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We study the frequency splitting of nearly degenerate optical modes in weakly deformed microdisks. The
analysis is restricted to even- and odd-parity modes in cavities with a mirror-reflection symmetry. The frequency
splitting is explained in a semiclassical approach by dynamical tunneling (resonance-assisted tunneling) between
clockwise- and counterclockwise-propagating waves. We derive semiclassical predictions for the frequency
splittings which are in good agreement with full numerical calculations. Two deformations are studied in detail,
the ellipse and the quadrupole, representing a deformation with integrable and nonintegrable ray dynamics.
Furthermore, the differences between Dirichlet and dielectric boundary conditions are discussed.
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I. INTRODUCTION

Dynamical tunneling is a generalization of conventional
tunneling which connects classically disjoint regions in phase
space [1–9]. Special attention has been paid to resonance-
assisted tunneling (RAT) [10–13] across nonlinear resonance
chains and chaos-assisted tunneling [14–16] across chaotic re-
gions of phase space. There have been a lot of experimental ef-
forts to study and exploit dynamical tunneling in various kinds
of systems such as quantum-dot [17,18], microdisk-cavity
[19–23], microwave [24–27], and cold-atom [28] systems.

Optical microcavities have attracted considerable interest
in the recent decades [29]. Among the various possible
geometries, deformed microcavities have been studied in detail
as they serve as model systems for wave chaos and non-
Hermitian physics [30]. One obvious effect of a deformation is
the splitting of frequencies of mode pairs. This has been experi-
mentally observed in a microdisk cavity [31] and in micropillar
cavities [32–35]. In the latter case it was proposed to exploit
the splitting for polarization control [32]. In these studies the
deformation was assumed to be elliptical even though strong
deviations from the ellipse can be identified, e.g., in Ref. [31].

The aim of this paper is to quantify the role of the
deformation in the case of microdisk cavities. We show that the
frequency splittings can be calculated semiclassically in terms
of RAT. As representative models, the elliptic and quadrupole
cavities for integrable and nonintegrable deformations are con-
sidered. The importance of the dielectric boundary conditions
is discussed in detail.

This paper is organized as follows. In Sec. II we introduce
the two different cavity shapes and explain how we compare
their degree of deformation. Section III obtains the frequency
splittings in the elliptic and the quadrupole cavity using
full numerics. Section IV discusses the ray dynamical phase
space. In Sec. V, we introduce the pendulum approximation
for RAT. Section VI derives frequency splittings based on
the most prominent resonance chain. Section VII computes
the modifications of the frequency splittings resulting from
additional resonance chains. Section VIII contains a summary.
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II. THE CAVITY SHAPES

The elliptic shape is expressed in Cartesian coordinates

x2

a2
+ y2

b2
= 1, (1)

where a and b are the major and minor axes of the el-
lipse, respectively. By defining a/R ≡ 1/

4
√

1 − ε2 and b/R ≡
4
√

1 − ε2, we fix the area of the ellipse (divided by R2) to be
πab/R2 = π , which is independent of the eccentricity ε. R is
the radius of the circle in the limit ε → 0.

The quadrupole [36] is expressed in polar coordinates

ρq(φ; μ) = R(μ)(1 + μ cos 2φ) (2)

with parameter μ and normalizing factor R(μ) ≡
R/

√
1 + μ2/2. The latter is introduced in order to fix the area

(divided by R2) to be also π .
For a fair comparison of ellipse and quadrupole, we follow

Ref. [37] and write the boundary of the ellipse in polar
coordinates:

ρe(φ; ε) = R

4
√

1 − ε2√
1 − ε2 cos2 φ

. (3)

For small deformation ε � 1 this can be expanded into

ρe(φ; μ)/R ≈ 1 + μ cos 2φ + O(μ2) (4)

with the identification

μ(ε) ≡ 1 − 4
√

1 − ε2. (5)

Equation (4) is of the same form as Eq. (2) for the quadrupole
since R(μ)/R = 1 + O(μ2). If not stated otherwise, we
consider the eccentricity ε to be the deformation parameter
and adapt μ according to Eq. (5).

III. FREQUENCY SPLITTINGS IN DEFORMED
MICRODISKS: FULL NUMERICS

Maxwell’s equations are solved in two dimensions with
Sommerfeld outgoing wave conditions at infinity. The op-
tical modes ψ(x,y) are defined as the solutions with time
dependence e−iωt where ω is the complex-valued resonant
frequency. For convenience, we introduce the dimensionless
frequency ωR/c = kR, where c is the speed of light in vacuum
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FIG. 1. Intensity patterns of degenerate mode pair (l,m) = (1,4)
in the microdisk. Parities are (a) (ηx,ηy) = (1,1) and (b) (−1,−1).
Horizontal and vertical lines are the x and y axes, respectively. Circles
mark the cavity boundary. The maximum intensity is normalized to
be unity.

and k = ω/c is the complex-valued wave number. The real
part of kR is the conventional frequency while the imaginary
part corresponds to half of the linewidth (decay rate), γ /2 =
−ImkR. We focus here on the transverse magnetic (TM)
polarization where the wave function ψ(x,y) is related to the
z component of the electric field vector. Throughout the paper
we set the effective index of refraction to ne = 3.4.

