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Optical scalars and congruences of light rays: A link between beams and analytic aberrations
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Optical scalars are functions designed to analyze the behavior of geodesic congruences in general relativity.
Refracted rays are three-dimensional congruences of light rays and they can be studied with this formalism. In
this work we obtain the optical scalars for such congruences: the expansion �, the twist ω, and the shear κ .
Furthermore, we apply this machinery to study the aberrations of wavefronts to establish a link between them
and the aberration function W .
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I. INTRODUCTION

Given an open region in a three-dimensional space, a
congruence is a set of curves where one and only one curve
passes through each point in the region [1]. Congruences of
curves are very useful in general relativity because finding
them enables study of the metric information on the space-time
[2]. From the point of view of geometrical optics, light rays
are congruences, and in fact this kind of congruence is simpler
than the gravitational kinds because they are three-dimensional
and the information on the wavefronts is used to study them.

Sachs developed a method to analyze the evolution of
congruences (in the study of gravitational radiation) by
defining the optical scalars [3]. These functions measure
the expansion (�), rotation (ω), and distortion (κ) of a test
circle that evolves along the congruence and they are used in
gravitational lensing and cosmology and to study gravitational
waves, to name a few uses. Although those functions were
defined in tensor language, the problem is simpler using the
spinor formalism [4].

On the other hand, the aberration theory has been a very
important tool in studying the quality of optical systems [5].
Transverse aberrations provide information that is measured
and used to understand the evolution of light rays and
wavefronts. Rayces found the set of equations that give
the relationship between the transverse aberrations and the
wave aberration function [6,7]. It is important to recall that
wavefronts and light rays are not observables; however,
aberration theory is a powerful tool to determine the quality of
the optical system under study.

Therefore, we have two approaches to study the quality
of an optical system: one is given by the aberration theory,
and the other one is obtained by using the optical scalars.
Thus, the aim of the present work is to show that there exists
an analytic relationship between the optical scalars and the
aberration function W (x,y). To this end, in Sec. II, we present
the basic equations to compute the critical and caustic sets of
the map describing the evolution of the refracted light rays.
In Sec. III, using spinors we define the optical scalars. In
Sec. IV, we obtain the optical scalars by using the field that
describes the evolution of the refracted light rays. In Sec. V,
we present the relationship between the optical scalars and the
wave aberration function. Finally, we present the conclusions.

*omcbrss@gmail.com

II. GENERAL EQUATIONS

The optical system under study is shown in Fig. 1. We
assume that the free space is filled out with two optical
media with refraction indices n1 and n2, respectively. In the
optical medium with refraction index n1 we place a point light
source at s = (s1,s2,s3), which emits spherical wavefronts that
are refracted at the interface r = (x,y,f (x,y)), γ = n1/n2,
R̂ gives the direction of the refracted light ray, Î gives the
direction of the incident light ray, N̂ is the normal unit vector to
the interface, and � is a function determined from the condition
that R̂ be a unitary vector field [8]. That is,

N̂ = (−fx,−fy,1)√
1 + f 2

x + f 2
y

,

Î = r − s
|r − s| ,

� = −γ (Î · N̂) +
√

1 − γ 2(Î × N̂)2,

R̂ = γ Î + �N̂, (1)

where fx and fy represent the partial derivatives of f (x,y)
with respect to x and y, respectively.

The vector field that describes the ray tracing process is the
X field given by

X = r + �R̂, (2)

where � = τ − γ |r − s| and τ labels each of the wavefronts
in the wavefront train. Equation (2) is a map between two
subsets of R3, i.e., (x,y,�) �→ (X,Y,Z), where (x,y,�) are the
local coordinates of the domain space, while (X,Y,Z) are local
coordinates of the target space. Hence we see that an important
quantity in the calculations is the Jacobian of this map, which
is given by

N = H0 + �H1 + �2H2, (3)

where

H0(x,y) = (rx×ry) · R̂,

H1(x,y) = (rx×R̂y + R̂x×ry) · R̂, (4)

H2(x,y) = (R̂x×R̂y) · R̂.

