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Superscattering pattern shaping for radially anisotropic nanowires
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We achieve efficient shaping of superscattering by radially anisotropic nanowires relying on resonant multipolar
interferences. It is shown that the radial anisotropy of refractive index can be employed to resonantly overlap
electric and magnetic multipoles of various orders, and as a result, effective superscattering with different
engineered angular patterns can be obtained. We further demonstrate that such superscattering shaping relying
on unusual radial anisotropy parameters can be directly realized with isotropic multilayered nanowires, which
may shed new light on much fundamental research and various applications related to scattering particles.
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I. INTRODUCTION

Stimulated by the recent demonstrations of optically in-
duced magnetic responses in various nanostructures incor-
porating high-refractive-index materials [1–3], the principle
of multipolar interferences has been widely applied in many
particle-scattering-related systems and metasurfaces, provok-
ing lots of applications and fundamental mechanism inves-
tigations in both the linear and the nonlinear regimes [4,5].
Among all the multipolar interference effects, an outstanding
and attractive example is the efficient shaping of the superscat-
tering that is beyond the single-channel scattering limit [6–8].
This manipulation relies on the resonant overlapping and
interferences of electric and magnetic resonances of various
orders [1–5] and can play a vital role in many applications that
require simultaneous strong scattering and designed angular
scattering patterns.

Conventional methods to resonantly overlap different mul-
tipoles supported by an individual particle rely on (i) a flat
dispersion band or multiple dispersion bands to overlap electric
resonances of different orders [6–8] and (ii) metal-dielectric
hybrid nanostructures [9–12] or homogeneous dielectric parti-
cles of irregular shapes that are neither spherical nor cylindrical
[13,14] to overlap electric and magnetic resonances. Recently
it was shown that for fundamental homogeneous spherical
particles, effective radial index anisotropy can be applied to
significantly tune the positions of the electric resonances of
various orders [15,16]. This enables flexible overlapping of
multipoles of different natures (electric or magnetic) and/or
orders, which results in multipolar interference-induced su-
perscattering of different angular scattering patterns, including
the ultradirectional forward superscattering [15,16]).

In this work, we extend our investigations of radial
anisotropy-induced superscattering pattern shaping from
three-dimensional (3D) spherical particles [15,16] to two-
dimensional (2D) cylindrical ones. Such an extension is
by no means trivial, considering that, compared to its 3D
counterparts, the scattering of 2D nanowires shows polar-
ization dependence and, more importantly, the number of
degenerate scattering channels is quite different from that of
3D spherical particles for each resonance [9,11,17]. Here in
this work we have achieved simultaneously, within radially
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anisotropic nanowires, flexible tuning of resonance positions
and superscattering with different engineered scattering pat-
terns induced by the interferences of multipoles resonantly
overlapped. It is further shown that such efficient super-
scattering pattern shaping replying on naturally inaccessible
anisotropy parameters can be simply realized within isotropic
multilayered nanowires. Such an approach based on refractive
index anisotropy renders an extra dimension of freedom
for resonance tuning and scattering pattern shaping, which
might play a significant role in various investigations into
light-matter interactions and plenty of applications associated
with particle scattering, such as nanoantennas, optical sensing
and detection, scattering-particle-assisted passive radiation
cooling, and photovoltaic devices [18,19].

II. NORMAL SCATTERING OF PLANE WAVES BY
RADIALLY ANISOTROPIC NANOWIRES

The scattering configuration we study is shown schemat-
ically in Fig. 1(a): a plane wave is normally incident on a
homogeneous nanowire (of radius R) with wave vector k along
x. Considering that the radial anisotropy of the refractive index
can only affect the TM modes (with the magnetic field along
the nanowire axis direction z) [20,21], here in this study we
fix the electric field of the incident wave on the plane along y.
The refractive indexes of the nanowire are nr and nt along the
radial and azimuthal directions, respectively. The anisotropy
parameter is defined as η = nt/nr . In this case the scattering
properties can be analytically calculated, with the normalized
scattering cross section (normalized by the single-channel
scattering limit 2λ/π [6], where λ is the wavelength in the
background medium) expressed as [11,20–22]

Nsca =
∞∑

m=−∞
|am|2. (1)

