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Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array
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We present an analytic solution of bound states in the continuum (BICs) for photons and atoms in a one-
dimensional coupled-cavity array. These bound states are formed by two ensembles of two-level atoms confined
in separated cavities of the array. We show that in the regime where the photon hopping rate between neighboring
cavities is high compared with the collective Rabi frequency the BIC corresponds to a nonradiating collective
atomic state in which the two ensembles of atoms are strongly entangled. On the other hand, in the low photon
hopping rate regime, the BIC behaves as a quantum cavity in which photons can be trapped between the two
ensembles of atoms.
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I. INTRODUCTION

Bound states in the continuum (BICs) are spatially localized
states with energies embedded in the continuous spectrum of
a system. The first example of a BIC for a single quantum
particle was proposed by von Neumann and Wigner [1]. Later,
Stillinger and Herrick explored the possibilities of BICs in
two-electron systems [2,3]. A formal theory of BICs based
on interfering resonances was developed by Friedrich and
Wintgen [4]. It is now known that a BIC is a wave phenomenon
that can be realized in a variety of physical wave systems [5].
In particular, BICs have been observed in various (classical)
photonic systems such as waveguides [6–8], photonic crystals
[9,10], and photonic Lieb lattices [11,12]. There also exist
surface bound states in the continuum in photonic structures
[13,14]. Since photonic BICs correspond to a high-quality
confinement of light at specific frequencies, they have useful
applications in optical devices such as filters [15] and lasers
[16].

Although the concept of BICs was originally proposed as a
solution of the Schrödinger equation, there have been relatively
few studies of BICs in quantum systems. A difficulty is a lack
of quantum systems processing such a kind of bound states
in general. However, recent investigations in waveguide QED
have found interesting examples of BICs for dressed photon-
atom systems [17–24]. Waveguide QED generally refers
to photon-atom interactions in one-dimensional photonic
structures, such as superconducting qubits in transmission
lines [25,26] and trapped atoms in a nanophotonic waveguide
[27,28]. Since atoms can be strongly coupled to tightly
confined waveguide modes, waveguide QED has been a
useful platform for studying photon-photon interaction [29]
and quantum information processing [30–32]. In particular,
a coupled-cavity array can have energy bands equivalent to
that of the tight-binding model, and interesting effects such
as photon scattering [33,34], single-photon transport [35–37],
and photon-atom bound states outside the continuum [38,39]
have been discussed in literature.

We note that BICs comprising a single excitation (or
photon) have been studied theoretically in a coupled-cavity
array [22–24]. Such BICs are typically formed by two
separated two-level atoms, such that a single photon at a
resonance frequency can be perfectly trapped in the space

between the two atoms. In this regard, the two atoms behave
as a quantum cavity for a single photon.

In this paper we show that BICs comprising multiple
excitations or photons can be formed by two spatially separated
ensembles of two-level atoms in a coupled-cavity array. This
extends the previous studies [22–24] to situations of multiple
photons. We note that the problem of two-particle BICs has
been studied in various Bose-Hubbard models [40–42] and
interesting interference effects due to quantum statistics of
particles have been reported [43]. Here we present a type
of multiparticle BICs formed by two distinct constituents,
namely, photons and atoms in waveguide QED, and the atomic
degree of freedom is described by collective spin variables.
As we shall see below, our BICs exhibit various features
depending on the photon hopping rate between neighboring
cavities and the photon-atom interaction strength. Apart from
the quantum-cavity effect for multiple photons, there exists
a subradiance regime where excitations are mostly stored in
a collective atomic state that does not radiate. We note that
subradiance is a collective quantum phenomenon that has
attracted research interest recently in experimental [44–46] and
theoretical studies [47–51]. Our paper provides an example of
subradiance by two ensembles of atoms.

Our paper is organized as follows. We first describe the
system and the corresponding Hamiltonian in Sec. II. Then,
by making use of a decoupling condition, we obtain an exact
analytic solution of BICs with a general excitation number
in Sec. III. In Sec. IV, we focus on the properties of BICs
in a triple-cavity system. Such a system allows us to analyze
the structures of BICs as well as their formation in detail. In
particular, we indicate how subradiant states can be formed
dynamically by free evolution in the subradiance regime. We
also provide a linear theory of the system in the quantum-cavity
regime and determine how atomic decoherence affects the
storage time of photons. The conclusions and remarks are
given in Sec. V.