It is useful to establish the metric coefficients and curvatures
for an arbitrary surface [9]. For a surface described by the
coordinate patch r with normal unit vector N̂, the coefficients
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FIG. 1. Schematic of the optical system: a point source placed
at s which emits rays that interact with an arbitrary surface r. The
incident ray Î, the refracted ray R̂, and the vector field X are shown.

of the first and the second fundamental forms are given,
respectively, by [10]

E = rx · rx, l = N̂ · rxx,

F = rx · ry, m = N̂ · rxy, (5)

G = ry · ry, n = N̂ · ryy,

and the Gauss and mean curvatures are

K(x,y) = ln − m2

EG − F 2
,

H (x,y) = Gl + En − 2Fm

2(EG − F 2)
. (6)

Observe that the (x,y,�) coordinates define a moving frame
that travels along the refracted wavefronts in the direction of
the refracted ray R̂. In fact the metric and the inverse metric in
this frame are given by

(gab) =
⎛
⎝
E F 0
F G 0
0 0 1

⎞
⎠ and

(gab) = 1

N 2

⎛
⎝

G −F 0
−F E 0

0 0 N 2

⎞
⎠, (7)

where a,b = 1,2,3 and E , F , and G are the corresponding
metric coefficients for the X vector field, where the unit normal
vector for the surfaces described by this field (the refracted
wavefronts) is the refracted ray R̂ [13].

The caustic associated with refracted light rays

The region in the optical medium with refraction index n2,
where the refracted wavefronts will be singular (the refracted
light rays will focus), is the caustic associated with the
refracted light rays, and by definition it is the set of points
in the domain space where the map, (2), is not locally one to
one [11,12]. In this case it is equivalent to the condition

N = 0. (8)

There are two cases for solving Eq. (8): in the case where
H2(x,y) �= 0 the corresponding solution for the critical set is

�± =
−H1 ±

√
H 2

1 − 4H2H0

2H2
, (9)

and the critical set has two branches. Therefore, the caustic set
associated with the map is given by

X = XC± = r + �±R̂ (10)

and also has two branches. The second case is where
H2(x,y) = 0; the critical set is determined by

� = − H0

H1
, (11)

the caustic set by

XC = r − H0

H1
R̂, (12)

and it has only one branch.
To finish this part, we remember that the caustic is a

very important object because it is a physical observable
of the system, but as we see in the following sections, the
discriminant of Eq. (9) not only determines the branches of
the critical and caustic sets [in the case H2(x,y) �= 0], but also
is related to the shear κ of the congruence of light rays.

III. CONGRUENCES OF CURVES: OPTICAL SCALARS

From the geometric optics point of view, a set of light
rays carries the information on the optical system. Through
the process of analytic ray tracing the optical evolution of
images can be described and studied [14,15]. But from the
mathematical point of view, it is necessary to properly define
the representation of these sets of rays. We need then to define
a congruence of curves for the case under study: given an
open region S in a three-dimensional space, a congruence in
S is a family of curves such that through each point there
passes one and only one curve from this family [1]. From the
above definition, we can directly identify a set of rays as a
congruence of curves that in fact is incongruent on the caustic
[see Fig. 2(a)]. That is, the results derived here are valid out of
the caustic region.

To make a proper analysis of congruences we need a
formalism that directly establishes the quantities to describe
the evolution of such congruences: this is the spinor formalism.
Spinors are a factorization of real vector fields or, more
generally, tensor fields. The advantage of this procedure is
that the functions that describe the optical process can be
obtained directly by analyzing congruences of geodesics, and
these functions are called the optical scalars. In the following
section we give a brief introduction to the spinor formalism in
three dimensions, using only the basic definitions to have at
hand the necessary tools for the physical problem. A complete
guide for this procedure is given in [4].