Here am is the scattering coefficient (m is the mode order
that characterizes the field distributions along the azimuthal
direction), and for TM incident waves, a0 corresponds to the
magnetic dipole (MD; M), a±1 corresponds to the electric
dipole (ED; D), a±2 corresponds to the electric quadrupole
(EQ; Q), and so on. It is clear that except for the MD, with
only one scattering channel, all the other electric resonances
correspond to two scattering channels which are degenerate as
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FIG. 1. (a) Schematic of a normally incident plane wave scattered
by a radially anisotropic nanowire of radius R. The incident wave is
TM polarized, with the magnetic field along the z direction and wave
vector k along the x direction. The radial and azimuthal indexes of
the nanowire are nr and nt , respectively. The anisotropy parameter
is η = nt/nr and the scattering polar angle is θ . (b) The scattering
spectra (normalized scattering cross section Nsca) with respect to the
normalized size parameter α for a homogeneous isotropic nanowire
(η = 1). Both the total scattering spectrum and, also, the partial
spectra of solely the MD, ED, and EQ are shown. The central
resonant positions of the first two MDs, EDs, and EQs are indicated by
M01,02 (α = β01,02 = 0.67, 1.661), D11,12 (α = β11,12 = 1.02, 1.994),
and Q21,22 (α = β21,22 = 1.384, 2.326), respectively. The near-field
distributions at these points are shown in (d)–(i), where color plots
correspond to Hz, vector plots correspond to electric fields in the
x-y plane, and dashed circles denote the particle boundaries. (c) The
scattering spectra of MDs, EDs, and EQs with anisotropy parameters
of η = 1.3 and η = 0.7. In (b) and (c) the azimuthal index is fixed at
nt = 3.5, as is also the case in Figs. 2–4.

required by the symmetry of the nanowire [11,20–22],

am = a−m = ntJm̃(ntα)J′
m(α) − Jm(α)J′

m̃(ntα)

ntJm̃(ntα)H′
m(α) − Hm(α)J′

m̃(ntα)
, (2)

where J and H are, respectively, the first-kind Bessel and
Hankel functions [17]; α is the normalized size parameter
α = kR; m̃ is the radial anisotropy-revised function order m̃ =
mη; and the accompanying primes indicate their differentiation
with respect to the entire argument. According to Eq. (2), a0 is
independent of η. This is because for the MD, there are only
electric fields along the azimuthal direction, and as a result,
the MD is not affected by the radial anisotropy if the azimuthal
index is fixed [see also Figs. 1(d) and 1(e)]. By definition, the
spectral center of each resonance is located at α = βmq , which
satisfies

am(α = βmq) = 1. (3)

Here q is the radial mode number, which corresponds to the
number of the field maximum points along the radius [see also
Figs. 1(d)–1(i)].

To further exemplify what has been discussed above, in
Fig. 1(b) we show the scattering spectra (α dependence of
the normalized scattering cross section) of a homogeneous
isotropic (η = 1) nanowire. The azimuthal index of the
nanowire investigated is fixed at nt = 3.5 throughout this work
unless otherwise specified. The spectral centers of the first
two MDs, EDs, and EQs are indicated by M01,02, D11,12, and
Q21,22, respectively. The corresponding near-field distributions
of those resonances at the points indicated are shown in
Figs. 1(d)–1(i), where both the magnetic fields along z (Hz;
color plots) and the on-plane electric fields (vector plots) are
shown. We emphasize that, to show specifically the character-
istic field distributions of each resonance, in Figs. 1(d)–1(i)
we plot the fields associated with each individual resonance
only, where the contributions of other resonances are neglected
[e.g., at Q22 the fields associated with the ED and MD are not
included in Fig. 1(i)].

The influence of the radial anisotropy on the spectral
resonance positions is shown in Fig. 1(c), where the results
for η = 1.3 and η = 0.7 are summarized. It is clear that with
the azimuthal index fixed, a larger (smaller) η will blue-shift
(red-shift) the EDs and EQs, with the MD unaffected. It is
natural to expect from Fig. 1(c) that the radial anisotropy can
be employed to flexibly overlap resonances of different natures
(electric or magnetic), different orders m, and/or different
radial mode numbers q. This can result in efficient shaping
of the superscattering pattern achieved through the resonant
interferences of the multipoles coexcited.

III. SUPERSCATTERING PATTERN SHAPING FOR
RADIALLY ANISOTROPIC NANOWIRES

A. Fundamental mechanism and parity of multipolar scattering

With all the scattering coefficients obtained [see Eq. (2)],
we can directly calculate the angular scattering amplitude �(θ )
as [11,17]

�(θ ) =
√

2/πk

∣∣∣∣∣a0 + 2
∞∑

m=1

am cos(mθ )

∣∣∣∣∣, (4)

where k is the angular wave number (amplitude of wave vector
k) in the background medium and θ is the scattering polar
angle with respect to k on the x−y plane [see Fig. 1(a)]. For the
two scattering directions (θ and 180◦ − θ ) that are symmetric
with respect to the y direction and thus on opposite sides
(forward or backward) of the scattering circle, considering
that cos(mθ ) = (−1)m cos[m(180◦ − θ )], the scattering
amplitudes show odd (even) parity for odd (even)-order
resonances. This means that when resonances of different
orders are coexcited, there are different types of interferences
(constructive or destructive) for scattering amplitudes along
different directions, which provides opportunities for efficient
superscattering pattern shaping.