II. THE MODEL

We consider a one-dimensional coupled-cavity array
formed by N + 1 (where N > 1) cavities, in which the
leftmost and rightmost cavities each contain M identical
two-level atoms (Fig. 1). We assume that each cavity mode
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FIG. 1. A schematic drawing of the one-dimensional coupled-
cavity array. The leftmost and rightmost cavities each contain M

identical two-level atoms. The coupling parameters and operators
defined in the text are indicated.

has the same resonance frequency ωc which is close to the
atomic transition frequency ωA. The full Hamiltonian of the
system is given by H = H1 + H2 where (h̄ = 1)

H1 = ωc(a†
LaL + a

†
RaR) + ωA(J z

L + J z
R) +

N−1∑
n=1

ωcb
†
nbn

+g(a†
LJ−

L + a
†
RJ−

R + aLJ+
L + aRJ+

R )

+λ(a†
Lb1 + a

†
RbN−1 + aLb

†
1 + aRb

†
N−1)

+λ

N−2∑
n=1

(b†nbn+1 + b
†
n+1bn), (1)

H2 =
∫ ∞

0
dωω[c†L(ω)cL(ω) + c

†
R(ω)cR(ω)]

+
∫ ∞

0
dω[ηL(ω)c†L(ω)aL + ηR(ω)c†R(ω)aR + H.c.].

(2)

Here H1 describes the photon-atom interaction (second line)
and tight-binding-type coupling between neighboring cavities
(third and fourth line), and H2 describes outside field modes
and their interaction with the fields in the end cavities.
Specifically, aL and aR are annihilation operators for the
leftmost and rightmost cavity modes, respectively, bn (n =
1,2, . . . ,N − 1) are annihilation operators associated with the
cavities in the middle, and λ (assumed real) is the coupling
constant between adjacent cavities [52]. In our model, we
assume that all atoms in the respective cavities experience
the same photon-atom coupling strength g, and so atoms are
treated collectively. For the M atoms in the leftmost cavity,
we define

J z
L = 1

2

M∑
m=1

(|1〉m 〈1| − |0〉m 〈0|), (3)

J+
L =

M∑
m=1

|1〉m 〈0| = (J−
L )†. (4)

Here |1〉m and |0〉m denote the excited and ground state of
the mth atom. For the atoms in the rightmost cavity, J z

R and
J+

R are defined similarly but with the summation index m

taken from M + 1 to 2M . Finally for the H2, we have used
cL(ω) and cR(ω), respectively, for the annihilation operators of
continuous field modes at the frequency ω outside the leftmost

and rightmost cavities, and ηL(ω) and ηR(ω) are coupling
strengths [53].

The Hamiltonian H1 can be simplified by using the normal
modes of the cavity chain (excluding the two end cavities). The
annihilation operators associated with such normal modes are
given by

Bk =
√

2

N

N−1∑
n=1

bn sin
knπ

N
, (5)

with k = 1,2, . . . ,N − 1. Such operators satisfy [Bk,B
†
k′] =

δkk′ . In this way, H1 reads

H1 = ωc(a†
LaL + a

†
RaR) + ωA(J z

L + J z
R)

+
N−1∑
k=1

�kB
†
kBk +

[
a
†
L

(
gJ−

L +
N−1∑
k=1

λL
k Bk

)
+ H.c.

]

+
[
a
†
R

(
gJ−

R +
N−1∑
k=1

λR
k Bk

)
+ H.c.

]
(6)

where

λL
k = λ

√
2

N
sin

kπ

N
, (7)

λR
k = λ

√
2

N
sin

k(N − 1)π

N
= (−1)(k+1)λL

k , (8)

�k = ωc + 2λ cos
kπ

N
(9)

are defined. For later purposes, we introduce the operator

N = a
†
LaL + a

†
RaR + J z

L + J z
R + M +

N−1∑
k=1

B
†
kBk

(10)

which corresponds to the total number of excitations stored in
the cavity array and atoms.