The cavities considered in this paper have a
mirror-reflection symmetry with respect to the x and y

axes. Therefore, the wave functions ψ(x,y) can be reduced
to the first-quadrant wave function ψ(x � 0,y � 0) while the
second-, the third-, and the fourth-quadrant wave functions
are given by parity coefficients ηx and ηy , possessing 1 or
−1: ψ(−x,y) = ηxψ(x,y), ψ(−x,−y) = ηxηyψ(x,y), and
ψ(x,−y) = ηyψ(x,y). For instance, Fig. 1 shows the degen-
erated pair {(1,1),(−1,−1)} in the circular cavity with (l,m) =
(1,4). For convenience, we refer to the modes having the
parity ηy = 1 and −1 as the even and odd modes, respectively.

The resonant frequencies of the circular microcavity with
radius R can be analytically obtained [38] from

Sm(kR) ≡ ne

J ′
m

Jm

(nekR) − H (1)′
m

H
(1)
m

(kR) = 0, (6)

where J , J ′, H , and H ′ are the Bessel function, the derivative
of the Bessel function, the Hankel function of the first kind,
and the derivative of the Hankel function of the first kind,
respectively.

Modes in the deformed cavities are computed numerically
using the boundary element method (BEM) [39]. Figures 2(a)
and 2(c) show the real and the imaginary parts of the
resonant frequencies in the elliptic cavity as a function of the
deformation parameter. The pairs {(ηx,ηy) = (1,1),(−1,−1)}
and {(1,−1),(−1,1)} are degenerated in the limit ε → 0 of
the circular cavity. The corresponding data for the quadrupole
cavity is shown in Figs. 3(a) and 3(c). The change of the
imaginary part of the frequency, i.e., the increase of the decay
rate, as a function of the deformation was studied in Ref. [40].
Here, we are interested in the frequency splitting of mode pairs,
or more precisely in the real part of the frequency splitting, i.e.,
Re 
kR � 0. Figures 2(b) and 3(b) show that for increasing ε

the frequency splitting increases in most cases monotonically
both in the ellipse and in the quadrupole.
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FIG. 2. Resonant frequencies and frequency splittings of mode
pairs in the elliptic cavity vs eccentricity ε. Solid and dashed curves
in (a) and (c) are for the even (ηy = 1) and odd (−1) parities,
respectively. (a) Real part of the frequency kR relative to the
frequency k0R of the corresponding mode in the circular cavity.
(b) Real part of the frequency splitting of the even and odd modes
having the same angular momentum number m as in (a). (c) Imaginary
part of the frequency.

For a direct and comprehensive comparison of the two cav-
ities we show in Fig. 4 the frequency splittings of both cavities
as a function of the eccentricity and the angular momentum
number. The angular momentum number m of the deformed
cavity (ε �= 0) is chosen according to the corresponding
solution in the circular cavity (ε = 0). In Fig. 4 we can observe
that in the low-angular-momentum regime (roughly m � 9),
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FIG. 3. Same as in Fig. 2 but for the quadrupole cavity.

023848-2



FREQUENCY SPLITTINGS IN DEFORMED OPTICAL . . . PHYSICAL REVIEW A 96, 023848 (2017)

FIG. 4. Frequency splitting of even and odd modes vs eccentricity
ε and angular momentum number m. Open squares and solid circles
denote the elliptic and quadrupole cavities, respectively. The radial
mode number is fixed to l = 1. The angular momentum numbers m

of the deformed cavities are labeled by those of the corresponding
modes in the circular cavity.

the frequency splittings of modes in the elliptic cavity are
larger than those of the quadrupole. This order is reversed in
the higher-angular-momentum regime. Note that in Fig. 4 two
sheets are overlapping as the higher value is eclipsing the other
one in order to enhance the visibility of the graph. The cross
section of Fig. 4 at ε = 0.33 is plotted in Fig. 5. The flipping
of the order in the frequency splitting is more clearly visible.

IV. THE PHASE SPACE OF THE
DEFORMED MICRODISKS

In this section we briefly review the well-known phase-
space structure of weakly deformed cavities. The short-
wavelength limit of wave optics is geometrical (ray) optics.
The basic ray model for a microdisk cavity [30] is illustrated
in Fig. 6. According to the law of reflection, the incident
ray and the reflected ray make the same angle χ with
respect to the inward normal vector 	n at the boundary point
of the reflection. The ray trajectories (orbits) in real space
are mapped into the Poincaré surface of section (SOS) of
phase space in the following way. When a ray is reflected
at the cavity’s boundary, its position in terms of the arclength
coordinate along the boundary s ∈ [0,L] and the tangential
component of the normalized momentum p = sin χ ∈ [−1,1]
are recorded. We adopt the convention that sin χ > 0 means
counterclockwise (CCW) propagation and sin χ < 0 means
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FIG. 5. Frequency splitting as a function of angular momentum
m at ε = 0.33; cf. Fig. 4. Open squares and solid circles are splittings
in the elliptic and quadrupole cavities, respectively.

clockwise (CW) propagation. The coordinates (s,p) are called
Birkhoff coordinates.