B. Superscattering pattern shaping through resonantly
overlapping MDs and EDs

For cylindrical scattering particles, the simultaneous su-
perscattering and efficient scattering pattern shaping was
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FIG. 2. Scattering spectra with (a) η = 0.109 and (c) η = 2.651.
Both the total spectra (black curve) and the partial contributions
from MDs (green curve), EDs (red curve), and EQs (blue curve) are
shown (as is the case in Figs. 3 and 4). The corresponding scattering
amplitudes at the overlapping superscattering points indicated are
shown, respectively, by solid blue curves in (b) at α = 0.67 with
η = 0.109 and in (d) at α = 1.661 with η = 2.651. Here we also
show the ideal scattering patterns with solely overlapped EDs and
MDs by red crosses in (b) and (d).

first achieved in metal-dielectric core-shell nanowires through
resonantly overlapping MDs and EDs [10,11]. Since for 2D
nanowires, the number of MD scattering channels is only
half that of ED scattering channels [Eq. (4)], the scattering
is suppressed at other angles (θ = 120◦ and 240◦) [11]
rather than in the backward direction (θ = 180◦) for 3D
metal-dielectric core-shell spherical particles [9]. Here we
show the resonant overlapping of EDs and MDs within a
homogeneous radially anisotropic nanowire, and the results
are summarized in Fig. 2. Figure 2(a) shows the scattering
spectra (both total and partial contributions) for η = 0.109,
where it is clear that the anisotropy-induced red shift of the
first ED (D11) enables its overlapping with the spectrally
fixed first MD (M01), leading to effective superscattering
beyond the single-channel scattering limit (Nsca = 1) [6]. The
scattering amplitude at the overlapping superscattering point
(α = 0.67) is shown in Fig. 2(b) by the solid curve. Similarly
to what has been achieved for core-shell nanowires [11], the
scattering is suppressed in the backward half-scattering circle
but enhanced in the forward half-scattering circle. This is due
to the fact that (i) the scatterings of the ED and MD exhibit
different parities (odd and even, respectively), and (ii) in the
forward direction the two resonantly overlapped multipoles
are always in phase according to the optical theorem [17].
For comparison, we also show in Fig. 2(b) by crosses the
ideal scattering pattern of resonant overlapping of the ED and
MD only with all other multipoles neglected (a0 = a±1 = 1,
a|m|>1 = 0): �(θ ) ∝ |1 + cos(θ )|. It is clear in Fig. 2(b) that
the results of the two scenarios agree perfectly well, as the
other multipoles can be effectively neglected at α = 0.67 for
η = 0.109 [see Fig. 2(a)].

FIG. 3. Scattering spectra with (a) η = 0.0173 and (c) η =
1.414. The corresponding scattering amplitudes at the overlapping
superscattering points indicated are shown, respectively, by solid blue
curves in (b) at α = 0.67 with η = 0.0173 and in (d) of α = 1.661
with η = 1.414. Here we also show the ideal scattering patterns with
solely overlapped EQs and MDs by red crosses in (b) and (d).

The ED can also be engineered to resonantly overlap
with the MD with a larger anisotropy parameter η = 2.651,
as shown in Fig. 2(c), where the first ED (D11) coincides
spectrally with the second MD (M02) at α = 1.661. The
corresponding scattering amplitude is shown in Fig. 2(d) (solid
curve), which is slightly different from the ideal case (crosses).
This is due to the fact that at α = 1.661, the contributions of
EQ are noneligible [see Fig. 2(c)].