A. Spinors

All the quantities and vector fields described in the previous
section can be translated to the spinor formalism. A spinor is
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FIG. 2. (a) Plot of a congruence of light rays (for a system with
symmetry of revolution); hereinafter plots are labeled in centimeters.
(b) The same congruence, but with a test circle in a certain region
of such congruence. Observe that the test circle is orthogonal to
the direction of evolution of the congruence and analyzes the local
information on the light rays.

a two-component complex vector ψ which transforms under
rotations according to the rule

ψ ′ = Qψ, (13)

where Q is a unitary matrix belonging to the SU(2) group
[4]. In general we can transform the components of any tensor
tabc... and they are in correspondence with the components
of a spinor tABCD..., where lowercase letters denote tensor
indices (a,b,c, . . . = 1,2,3), and capital letters spinor ones
(A,B,C,D, . . . = 1,2). The tensor indices are raised (or
lowered) by means of the gab metric (or, correspondingly,
gab), and the spinor indices with the Levi-Civita symbol εAB

(or, correspondingly, with εAB). It is important to recall that
any orientable three-dimensional manifold admits a spinor
structure, which, however, may not be unique [4]; therefore
spinors can be employed to represent points of space and,
in this case, as an alternative formalism to tensor analysis in
three dimensions, but they have several applications in other
fields of physics. In the case of three-dimensional spaces, a
single one-index spinor determines a basis. When the metric is
positive definite, this relationship allows the representation of
a spinor by means of an ax or a flag. Then, given a one-index
spinor ψA different from 0, one can define the vectors V and
M with components

Va ≡ −σaABψ̂AψB, Ma ≡ σaABψAψB, (14)

where there is summation convention on repeated indices,
σaAB are the Pauli matrices, and ψ̂A = −ψA (the bar denotes
complex conjugation) is the mate of the spinor ψA [4].

In the case of a real vector field T we associate with it a
spinor T AB that, in turn, can be decomposed into a one-index
spinor and its mate. This process relates the components of T
with the components of V and M and the latter vectors have
useful properties: the components of V are real, and its direc-
tion coincides with the direction of T; meanwhile, the compo-
nents of M are complex and they inhabit a plane that is always

orthogonal to the direction of V, that is, VaM
a = MaM

a = 0
and VaV

a = (ReMa)(ReMa) = (ImMa)(ImMa) = (ψAψ̂A)2,
and therefore if ψA is a normalized spinor (ψAψ̂A = 1), then
{ReM,ImM,V} is an orthonormal basis. On the other hand,
these vectors define the operators

D = 1√
2
V a∂a, δ = 1√

2
Ma∂a, δ = 1√

2
M

a
∂a, (15)

where ∂a = ∂/∂xa . These operators are important because they
allow us to determine the spin coefficients that describe the
behavior of the congruence.

B. Spin coefficients

In a three-dimensional Riemannian manifold a unique
connection (the Levi-Civita connection) can be defined.
Denoting by ∇a the covariant derivative with respect to ∂a , the
components of this connection are the real-valued functions
�a

bc, given by

∇a∂b = �c
ba∂c.

The spinor analog of these functions is the spin coefficients
and they are defined by

∇AB∂CD = �R
CAB∂RD + �R

DAB∂CR, (16)

where ∇AB denotes the covariant derivative with respect to
∂AB . In fact, in a space where the metric is definite positive,
the components �ABCD are given by the complex functions

κ ≡ �1111, β ≡ �1211, ρ ≡ �2211,

α ≡ �, ε ≡ �1212, (17)

where ε is a purely imaginary function. The � functions are
symmetric in the first and second pairs of indices and their
complex conjugates are obtained by changing the index 1 to 2,
and vice versa [4].

Now it is necessary to define the condition for a vector
field to be tangent to a congruence of geodesics. Given a real
vector field ta∂a in a space with a positive definite metric, if
this field is tangent to a geodesic, we can always find locally
a spinor field such that tAB = ψ(Aψ̂B) and ψAψ̂B∇ABψC = 0
(i.e., is parallelly transported along the geodesic). The previous
statement is equivalent, in terms of the spin coefficients, to
the condition that α = 0, and we can always make ε = 0 in
such a way that the triad {D,δ,δ} is parallelly transported
along the geodesic. Therefore, a direct way to calculate the
spin coefficients is through the commutation relations of the
operators D, δ, and δ. These relations are

[D,δ] = 2αD + (2ε − ρ)δ − κδ,

[δ,δ] = 2(ρ − ρ)D − 2βδ + 2βδ, (18)

so it will be necessary now to identify the corresponding
triad {D,δ,δ} for the vector field that describes the refracted
congruence.