The circular cavity is an integrable system and therefore
rather special. The angle of incidence, χ , is a constant of
motion. Hence, orbits are confined to horizontal lines in the
SOS (which in full phase space have the topology of tori); see
Fig. 6(b). The ray dynamics on such an invariant torus is in
general quasiperiodic and marginally stable. Only on so-called
resonant tori the orbits are periodic.

Following the Poincaré-Birkhoff theorem [41], the phase
space of a perturbed integrable system exhibits nonlinear
resonance chains containing even-numbered isolated stable
and unstable periodic orbits which are originated from the
destroyed resonant tori. This is illustrated for the elliptic and
quadrupole cavity in Figs. 6(c) and 7. For weak deformations,
the most prominent resonance chain is related to the so-called
bouncing-ball (BB) orbit along the short axis of the cavity.
It is a (1:2)-resonance chain; i.e., the stable periodic orbit
undergoes two reflections in one period. This resonance chain,
which we also call the BB-resonance chain, is located in
an intermediate region between the CW zone of sin χ < 0
and the CCW zone of sin χ > 0. It enlarges with increasing
deformation.

Figures 7(a) and 7(c) compare the phase-space structures
of the elliptic and the quadrupole cavities with a small
deformation parameter ε = 0.05. Both cavities exhibit almost
the same structures, indiscernible by the naked eye. As the
deformation is increased [Figs. 7(b) and 7(d)] we can resolve
the differences between them, especially the existence of
additional resonance chains in the quadrupole cavity. The most
prominent ones are the 2(1:3)- and the (1:4)-resonance chain.
Here the factor “2” in 2(1:3) means a doubled (1:3) resonance
which results in 2 × 3 stable and unstable fixed points due
to the cavity’s symmetry; i.e., exhibiting both x- and y-axis
symmetry does not allow for odd-numbered resonances.

The tori of CW- (p−) and CCW-propagating (p+) rays
[see Fig. 6(b)] with the same |p| are degenerated. There is no
interaction between them. The waves corresponding to these
tori, however, are coupled by the deformation. This coupling
leads to a frequency splitting as we discuss in the next sections.

V. PENDULUM APPROXIMATION

An isolated (t :r)-resonance chain of the weakly deformed
cavity [Figs. 6(c) and 7] is accurately approximated by the
pendulum Hamiltonian [40,42]

H (s,p) = H0(p) + 2Vt :r cos
(

2πr
s

L
+ φ0

)
, (7)

where H0, Vt :r , and φ0 are the unperturbed Hamiltonian,
the perturbation strength of the (t :r) resonance chain, and
the global phase, respectively, as illustrated in Fig. 8. The
unperturbed Hamiltonian corresponding to the phase space of
the circular cavity is given by [40]

H0(p) = 2
(
p arccos(p) −

√
1 − p2 +

√
1 − p2

t :r

) − ωt :rp,

(8)
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FIG. 6. (a) Real-space illustration of ray dynamics in a two-dimensional cavity. ±χ are the incident angles of rays with respect to the
normal vector 	n on the cavity boundary. Positive and negative signs indicate counterclockwise and clockwise propagation, respectively. Poincaré
surface of section for the (b) circular (eccentricity ε = 0) and (c) elliptic (ε = 0.33) cavities. The horizontal axis is the arclength s normalized
by the cavity perimeter L; s = 0 corresponds to polar angle φ = 0. The vertical axis is the tangential component of the unit momentum of a
ray colliding with the cavity boundary with incident angle χ . Designated p± in (b) are the tori having the same |p| = sin |χ | with opposite
signs of χ .

where ωt ;r ≡ 2 arccos(pt :r ) and pt :r = cos(tπ/r). An expan-
sion of H0 in Eq. (8) around pt :r is given by [40]

H0(p) ≈ − (p − pt :r )2√
1 − p2

t :r

+ O[(p − pt :r )3]. (9)

The perturbation strength Vt :r in Hamiltonian (7) is calcu-
lated by the area of the (t :r)-resonance chain in phase space.
To this end, we first obtain the separatrix pu bounding the
(t :r)-resonance chain, with the global phase of our system
φ0 = π , as follows:

−2Vt :r = − (pu − pt :r )2√
1 − p2

t :r

− 2Vt :r cos
(

2πr
s

L

)
, (10)

pu = pt :r ±
√

2Vt :r

[
1 − cos

(
2πr

s

L

)]√
1 − p2

t :r

= pt :r ±
√

4Vt :r
4

√
1 − p2

t :r sin
(
πr

s

L

)
. (11)

Integration of the separatrix in Eq. (11) with respect to s for
fixed ε (see Fig. 8) gives the ε-dependent phase-space area of

the resonance chain:

At :r (ε) =
∫ L

0
p+

u ds −
∫ L

0
p−

u ds

= 2r
√

4Vt :r
4

√
1 − p2

t :r

∫ L/r

0
sin

(
πr

s

L

)
ds

= 4L
√

4Vt :r

π

4

√
1 − p2

t :r . (12)