C. Superscattering pattern shaping through resonantly
overlapping MDs and EQs

According to Fig. 1(c), similarly to EDs, the spectral
positions of EQs are also sensitive to η and thus the radial
anisotropy can be employed to resonantly overlap EQs with
MDs too, resulting in effective superscattering also. This
is shown in Fig. 3(a) with η = 0.0173 and Fig. 3(c) with
η = 1.414. In the former case the first EQ (Q21) is tuned
to overlap with the first MD (M01), while in the latter case
it is the first EQ overlapped with the second MD (M02).
The corresponding scattering amplitudes at the overlapping
superscattering points are shown by solid curves in Fig. 3(b)
(α = 0.67 with η = 0.0173) and Fig. 3(d) (α = 1.661 with
η = 1.414) together with the ideal scattering patterns (crosses)
with only resonantly overlapped EQ and MD: �(θ ) ∝ |1 +
cos(2θ )|. The discrepancy in Fig. 3(b) originates from the
noneligible contributions of the ED [see Fig. 3(a)], while in
Fig. 3(d) the two sets of results are perfectly matched, as
effectively there are no other multipolar contributions at the
overlapping superscattering point [see Fig. 3(c)]. In contrast
to the scattering patterns of overlapped MDs and EDs shown
in Figs. 2(b) and 2(d), the scattering amplitudes are symmetric
in the forward and backward half-scattering circles, which
is induced by the same even parity of the scatterings of
the MD and EQ. The complete destructive interferences still
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FIG. 4. Scattering spectra with (a) η = 0.11 and (c) η = 3.21.
The corresponding scattering amplitudes at the overlapping super-
scattering points are shown, respectively, by solid blue curves in (b)
at α = 1.585 with η = 0.11 and in (d) at α = 2.944 with η = 3.21.
Here we also show the ideal scattering patterns with pure overlapped
EQs and EDs by red crosses in (b) and (d).

significantly suppress [Fig. 3(b)] or fully eliminate [Fig. 3(d)]
the scattering at θ = 60◦, 120◦, 240◦, and 300◦.

D. Superscattering pattern shaping through resonantly
overlapping EDs and EQs

Up to now, we have managed to resonantly overlap
spectrally η-sensitive electric multipoles with spectrally fixed
MDs relying on radial anisotropy. Though both EDs and
EQs will red-shift (blue-shift) with smaller (larger) η [see
Fig. 1(c)], it is also possible to overlap them as shown in
Fig. 4(a) [η = 0.11; second EQ (Q22) with second ED (D12)]
and in Fig. 4(c) [η = 3.21; first EQ (Q21) with second ED].
The scattering patterns at the overlapping superscattering
points (α = 1.585, 2.944) are shown in Figs. 4(b) and 4(d),
respectively, by solid curves, where the ideal scattering
amplitudes with pure resonantly overlapped ED and EQ
[�(θ ) ∝ | cos(θ ) + cos(2θ )|] are also shown by crosses. The
discrepancies exist for both scenarios, as at both overlapping
superscattering points the contributions from MDs cannot
be neglected [see Figs. 4(b) and 4(d)]. Similar to what is
shown in Figs. 2(b) and 2(d), the symmetry of the scattering
amplitudes in the forward and backward half-scattering circles
is also broken since the parities of the ED and EQ scattering
are different (odd and even, respectively). It is clear that the
interferences of ED and EQ can significantly suppress the
backward reflection and also scattering at the other two angles
in the forward half-scattering circle (θ = 60◦ and 300◦).

IV. SUPERSCATTERING PATTERN SHAPING FOR
MULTILAYERED ISOTROPIC NANOWIRES WITH

EFFECTIVE RADIAL ANISOTROPY

In the discussions above about homogeneous anisotropic
nanowires, we have employed unusual anisotropy parameters

that are inaccessible for natural materials. Nevertheless, the
recent rapid development of the field of metamaterials has
provided lots of opportunities to obtain extreme anisotropy
parameters in various artificial structures [23,24]. For example,
effectively large radial anisotropy parameters can be obtained
in a multilayered nanowire that is shown schematically in
Fig. 5(a) [2,20,21,24]. This core-shell structure is made of
alternating isotropic layers of two refractive indexes, n1 and
n2. According to the effective medium theory, the whole
multilayered isotropic structure can be viewed effectively as
a homogeneous radially anisotropic nanowire, with radial and
azimuthal indexes expressed, respectively, as [16,20,21]

nr = n1n2/

√
(1 − f )n2

1 + f n2
2,

nt =
√

f n2
1 + (1 − f )n2

2, (5)

where f is the filling factor of the layer of index n1 (the overall
thickness of all the layers of index n1 divided by the radius of
the whole structure Rm).

First, we study a 30-layered nanowire made of alternating
dielectric layers of n1 = 5.54 (each layer width is d1 =
Rm/30) and n2 = 1.12 (each layer width is d2 = Rm/30),
and thus f = d1/(d1 + d2) = 0.5. According to Eq. (5), the
corresponding effective parameter is η = 2.57 and nt = 4. The
scattering spectra of this multilayered nanowire (which can be
analytically calculated based on generalized Mie theory [17])
and of its corresponding homogeneous anisotropic nanowire
are shown in Figs. 5(b) and 5(c), respectively. The two sets
of spectra agree quite well (validating the effectiveness of the
effective medium theory employed) and for both cases the first
ED (D11) can be tuned to resonantly overlap with the second
MD (M02), at α = 1.408 and α = 1.419, respectively. The
spectra of the anisotropic nanowire [Fig. 5(c)] is blue-shifted
compared to those of the isotropic one [Fig. 5(b)], and
such discrepancies can be fully eliminated by decreasing
each consisting isotropic layer width, as is also the case
for Figs. 5(e) and 5(f). The scattering amplitudes at the
overlapping superscattering points are shown in Figs. 5(d) for
both cases, which are almost the same as what is shown in
Fig. 2(d).