C. Optical scalars

Optical scalars were first introduced by Sachs in four
dimensions. They are used to analyze the behavior of a test
circle placed perpendicular to a congruence of geodesics,
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(a)

(b) (c)

FIG. 3. (a) Test circle (red) evolving according to the congruence.
The yellow (inner) circle represents the expansion � (in this case a
contraction) of the congruence. (b) Another circle representing the
twist ω of the test circle. (c) The yellow ellipse shows the deformation
of the red circle. This is the geometrical representation of the shear κ

of the congruence.

where the variations of this circle are measured [3] [Figs. 2(b)
and 3]. In the three-dimensional case they are given by [4]

� ≡ Reρ, ω ≡ Imρ, and κ, (19)

where ρ and κ are the spin coefficients given in Eqs. (17).
Note that in three dimensions, the test circle with respect to
which the optical scalars are measured is placed in the plane
defined by the M vector, and the physical meaning of each
one of these functions is important: � measures whether this
circle expands or contracts as the congruence evolves, while ω

measures the rotation of the circle, and, finally, κ represents an
area-preserving shear. Here |κ| measures the magnitude of the
shear, while arg κ/2 is an angle that measures a rotation of the
test circle (sheared into an ellipse) with respect to the principal
axes ∂1 and ∂2. Therefore �, ω, and κ are called the expansion,
the twist, and the shear of the congruence, respectively.

The task now is to identify the vector field that is tangent
along the geodesics of the problem. A useful observation for
this task is that the normal for the surfaces described by the
X field is the refracted ray R̂. This condition will play an
important role in obtaining the optical scalars that describe
the congruence; we address this condition in the following
section.

IV. OPTICAL SCALARS FOR THE REFRACTED
CONGRUENCE OF LIGHT RAYS

Now that we have the tools to analyze the evolution of a
congruence of light rays, we apply the formalism for the optical
system that is our case of study. However, it is important to note
that this procedure is in fact completely general, because the
results obtained for this particular congruence are analogous
for any optical congruence in three dimensions, that is, so
far there is no distinction whether the congruence is incident,
reflected, or refracted: by identifying the direction of evolution

FIG. 4. (a) Schematic of a planospherical thin lens (blue) and a
refracted wavefront (orange) for τ = 1.8 cm. Blue arrows represent
the directions of the operators δ, δ, and D. (b) Closeup of the
wavefront, where the arrows denote the directions of the operators δ,
δ, and D for the point x = y = 0 cm. Observe that δ and δ inhabit
the orthogonal plane to D. This plane is defined by the M vector;
meanwhile the direction of the normal for that plane is the V vector
(or, equivalently, the R̂ unit vector).

of the congruence and the conditions that must be fulfilled by
the congruence, we can determine the corresponding optical
scalars of the problem.

It has been shown that in the case of a congruence of
refracted light rays (and therefore for the refracted wavefronts),
the unit normal for these wavefronts is the refracted ray [13],
and this fact will be very useful in our calculations. As we said
before, once a vector is defined, we can find its corresponding
V and M vectors (which are related to a spinor and, at the same
time, the spin coefficients) and proceed to calculate the optical
scalars defined in the previous section.

From the physical information on the optical system, we
see that the vector field tangent to the refracted congruence
of light rays is R̂, so we need to find its corresponding V
and M vectors. This means that the direction of tangency is
∂� (this defines the direction of V) and ∂x and ∂y must be
related to the components of M (Fig. 4). Observe that the triad
{D,δ,δ} is parallelly transported along the refracted light ray
(together with the refracted wavefronts), and from the metric
information of Eqs. (7) it can be shown that the corresponding
operators D, δ, and δ for this case are

D = 1√
2
∂�,

δ = 1√
2N

[eiμ
√
G∂x − eiν

√
E∂y], (20)

δ = 1√
2N

[e−iμ
√
G∂x − e−iν

√
E∂y],

where μ and ν satisfy the condition cos(μ − ν) = F/
√
EG.