From Eq. (12) we get the perturbation strength:

Vt :r (ε) =
(

2π

L

)2 At :r (ε)2

256
√

1 − p2
t :r

. (13)

We first determine the coupling strength between CW-
and CCW-propagating waves induced by the (1:2)-resonance
chain and so we use p1:2 = 0, leading to V1:2(ε) =
A1:2(ε)2(2π/L)2/256. In calculating the area of the (1:2)
resonance chain, we employ the adiabatic invariant curve
pa(s) ≡

√
1 − βκ2/3(s) [37,43]. This curve is characterized

by a constant β and the local curvature κ(s) of the cavity
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FIG. 7. Poincaré surface of section of the elliptic and quadrupole cavities. Because of symmetry, only the p � 0 region is shown.
(a) Elliptic and (c) quadrupole cavity at ε = 0.05. (b) Elliptic and (d) quadrupole cavity at ε = 0.33. Thick curves around p = 0.5 and 0.707
are tori related to the 2(1:3) and (1:4) periodic orbits. Real-space geometries of the stable (solid lines) and unstable (dashed lines) periodic
orbits in (d) are illustrated on the right-hand side.
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FIG. 8. Schematic diagram of the phase space generated by
Hamiltonian (7) with (t : r) = (1 : 2). L, ss(u), and pu are, respec-
tively, the perimeter of the cavity, the arclength corresponding to the
stable (unstable) periodic orbit, and the momentum corresponding to
the separatrix, the curve separating the interior and the exterior of the
resonance chain.

boundary. The constant β of the (1:2)-resonance chain can be
obtained by

pa(su) =
√

1 − βuκ2/3(su) = 0,

βu = κ−2/3(su),

where su = 0 or L/2 are the highest curvature points on the
cavity boundary; see Fig. 8. The area enclosed by this adiabatic
invariant curve characterized by βu is

A1:2 =
∮

pa(s)ds

= 2
∫ 2π

0

√
[1 − βuκ2/3(φ)][ρ2(φ) + ρ̇2(φ)]dφ, (14)

with the cavity boundary ρ(φ) and its derivative ρ̇(φ) =
dρ/dφ. Using the curvature expressed in the polar coordinate
φ [37], Eq. (13) is expressed as an integral with respect to φ

along the given boundary ρ(φ),

V1:2 =
(

2π

L

)2 1

64

{∫ 2π

0
dφ

√
ρ2(φ) + ρ̇2(φ)

−βu[ρ2(φ) + 2ρ̇2(φ) − ρ(φ)ρ̈(φ)]2/3

}2

, (15)

with the cavity boundaries in Eqs. (2) and (3).
Figure 9 shows the perturbation strength V1:2(ε) for the

elliptic and the quadrupole cavities calculated using Eq. (15).
As expected from Eq. (4) and Figs. 7(a) and 7(c) for weak
deformation the perturbation strengths are almost identical.
For higher deformation, however, they deviate; see, e.g.,
the inset in Fig. 9. In fact even for weak deformation, the
perturbation strength of the elliptic cavity is slightly larger
than that of the quadrupole cavity and this explains the larger
frequency splittings in the elliptic cavity in the low-angular-
momentum-number regime (Figs. 4 and 5).

0.0 0.1 0.2 0.3 0.4 0.5
ε

10-6

10-3

100

V
t
:
r
(

ε )

0.33

FIG. 9. Perturbation strength Vt :r vs deformation parameter ε.
The solid (dashed) curve corresponds to the (1:2)-resonance chain
in the elliptic (quadrupole) cavity calculated from Eq. (15). The
dot-dashed and the dot-dot-dashed curves correspond to the 2(1:3)-
and (1:4)-resonance chains in the quadrupole cavity calculated from
Eq. (16). Inset: magnification around ε = 0.33.

The perturbation strength Vt :r (ε) for the additional (t :r)-
resonance chains in the quadrupole cavity can be determined
by evaluating the trace of the monodromy matrix Mt :r of the
stable periodic orbit [44]:

Vt :r =
(

L

2π

)2
√

1 − p2
t :r

4r4

{
arccos

[
Tr Mt :r

2

]}2

. (16)

This simpler approach is here accurate enough since the area
of such an additional resonance chain is much smaller than
that of the BB-resonance chain. Figure 9 shows Vt :r (ε) for the
2(1:3)- and (1:4)-resonance chains.