III. SOLUTIONS OF THE BIC

Owing to the coupling to the continuum, the full Hamil-
tonian H has a continuous energy spectrum with energy
E � −MωA. A BIC represents a localized eigenstate with
its energy embedded in the continuous energy spectrum. Here
we adopt a strict localization condition that all excitations are
trapped inside the atoms and the cavity array, while all the
field modes outside [described by cL(ω) and cR(ω)] are in
the vacuum state |vac〉out. For a given excitation number K ,
the BIC takes the form

|�(K)
BIC〉 = |βK〉|vac〉out (11)

where |βK〉 is a trapped state describing the state of atoms and
photons inside the cavity array. Specifically, |βK〉 is a common
eigenvector of H1 and N :

H1|βK〉 = Eb|βK〉, (12)

N |βK〉 = K|βK〉, (13)
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where K is an integer, and Eb is the energy eigenvalue.
In this paper we present a solution of |βK〉 with a given

excitation number K in the form

|βK〉 =
K∑

m=0

K−m∑
n=0

αmnB
†m
q (J+

L )n(J+
R )K−m−n |φ〉 . (14)

Here αmn are some coefficients, and |φ〉 is the state in which
all the field modes in the cavity array are in the vacuum state
and all the atoms are in their |0〉 state. In writing Eq. (14),
we have assumed that there exists a mode described by Bq

which has the frequency �q = ωA. For example, such a mode
occurs when q = N/2 for an even N and ωc = ωA. The effect
of a nonzero detuning (�q �= ωA) will be discussed in the next
section.

Noting that |βK〉 defined by Eq. (14) has zero photons in
the end cavities, |βK〉 is an eigenvector of H1 with the energy
eigenvalue Eb = (K − M)ωA if the following conditions are
satisfied:

(gJ−
L + λL

q Bq)|βK〉 = 0, (15)

(gJ−
R + λR

q Bq)|βK〉 = 0. (16)

Physically, these two conditions can be interpreted as a
destructive interference between the photon emission by atoms
[described by ga†

μJ−
μ in Eq. (6)] and the photon tunneling

[described by λ
μ
q a†

μBq in Eq. (6)]. Together with the vacuum
field outside, the conditions (15) and (16) ensure that the fields
in the end cavities remain in the vacuum state. Since the end
cavity modes are never excited, no energy can escape to the
continuum, and hence all the excitations are trapped in the
atoms and the Bq mode. Unlike BICs based on destructive
interference in classical electromagnetic wave systems [5,54],
here the interference corresponds to the inhibition of quantum
transitions in a finite dimensional Hilbert space.

The conditions Eqs. (15) and (16) require M � K . To
determine the explicit form of |βK〉, we rewrite Eq. (14) as

|βK〉 =
K∑

m=0

K−m∑
n=0

cm,n |m,n,K − m − n〉 |0L,0R〉 (17)

where |0L,0R〉 denotes the vacuum state of the two end cavities,
cm,n’s are coefficients, and |m,n,K − m − n〉 is a common
eigenvector of B

†
qBq , J 2

μ, and J z
μ (μ = L,R) such that

B†
qBq |m,n,r〉 = m |m,n,r〉 , (18)

J z
L |m,n,r〉 =

(
n − M

2

)
|m,n,r〉 , (19)

J z
R |m,n,r〉 =

(
r − M

2

)
|m,n,r〉 . (20)

In words, m is the photon number in the Bq mode, and n and
r are the number of excited atoms in the left and right end
cavities, respectively.

By using the conditions (15) and (16), we obtain the
recursive relations:

cm+1,n−1 = − g

λL
q

√
n(M − n + 1)√

m + 1
cm,n, (21)

cm+1,n = − g

λR
q

√
(K − m − n)(M − K + m + n + 1)√

m + 1
cm,n.

(22)

This leads to the solution of cm,n given by

cm,n = (χ )m
(

λR
q

λL
q

)n
√

(M − K + n + m)!

(K − n − m)!m!

×
√

(M − n)!

M!

√
K!

(M − K)!n!
c0,0, (23)

where the parameter χ (assumed positive) is defined by

χ = −g/λR
q = (−1)qg/λL

q (24)

and the value of c0,0 is determined by the normalization
condition. Note that (λR

q /λL
q ) = (−1)q+1 depends on the

integer mode index q.
Equation (23) is a main result of this paper. For a given M

and K , the structure of the BIC is controlled by the parameter χ

since the m-photon amplitude scales with χm. In the following
we discuss the features in χ � 1 and χ 	 1 regimes.

A. Subradiance regime

In the χ 	 1 limit, the zero photon amplitudes c0,n

contribute most to the BIC. Therefore the BIC is mainly formed
by excited atoms in a collective state that does not radiate, i.e.,
a subradiant state. By keeping c0,n terms only, we have

|βK〉 ≈
K−m∑
n=0

c0,n |0,n,K − n〉 |0L,0R〉. (25)

In particular, the state with the excitation number K = M is a
maximally entangled state in which the atomic excitations in
the two ensembles are perfectly corrected:

|βM〉 ≈ 1√
M + 1

M∑
n=0

(±1)n |0,n,M − n〉 |0L,0R〉, (26)

where +1 and −1 are for odd and even q, respectively. As we
shall see in the next section the right-hand side of Eq. (26) is
a singlet state.