If we compute these operators, the calculations to obtain the
spin coefficients are cumbersome because they are expressed
in terms of partial differential equations. However, we have
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additional information to calculate these functions: we know
that ρ = ρ if and only if D is locally surface-orthogonal, i.e.,
there exists locally a family of two-dimensional surfaces such
that, at each point, D is orthogonal to the tangent space to the
surface passing through that point [4]. Furthermore, the Gauss
and mean curvatures of these surfaces are given by

K = 2(ρ2 − κκ), H = −
√

2ρ. (21)

Now we take into account for this case that D is in fact surface-
orthogonal, and the surfaces orthogonal to D (the direction
of the refracted light ray) are the refracted wavefronts. The
curvatures of these wavefronts have been calculated [13], and
from the calculations of the commutator of the operators, (20),
we obtain that α = 0 (this field is tangent to the congruence
of light rays, as it should be) and, also, that κ is a complex
function. This implies that κ is of the form κ = |κ|eiχ , where
χ is an angle that, under a rotation of the form e−iχ/4, sends κ

to its module.
Using all that information, we can now obtain the optical

scalars corresponding to the optical congruence. The expan-
sion, the twist, and the shear for the refracted congruence
are

� = 1

2
√

2

∂

∂�
(lnN ),

ω = 0, (22)

κ = 1

2
√

2

√
H 2

1 − 4H0H2

N eiχ .

From the previous equations there are several observations.
First, the expansion of the congruence is measured by the
change of the Jacobian of the mapping (N ): if this function
remains constant with respect to the direction of propagation
of the light ray, there is no expansion. Second, there is no twist,
and this is because the congruence is a solution of the eikonal
equation and, therefore, proceeds from a gradient field (an
irrotational vector field). On the other hand, the module of the
κ coefficient is a core quantity in the analysis; observe that the
numerator of this module is the discriminant of the JacobianN
and this discriminant indicates the presence of caustic points,
i.e., if it is 0, the congruence diverges; otherwise, it converges
(at least locally, because the information that the shear provides
is local). Finally we see that these functions have enough
information about the evolution of the light rays, in other
words, the optical scalars (and therefore the congruence) are
another way to speak about the beam.

As a direct example to analyze the information carried by
the optical scalars, we take the case of two optical media with
the same refracting index. For γ = 1, R̂ = Î and therefore the
Jacobian N in this case is

N =
√

EG − F 2 (Î · N̂)

|r − s|2 τ 2, (23)

where E, F , and G are the metric coefficients for the
arbitrary refracting surface r and we remember that τ is the
parameter that labels each wavefront in the wavefront train.
With this information we can calculate the Gauss and mean
curvatures of the refracted wavefronts for this case, and we

obtain

K = 1

τ 2
, H = − 1

τ
, (24)

and these curvatures are the ones obtained for a sphere with
its center in s and with radius τ . That is, when the two media
are the same, the point source generates spherical wavefronts,
and this does not depend on the refracting surface. Further-
more, using Eqs. (22) directly, the optical scalars for this
case are

� = 1√
2τ

, ω = 0, κ = 0, (25)

so we can conclude that this congruence is expanding, and
the expansion decreases as τ becomes larger. Equations (25)
for large τ are equivalent to the case where the source is very
far and we have plane wavefronts: this is confirmed by the
curvatures K and H , because for very large τ , they are both 0.
On the other hand, there is no shear, and the congruence never
converges, so there are no caustic points.

V. APPLICATIONS

Optical scalars have information on the refracted light rays
of the optical system, that is, information on the beam. In
particular, the module of the shear |κ| is the measure of
the amount of distortion of a hypothetical test circle that is
locally placed on the refracted wavefronts. Thus, we claim
that this distortion could be related to aberrations of the optical
system.

We focus on the case of monochromatic aberrations
based on the definitions given by Rayces [6,7]. Under these
definitions the wavefronts are nothing but deformations of
ideal spherical wavefronts. The above means that for each
point in the “base sphere” there is a corresponding deformation
measured by the function W (x,y): this is the aberration
function of the system. In the following part we analyze this
concept and we link to it the optical scalars obtained in previous
sections.