VI. RESONANCE-ASSISTED TUNNELING

We use the pendulum approximation of the BB-resonance
chain to predict the frequency splitting between even- and
odd-parity modes in the deformed cavities. We recall that the
splitting 
Em of the mth degenerated eigenstate pair in the
quantum pendulum

H (p̂,θ̂ ) = p̂2

2
+ 2V cos(2θ̂ ) (17)

was derived in Refs. [45,46] as


Em = 2V

(m−2)∏
u=−(m−2)


u=2

V

Em − Eu

. (18)

In this equation u takes the values u = −(m − 2), − (m − 4),
. . . ,(m − 4),(m − 2) because of the perturbation proportional
to cos(2θ ). In order to adapt this result to a cavity with a
resonance chain described by Hamiltonian (7) we need to
figure out the connection between 
Em and Re(
kmR). From
Eq. (9) we identify the energies of the circular (unperturbed)
cavity through the semiclassical relation pm = m/neRe(kmR)
[37], which gives

Em ≡ H0(pm) = h̄2
mM2

m (19)

with effective Planck constant h̄m ≡ 1/neRe(kmR), M2
m ≡

−(m − mt :r )2/
√

1 − p2
t :r , and mt :r ≡ neRe(kmR)pt :r . Equa-

tion (19) is the analog to the relation Em ∝ h̄2m2 of the original
quantum pendulum but with an m-dependent Planck constant.
The differentiation of Eq. (19), dEm = 2h̄mM2

mdh̄m, results
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YI, KULLIG, KIM, AND WIERSIG PHYSICAL REVIEW A 96, 023848 (2017)

0 2 4 6 8 10 12 14 16 18 20
m

10-18

10-12

10-6

100

n
e
R
e
(

Δk
R
)

(c)

dielectric BC

10-12

10-6

100

Δk
R

(a)

ellipse

Dirichlet BC

0 2 4 6 8 10 12 14 16 18 20 22
m

(d)

dielectric BC

(b)

quadrupole

Dirichlet BC

FIG. 10. Frequency splitting of mode pairs as a function of the angular momentum number m at ε = 0.33. (a) Closed ellipse with Dirichlet
boundary conditions (BC), (b) closed quadrupole, (c) dielectric ellipse, and (d) dielectric quadrupole. Solid circles with thin lines are full
numerical (BEM) calculations. Dashed, thin solid, and dot-dashed curves are results of Eq. (25) of the individual (1:2), (1:2) + 2(1:3), and
(1:2) + (1:4) resonance chain contributions, respectively. Thick solid curves in (b) and (d) are combined (1:2) + 2(1:3) + (1:4) resonance chain
contributions.

in (with assumption dX ≈ 
X)


Em

Em

= 2
Re(
kmR)

Re(kmR)
, (20)

where 
Em and Re(
kmR) are defined to be positive. Then
inserting Eq. (20) into Eq. (18) with V = V1:2 yields

Re(
kmR) = Re(kmR)
V1:2

Em

(m−2)∏
u=−(m−2)


u=2

V1:2/h̄
2
m

Em/h̄2
m − Eu/h̄

2
u

. (21)

All energies in Eq. (21) are scaled because each energy Em =
h̄2

mM2
m takes a different h̄m in Eq. (19). Hence, one needs to

rescale each of the terms with the corresponding h̄2
m in order to

make them comparable in the Hamiltonian in Eq. (7). Note that
despite that this rescaling is crucial for the terms in the product
part, the significance of it diminishes when h̄ in the numerator
and the denominator are the same (i.e., when km ≈ ku) and can
be factored out.

Equation (21) can be further simplified by the assumption
that the mode, having large angular momentum number
m � 1, is a well-confined whispering-gallery mode; i.e.,
Re(kmR) � 1 and |Im(kmR)| � Re(kmR). In this case the
asymptotic relation m ≈ neRe(kmR) [38,47] holds and can
be used to remove the denominator term of the prefactor in
Eq. (21) as |Em| → 1 in Eq. (19) with p1:2 = 0. Therefore, we
arrive at the final prediction of the frequency splitting induced
by the BB-resonance chain:

neRe(
kmR)BB

= neRe(kmR)V1:2

×
(m−2)∏

u=−(m−2)

u=2

V1:2[Re(km)]2

H0(pm)[Re(km)]2 − H0(pu)[Re(ku)]2
.

(22)

Note that in Eq. (19) of Ref. [40] a similar product was given
without the scaling with h̄m because Re(kmR) of the mode
(l,m)=(1,m) is compared to Re(kuR) of the mode (1+t,m−r),
which are very similar near the RAT peak in the decay rate.
However, in our case [Eq. (22)] Re(kmR) and Re(kuR) are quite
different since both belong to the same radial mode number
l = 1 but different angular momentum numbers m and u; i.e.,
Re(kuR) < Re(kmR) for u < m. Thus, the scaling cannot be
neglected in Eq. (22).

It is instructive to mention that the coupling of the
perturbation ∼ cos(nθ ) only occurs when 2m mod n = 0 (not
shown here). For example, when n = 3 as in Ref. [48], the
coupling can give rise to the frequency splitting only for
m = 3, 6, 9, . . ..

Before proceeding to the main results of the dielectric
cavities, we first calculate the frequency splittings of Eq. (22)
in the closed cavities satisfying the Dirichlet boundary
condition on the cavity boundary. Figure 10(a) shows excellent
agreement between the numerical results of the BEM and
Eq. (22) for the elliptic cavity. However, in the quadrupole
cavity in Fig. 10(b), this agreement breaks down above
m = 8 where several spikes are present in the full numerical
result. It is here worth mentioning that frequency splittings
in the closed cavities were discussed in Ref. [49] through a
perturbative scattering matrix approach. However, the work
in Ref. [49] did not address the semiclassical origin of the
coupling strength; rather they carried out the decomposition
of the scattering matrix to obtain the coupling strength located
in the off-diagonal components of the scattering matrix.