We also study another similar 30-layered nanowire with
n1 = 5.54 (d1 = 2Rm/75), n2 = 2.5 (d2 = 3Rm/75), and f =
0.4, which corresponds to effective parameters of η = 1.322
and nt = 4. The scattering spectra for both isotropic and
anisotropic nanowires are shown in Figs. 5(e) and 5(f), where
it is clear that the first EQ (Q21) and the second MD (M02) are
resonantly overlapped. The scattering amplitudes at the over-
lapping superscattering points (isotropic nanowire, α = 1.403;
anisotropic nanowire, α = 1.419) are shown in Fig. 5(g),
which are more or less the same as those shown in Fig. 3(d).

It is worth mentioning that here we have confined our
studies to all-dielectric nanowires with n1 > 0 and n2 > 0,
which according to Eq. (5) leads to η = nt/nr > 1. Never-
theless, when we go beyond the all-dielectric regime, such as
incorporating metals into the multilayered configurations, η <

1 and even more exotic anisotropic parameters can be obtained
[16,24]. As a result, it is expected that other superscattering
features shown in Figs. 2–4 can be also observed within
multilayered isotropic nanowires.
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FIG. 5. (a) Schematic of a multilayered nanowire made of alternate isotropic layers of refractive indexes n1 (each layer width d1) and n2

(each layer width d2), and thus f = d1/(d1 + d2). The radius of the whole nanowire is Rm. Scattering spectra of the 30-layered nanowire are
shown in (b) with n1 = 5.54, n2 = 1.12, d1 = d2 = Rm/30, f = 0.5 and in (e) with n1 = 5.54, n2 = 2.5, d1 = 2d2/3 = 2Rm/75, f = 0.4.
The scattering spectra of the corresponding anisotropic homogeneous nanowires are shown, respectively, in (c) with nt = 4 and η = 2.57 and
in (f) with nt = 4 and η = 1.322. The first ED (D11) and the second MD (M02) are resonantly overlapped in (b) at α = 1.408 and in (c) at
α = 1.419. (d) The scattering amplitudes at these superscattering points indicated in (b) and (c). The first EQ (Q21) and the second MD are
resonantly overlapped in (e) at α = 1.403 and in (f) at α = 1.419. (g) The scattering amplitudes at these superscattering points indicated in (e)
and (f).

V. CONCLUSIONS AND OUTLOOK

In conclusion, we investigate the scattering properties of
radially anisotropic nanowires and have achieved superscat-
tering with engineered angular distributions. The efficient
shaping of the superscattering pattern achieved originates from
the resonant overlapping and different sorts of interferences
between the electric and the magnetic multipoles coexcited,
which is made possible by incorporating the radial anisotropy
of the refractive index into homogeneous nanowires. We fur-
ther demonstrate that the large anisotropy parameters required
that are inaccessible for natural materials can be realized in
artificial multilayered isotropic core-shell nanowires, where
multipolar interference-induced superscattering manipulation
can also be obtained.

Here in this work, we confine our investigations to lower
order resonances up to quadrupoles (m � 2) with small radial
mode numbers (q � 2) and have discussed only the case of
two overlapped resonances. Similar studies can certainly be
extended to higher order modes with larger radial mode num-
bers and to the cases of more than two overlapped resonances
[12], where we expect extra flexibilities for more efficient

superscattering pattern shaping. Moreover, the principle we
have revealed here can also be applied to particle clusters and
periodic arrays [25–27], where the eigenmodes of the whole
system can be tuned by the index anisotropy and this may
render much more opportunities for superscattering pattern
shaping replying on the extra dimension of freedom of inter-
particle interaction control. At the same time, other kinds of
anisotropy such as magnetic anisotropy can also be employed
[28]. We anticipate that the approach based on anisotropy to
achieve simultaneous superscattering and efficient scattering
angular distribution control could not only play a significant
role in various applications replying on resonant particle
scattering, but also bring new stimuli for the emerging fields of
topological photonics and low-dimensional photonics, which
involves novel two-dimensional and topological materials that
show an intrinsically huge anisotropy.
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