A. Aberrated wavefronts and the aberration function

We can approach the analysis of wavefront aberrations
through our formalism. A graphic description of the system
is shown in Fig. 5(a). Following Rayces’ analysis of the
aberration function W (x,y) [6], we consider a “deformed
sphere” described by the coordinate patch

rs(x,y) = (x,y,P −
√

(q − W (x,y))2 − x2 − y2), (26)

where q is the radius of a semisphere without deformations and
centered at a point P along the z axis. Therefore Eq. (26) is,
in this case, the equation of an aberrated wavefront. Observe
that the deformation at each point in this shell is given by
the aberration function W (x,y) [see Fig. 5(b)], and with this
information the vector field that describes the evolution of the
refracted wavefronts is

X(x,y,σ ) = rs + σ R̂, (27)

where σ parameterizes the evolution of the wavefront and
R̂ represents the normal to these wavefronts, and it is
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FIG. 5. (a) Plot representing a section of a sphere (orange surface
at left) and a wavefront (blue surface at right). The difference between
the two surfaces is measured by the aberration function W (x,y). (b)
Outlines of the sphere and the wavefront: the yellow curve at left is
the sphere; the blue curve at the right is the wavefront.

given by

R̂ = (rs)x×(rs)y
|(rs)x×(rs)y | . (28)

We denote R = |(rs)x×(rs)y | and this quantity is important.
Given the train of refracted wavefronts described by Eq. (2), we
can choose a wavefront in the train by fixing �. By comparing
this wavefront with Eq. (27), we conclude that N and R are
related and in fact N = R, that is, R is the Jacobian of the
optical system. An important observation is that under the
parametrization, (27), R is a quantity that does not depend on
the refracting surface but, instead, is obtained only with the
information on the refracted congruence. Furthermore, all the
quantities are functions of W (x,y). Therefore, the components
for the X vector field are

X(x,y,σ ) = x − σ

R
[(q − W )Wx + x],

Y (x,y,σ ) = y − σ

R
[(q − W )Wy + y], (29)

Z(x,y,σ ) = P −
√

q2 − x2 − y2 + σ

R

√
q2 − x2 − y2.

We can now study the imaging formation process if we
consider a screen placed in ZP = P . This condition fixes
σ = R such that Eqs. (29) are reduced as

XP (x,y,P ) = −(q − W )
∂W

∂x
,

YP (x,y,P ) = −(q − W )
∂W

∂y
, (30)

ZP (x,y,P ) = P,

and we observe that the first two of these equations are the
equations for the analytic transverse ray aberrations [6].

FIG. 6. Plot of a planoconic convex thin lens (a spherical one in
this example). Red lines represent the congruence of refracted rays
generated by this lens.

B. Relation between the shear and the aberration function

In the previous sections we have analyzed the importance
of optical scalars for a congruence of light rays. It is useful
to obtain a direct relation of the module of the shear κ with
the aberration function W (x,y). Remembering the definition
of the metric coefficients, (5), for the surface, (26), we have
the H ’s functions,

H0(x,y) = R,

H1(x,y) = − 2RH (x,y), (31)

H2(x,y) = RK(x,y),

where H (x,y) and K(x,y) are the mean and Gauss curvatures
associated with the refracted wavefronts, but these curvatures
are now functions of the aberration function W (x,y). Using
Eqs. (22) a direct calculation of the optical scalars for this
system gives

� = − H√
2
, ω = 0, |κ| = 1√

2

√
H 2 − K. (32)

In this case, the magnitude of the shear is related to the
principal curvatures of the wavefront, which are given by
k1,2 = H ± √

H 2 − K . In fact, to solve the previous equations
for |κ| = 0 we require that the surface that represents the wave-
front consist of umbilic points (points where k1 = k2 = k)
in that region, but this kind of surface is contained in either
a plane or a sphere [9]: the above means that there is an
equivalence between the shear and the aberration function.
As before, in the case where W (x,y) = 0 for each point
in the coordinate patch, (26), we recover the curvatures of
a sphere, which implies that |κ| = 0 as expected, and this
means that there is no distortion. To bear out the previous
statement we study the example of a thin planoconvex lens
illuminated with plane incident wavefronts (see Fig. 6) that
follows the equation of conic surfaces of revolution z(ρ) =
[M +