Figures 10(c) and 10(d) demonstrate that there are two ma-
jor differences between the closed and the dielectric cavities.
The first difference is the spike structure around m = 12, which
is absent in the closed elliptic cavity. The other difference
is that the spike position of the frequency splittings in the
dielectric quadrupole is shifted to higher values of m compared
to that of the closed quadrupole. The role of the different
boundary conditions is more deeply analyzed in the following.
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VII. ADDITIONAL RESONANCE CHAINS
CONTRIBUTING TO RAT

In this section we demonstrate that the spikes [Figs. 10(b)–
10(d)] in the higher-angular-momentum regime are conse-
quences of the tunneling enhancement due to additional
resonance chains as shown in Fig. 7(d). We determine the
coupling strength of such an additional (t :r)-resonance chain
by evaluating the trace of the monodromy matrix Mt :r of
the stable periodic orbit [Eq. (16)]. Note that the additional
(t :r)-resonance chains are located outside of the BB-resonance
chain and below the momentum pl,m of the considered mode.

In the same spirit as in Refs. [40] we can determine the
enhancement of the splittings via the RAT of an additional
(t :r)-resonance chain. We know that the unperturbed modes
|l,m〉0 and |l + it,m − ir〉0, i = 1,2, . . ., can couple through
the (t :r) resonance, obeying a selection rule in accordance with
the Fermi resonance relation [50]. So, the coupled mode |l,m〉
can be expanded as

|l,m〉 = |l,m〉0 +
Nt :r∑
i=1

at :r
i |l + it,m − ir〉0, (23)

where the expansion coefficients are given by the secular
perturbation theory [11,12] as

at :r
i

=
∏
j�i

Vt :r [Re(kl,m)]2

H0(pl,m)[Re(kl,m)]2−H0(pl+j t,m−jr )[Re(kl+j t,m−jr )]2
,

(24)

where Nt :r < [m/r]. Here [·] denotes an integer part of the
argument. Then, since the tunneling rate can be assumed
to be additive [12], straightforwardly, the coupling strength,
i.e., the splitting, is also additive. Hence, the splitting of the
mode in Eq. (23) is enhanced by the sum of the individual
contributions of the entire coupled modes. To make it more
lucid, it is helpful to see the one-to-one correspondence
between Ref. [12] and our work: |m〉0 �→ |l,m〉0, |ψch〉 �→
|l,−m〉0, γ d

m �→ neRe(
kl,mR)BB, and γm �→ neRe(
kl,mR).
Lastly, since we consider not only a single resonance (t :r), our
prediction for the frequency splitting has the final form

neRe(
kl,mR) = neRe(
kl,mR)BB

+ne

∑
{t :r}

Nt :r∑
i=1

∣∣at :r
i

∣∣2
Re(
kl+it,m−irR)BB.

(25)

In order to implement Eq. (25), we examine the phase space
of the quadrupole cavity in Fig. 7(d) and find two prominent
resonance chains (t :r) = 2(1:3) and (1:4) at p2(1:3) ≈ 0.5 and
p1:4 ≈ 0.707.

A. Goos-Hänchen shift as an extra perturbation

For the dielectric cavities the influence of the dielectric
boundary condition has to be included into the semiclassical
description. This is here done in terms of the Goos-Hänchen
shift (GHS) [51–53]. The GHS is a spatial lateral shift of
a beam upon reflection at a dielectric interface. Its origin is

0 0.2 0.4 0.6 0.8 1
p=sinχ

0.000

0.456

0.912

1.368

k
δs

p
c

FIG. 11. Goos-Hänchen shift δs vs p = sin χ . Solid and dashed
curves are the numerical results using the scheme of Ref. [51] and the
approximated result in Eq. (26); kR = 4.56. The thick vertical line at
pc = 1/ne = 0.294 marks the critical line of total internal reflection.

interference of the partial waves which accumulate different
phases for the given incident angles.

The GHS shows up here in two ways. First, when included
as a wave correction into the ray dynamics (“extended ray
dynamics”) it acts as the extra perturbation (beside the
boundary deformation) [54]. As is well known, the integrable
ray dynamics in the ellipse (without GHS) does not possess
resonance chains except for the (1:2)-resonance chain [55]. In
the extended ray dynamics in the ellipse, however, additional
resonance chains appear [54]. The extended ray dynamics is
carried out here by using the numerical scheme of Ref. [51] for
the GHS at a planar interface. This scheme is more accurate
than the approximation well above the critical line [56]:

δs = 2

k

p√(
n2

ep
2 − 1

)
(1 − p2)

. (26)

Figure 11 shows the numerical result using the scheme of
Ref. [51] in comparison with approximation (26). It is obvious
that the singularities at n2

ep
2 = 1 and p = 1 in Eq. (26) should

be considered carefully; however, the resonances addressed in
the present paper, p1:4 = 0.707 and p2(1:3) = 0.5, are located
far from both singularities p = 1/ne = 0.294 and p = 1.

