(x ′)ψ̂e(x)〉 − D2

κ̄
Gc(x,x ′)〈ψ̂†

g(x)ψ̂†
e (x ′)ψ̂e(x ′)ψ̂g(x)〉

+ iD[a∗
F g∗(x ′) + h∗(x ′)]〈ψ̂†

g(x)ψ̂†
e (x ′)ψ̂e(x ′)ψ̂e(x)〉 − iD[a∗

F g∗(x ′) + h∗(x ′)]〈ψ̂†
g(x)ψ̂†

g(x ′)ψ̂g(x ′)ψ̂e(x)〉
− iD[aF g(x) + h(x)]〈ψ̂†

e (x)ψ̂†
e (x ′)ψ̂g(x ′)ψ̂e(x)〉 + iD[aF g(x) + h(x)]〈ψ̂†

g(x)ψ̂†
e (x ′)ψ̂g(x ′)ψ̂g(x)〉. (B6)

Deriving all 16 such equations of motion, solving for the steady state, and including the atom number conservation relation

ρ tot
2 (x,x ′) = 〈ψ̂†

g(x)ψ̂†
g(x ′)ψ̂g(x ′)ψ̂g(x)〉 + 〈ψ̂†

g(x)ψ̂†
e (x ′)ψ̂e(x ′)ψ̂g(x)〉

+ 〈ψ̂†
e (x)ψ̂†

g(x ′)ψ̂g(x ′)ψ̂e(x)〉 + 〈ψ̂†
e (x)ψ̂†

e (x ′)ψ̂e(x ′)ψ̂e(x)〉, (B7)
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leads to a set of 16 linear independent equations which can be solved numerically to give the set of all two-body correlation
functions. Here, ρ tot

2 (x,x ′) is the two-body density-density correlation function that we assume is known. Consistent with our
earlier stochastic treatment, we have assumed that the atoms are stationary, consequently, ρ tot

2 (x,x ′) is invariant and has a form
dictated by the trapping potential, and atom statistics. Once the two-body correlation functions are obtained, polarization and
excited-state densities then follow from the steady state of the expectation values of Eqs. (19) and (20), and the hierarchy of
equations has then been solved.
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