√
a2 − (M + 1)ρ2]/(M + 1), where M is a parameter

that is a function of the eccentricity of the conic and a is
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the radius of curvature of the conic [16]. The shear of this
congruence is

|κ| = |�(M + γ 2)|ρ2
√

a2 − Mρ2

2
√

2 �
, (33)

where � is given by

� = γ
√

a2 − (M + 1)ρ2 −
√

a2 − (M + γ 2)ρ2

√
a2 − Mρ2

, (34)

and � by

� = |�2a2�2 − ��[2a2 − (M + γ 2)ρ2]
√

a2 − Mρ2

+ [a2 − (M + γ 2)ρ2][a2 − Mρ2]|. (35)

In this case the condition |κ| = 0 is equivalent to � = 0, and
at the same time this means that γ = 1. So the only case
with no shear is when the two media are the same, but as
we showed before, this does not depend on the refracting
surface.

It is important to remark that now we have at hand two ways
to analyze aberrations. The first is by using the information on
the refracting surface to calculate the functions, (4), and then
calculate the shear. The second is using only the information on
the refracted congruence (based on the refracted wavefronts)
to calculate the shear and therefore the aberration function.

As an end point, we analyze the case where the aberration
function has revolution symmetry, that is, where W = W (ρ).
This case is of special importance because it includes the
common types of lenses used as optical systems.

Using Eqs. (32) the differential equation that establishes
the connection between the shear and the aberration function
W (ρ) is

|κ| = |W ′[(q − W )3(1 + W ′2) + ρW ′(3(q − W )2 − ρ2)] + ρ(q − W )[(q − W )2 − ρ2]W ′′|
2
√

2ρ[(q − W )[(q − W )(1 + W ′2) + 2ρW ′]]3/2
, (36)

where the apostrophe denotes the derivative with respect to ρ.
Here we see explicitly that if the aberration function is equal to
0 or constant, then the shear of the congruence is 0. However,
that the aberration function is constant for each point in the
shell means that the deformation produced by W results in
another spherical shell and this case is not aberrated. It seems
that this is the only case where the aberration function is not 0
and the shear is 0.

VI. CONCLUSIONS

In this work we have studied an optical system with
two refracting indices, n1 and n2, separated by an arbitrary
refracting surface described by the r coordinate patch. This
surface generates a refracted congruence of light rays that is
described by the X vector field, and the normal of the refracted
wavefronts is the R̂ vector. We showed that this congruence
can be analyzed through the optical scalars: these functions
encode the information related to the expansion, rotation, and
evolution of the congruence.

We applied this formalism to study the wavefront and
transverse aberrations for an optical congruence and we have
shown that it is possible to make a direct calculation of such
aberrations. In fact, the shear of the congruence and the
aberration function are related, and the link between them
is the Gauss and mean curvatures of the wavefronts. This is
important because aberrations are measurable objects of the
optical system that are linked with the wavefronts, which are
not observable.

On the other hand, we have shown that we can relate
the aberrations of the optical system only to the information
on the refracted rays. That is, it is not necessary to know
the refracting surface that produces the refraction, but based
only on the refracted information received by an observer,

we could reconstruct the physical information on the system.
The previous statement is due to the fact that according to
our calculations, the information encoded in the congruence
of light rays allows us to establish the distortions of the
images.

It is important to note that equaling Eqs. (33) and (36) the
aberration function W for all the conic surfaces of revolution
in that case could be solved. Equation (36) is a non linear
differential equation that can be worked out with numerical
methods, so we have another way to study aberrations in a
form to complement Seidel’s. Hence by studying this equation
carefully, we can express the aberration W (ρ) as a function of
the shear of the light rays.

We believe that the information on beams characterized
by congruences of light rays could be related to aberrations
that give information on physical systems: that is, one has
to compute the relationship between the expansion (�) and
the aberration functions to determine the distortion of the
images. For example, all this machinery could be applied to
the observation of systems such as black holes, galaxies, and
other kinds of cosmological objects [17] in such a way that,
directly with optical data, we would be able to obtain the metric
information on the space-time where these objects lie.
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