Figure 12 shows the phase space of the extended ray
dynamics in the ellipse at ε = 0.33. The new 2(1:3)-resonance
chain originated from the (1:3)-resonant torus which is
destroyed by the GHS. The coupling strength, based on the
trace of the monodromy matrix of the stable periodic orbit
in this resonance chain [Eq. (16)], is obtained as V

2(1:3)
GHSe =

0.375 0.5 0.625
s/L

0.55

0.575

0.6

p
=
s
i
n

χ

0 0.5 1
0.5
0.55
0.6
0.65

p
=
s
i
n

χ

FIG. 12. Small 2(1:3)-resonance chain in the phase space of the
elliptic cavity (ε = 0.33) due to the GHS; kR = 4.56. The stable
periodic orbit is marked by the solid circles.
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1.367 × 10−6. This coupling is much smaller than the coupling
induced by the boundary deformation of the quadrupole
cavity with the same deformation parameter. For example,
the coupling strength of the 2(1:3)-resonance chain of the
quadrupole cavity is larger than that of the elliptic cavity as
V 2(1:3)

q = 6.5 × 10−5 � V
2(1:3)

GHSe at ε = 0.33. Hence, the order
of the frequency splitting (Figs. 4 and 5) can flip when the
enhancement of the RAT process becomes sufficiently strong.

B. Periodic orbit shift induced by GHS

The second important effect of the GHS is the effective
momentum shift of the periodic orbits [51]

δp = κδs

2

√
1 − p2, (27)

where κ is the local curvature of the cavity’s boundary averaged
over the bounce points of the periodic orbit. This effect
is automatically included in the extended ray dynamics as
the periodic orbits reorganize dynamically. However, when
the conventional momentum is used in the RAT formalism,
the periodic orbit shift (27) has to be included as a correction
[23].

The BB-resonance chain (p1:2 = 0; see the solid curve
in Fig. 11) does not exhibit a GHS. Hence, in Eq. (22)
the conventional momentum pu = u/neRe(kR) [43] for the
BB-resonance chain is used.

For the additional resonance chains above the critical line
the periodic orbit shift (27) is nonzero. Here, approximation
(26) for the GHS is accurate enough. The periodic orbit shift
translates into an angular-momentum-number shift

δmt :r = 1/
√

1 − (pt :rne)−2 (28)

with average radius of curvature 1/κ ≈ R. Equation (28) is
inserted into Eq. (8) via [40]

pl,m = 1

nekl,mR
(m − δmt :r ). (29)

C. RAT in a dielectric microcavity with GHS

The results of Eq. (25) with Ref. [51] and Eq. (29) are
plotted in Figs. 10(b)–10(d) by thin solid and dot-dashed
curves for 2(1:3)- and (1:4)-resonance chains, respectively.
Thick solid curves in Figs. 10(b) and 10(d) are combined
results reflecting both resonance chain contributions. For the
thin solid curve in Fig. 10(c), we use the coupling strength
V

2(1:3)
GHSe obtained before. By comparing the closed and the

dielectric quadrupole cavities, we can confirm that in both
cases the results of Eq. (25) supported by a

2(1:3)
1 agree nicely

with the full numerical results. However, in the case of RAT
supported by a

2(1:3)
2 and a1:4

1 , resonance chains fail to reach
the exact numerical values. We speculate that this deviation is
related to contributions of further additional resonance chains.

The higher m positions of the RAT spikes of the dielec-
tric quadrupole cavity compared to the closed cavity are
reproduced successfully by Eq. (25) with the correction in
Eq. (29). Also, in Fig. 10(c) we can see the RAT spike of
the dielectric elliptic cavity caused by 2(1:3) resonant torus
by using V

2(1:3)
GHSe . Hence, we accomplished the semiclassical

description of frequency splittings in the weakly deformed

6 8 10 12 14 16 18 20 22 24 26
m

100
101
102
103
104

1
/

Δt
:
r

1

2(1:3) (1:4)

FIG. 13. Degree of degeneracy of Eq. (30) as a function of the
angular momentum number m.

microcavity via multiple RAT processes incorporating GHS
originated from the dielectric boundary condition.

D. Degeneracy versus coupling strength

The coupling coefficient |at :r
i |2 in Eqs. (25) and (24)

is determined by both the coupling strength Vt :r in the
numerator and the degeneracy between the modes in the
denominator. It means that a large (t :r)-resonance chain can
be compensated by a weak degree of degeneracy between
H0(pl,m)[Re(kl,m)]2 and H0(pl+j t,m−jr )[Re(kl+j t,m−jr )]2. The
case is already observed in Figs. 9 and 10. While the coupling
strength of the (1:4)-resonance chain is larger than that of the
2(1:3)-resonance chain in Fig. 9, RAT caused by the 2(1:3)-
resonance chain is larger than that of the (1:4)-resonance chain
in Fig. 10. The reason is the smaller denominator in Eq. (24) for
the 2(1:3)-resonance chain in that angular-momentum-number
regime and for the chosen refractive index. Note that this
scenario applies not only to the quadrupole cavity but also
to the elliptic cavity when the extended ray dynamics is
considered.

In order to examine the denominator impact on the
contribution coefficient of RAT in Eq. (24), we define the
degree of degeneracy as

1


t :r
1

≡
∣∣∣∣ at :r

1

Vt :r [Re(kl,m)]2

∣∣∣∣. (30)

In Fig. 13 it can be seen that the degree of the degeneracy has
peaks exactly at the same positions as the spikes in Fig. 10:
first m = 12 and second m = 21 for the 2(1:3)- and (1:4)-
resonance chains, respectively. Therefore, the positions of the
enhancement of RAT are governed by the degeneracy of H0

which is independent of Vt :r . Moreover, since the RAT with
respect to the 2(1:3)-resonance chain, corresponding to the
first peak, can start at m − 6 � 1, we predict that the flipping
of the order of the frequency splittings between the elliptic
cavity and the quadrupole cavity, due to the enhancement of
RAT, will occur in 7 � m � 12, consistent with the numerical
finding in Fig. 5.

E. Husimi function

To further support our conclusions, we investigate the
modes in phase space in terms of the Husimi function
h(s,p) [57]. Figures 14(a) and 14(b) show as examples the
Husimi functions of the modes (l,m) = (1,12) and (3,6) in the
quadrupole cavity with ε = 0.33.
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FIG. 14. Husimi functions of the modes (a) (l,m) = (1,12) and
(b) (3,6) superimposed on the SOS in the quadrupole cavity with ε =
0.33. In (c), solid squares and open circles are h

(1,12)
0.33,q and h

(1,12)
0.33,e and

upper and lower thick solid curves are ξ
(1,12)
0.33,q and ξ

(1,12)
0.33,e , respectively.

The maximum intensity is normalized to be unity.

Since the RAT in the present work occurs in the momentum
direction, the Husimi functions of the modes (l,m) at fixed
deformation parameter ε are projected onto the p axis,

h
(l,m)
ε,j (p) ≡

∫ L

0
h

(l,m)
ε,j (s,p)ds, (31)

where j = c, e, or q for the circle, the ellipse, or the
quadrupole. These projected Husimi functions contain infor-
mation about the mode coupling. In particular, they reflect
the coupling coefficient |at,r

i |2 in Eq. (25). We demonstrate
this fact by adding the circular cavity’s Husimi functions
corresponding to the deformed cavity’s modes. As an example,
for the mode (1,12) exhibiting RAT with the aid of the
2(1:3)-resonance chain, it gives

ξ
(1,12)
0.33,j (p) = h

(1,12)
0,c (p) + λjh

(3,6)
0,c (p) (32)

with

λj ≡
∣∣∣a2(1:3)

1

∣∣∣2

j
. (33)

The results are plotted in Fig. 14(c) for the quadrupole and
the elliptic cavities by the upper and the lower thick solid

curves. The coupling coefficients are obtained as |a2(1:3)
1 |2

q
=

2.389 × 10−4 and |a2(1:3)
1 |2

e
= 1.052 × 10−7 for the quadrupole

cavity and the elliptic cavity, respectively. We observe a nice
agreement of Eq. (32) and the exact Husimi function in
Fig. 14(c). This confirms that the contributions related to the
RAT spikes around m = 12 in Figs. 10(c) and 10(d) originate
from the 2(1:3)-resonance chain.

VIII. SUMMARY

We investigated the frequency splittings in weakly de-
formed microdisk cavities by means of full numerics and a
semiclassical approach based on resonance-assisted tunneling.
As examples, an ellipse and a quadrupole shape have been
chosen. The ellipse (quadrupole) represents a well-known
model of an integrable (nonintegrable) system. In the regime
of small angular momentum numbers the frequency splittings
in the elliptic cavity are slightly larger than those in the
quadrupole cavity. This is traced back to the area of the
dominant (1:2)-resonance chain in ray dynamical phase space.
The area plays the role of the coupling strength between
clockwise- and counterclockwise-propagating waves. In the
elliptic cavity the area is larger than that in the quadrupole
cavity.

In the higher-angular-momentum-number regime the fre-
quency splittings of the quadrupole cavity are larger than those
in the elliptic cavity. The origin is the additional 2(1:3)- and
(1:4)-resonance chains. Both do not appear in the elliptic cavity
without Goos-Hänchen shift. By explicitly taking into account
the Goos-Hänchen shift in the extended ray dynamics inside
the elliptic cavity, the enhancement of the frequency splittings
is explained. We demonstrated that the resonance-assisted
tunneling rate of the quadrupole cavity is larger than that of
the elliptic cavity triggered by the Goos-Hänchen shift. The
conclusions are confirmed by a study of the resonance-assisted
tunneling process in terms of Husimi functions.

Our work clearly shows that for the splitting of frequencies
of mode pairs the cavity shape matters. Experiments on
frequency splittings in deformed microdisk cavities, such as
in Ref. [31], have to care about the precise shape of the cavity
deformation.
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