Note that the specific requirement of the smallness of χ for
the subradiant regime depends on the excitation number K .
To ensure that the zero photon amplitudes c0,n are dominant,
we require |cm+1,n|/|cm,n| 	 1. By Eq. (22), it can be shown
that |cm+1,n|/|cm,n| < χ

√
(1 + M − r)r with r defined in

Eq. (20). Noting that r is bounded by 0 � r � K − n − m,
|cm+1,n|/|cm,n| 	 1 would need χ (M + 1)/2 	 1 for K =
M , and χ

√
M 	 1 for K 	 M .

023842-3



P. T. FONG AND C. K. LAW PHYSICAL REVIEW A 96, 023842 (2017)

2 108640
0.0

0.2

0.4

0.6

0.8

1.0

χ

†
q qB B / K

/ Kz z
L RJ J M+ +

Ex
ci

ta
tio

n 
Fr

ac
tio

n

FIG. 2. The average number of photons (solid line) and excited
atoms (dashed line) normalized by the total number of excitation as
a function of χ for the BIC with M = K = 2.

B. Quantum-cavity regime

In the regime where χ � 1, cK,0 in Eq. (23) is much larger
than all other amplitudes. Hence |βK〉 is approximately a Fock
state:

|βK〉 ≈ |K,0,0〉|0L,0R〉, (27)

which indicates that almost all excitations are stored as photons
in the the field mode Bq . In other words, the two ensembles
of atoms effectively form a quantum cavity for multiple
photons.

In Fig. 2, we illustrate the transition between two regimes
by showing the expectation values of photon number in the
mode Bq and the atomic excitation number for the state |βM〉
as a function of χ . For the case with the excitation number
K = M = 2 used in the figure, χ > 5 is sufficient to have
more than 90% of photonic excitations. On the other hand
χ < 0.5 would give more than 90% of excitation stored in the
atoms.

IV. TRIPLE-CAVITY CONFIGURATION

In this section we examine the BICs in a triple-cavity
configuration (N = 2 in Fig. 1) in which there is only one
normal mode B1 = b1 for the cavity in the middle. Such a
configuration is conceptually simpler and it provides useful
physical insights about the formation of BICs.

A. Effective Hamiltonian in the subradiant regime

First we introduce the following operators:

a− = aL − aR√
2

, (28)

ν± = aL + aR ± √
2b1

2
, (29)

which satisfy [a−,a
†
−] = [ν+,ν

†
+] = [ν−,ν

†
−] = 1 and

[a−,ν
†
±] = [ν+,ν

†
−] = 0. These operators correspond to

creation and annihilation operators associated with the
normal modes of the three coupled cavities. Accordingly, the

Hamiltonian H1 in Eq. (1) can be rewritten as

H1 = ωASz + ωca
†
−a− + g√

2
(S−a

†
− + H.c.)

+(ωc +
√

2λ)ν†
+ν+ + (ωc −

√
2λ)ν†

−ν−

+g

2
[(J−

L − J̃−
R )(ν†

+ + ν
†
−) + H.c.]. (30)

Here we have defined Sz = J z
L + J̃ z

R and S± = J±
L + J̃±

R ,
with J̃±

R = −J±
R and J̃ z

R = J z
R . Note that Si (i = z,±) obey

the commutation relations of angular momentum operators:
[S+,S−] = 2Sz and [Sz,S±] = ±S±. Since there are M

identical two-level atoms in each of the end cavity, Si’s are
equivalent to the addition of angular momentum operators for
two spin-M/2 systems.

Let |s,ms〉 be a common eigenvector of S2 and Sz, then

S2|s,ms〉 = s(s + 1)|s,ms〉, (31)

Sz|s,ms〉 = ms |s,ms〉, (32)

where the allowed quantum numbers are s = 0,1,2, . . . ,M

and ms = −s, − s + 1, . . . ,s.
Now returning to the Hamiltonian (30) and assuming

ωc ≈ ωA, we see that the atoms and ν± modes are essentially
uncoupled in the subradiance regime because the detunings
±√

2λ are much larger than g in magnitude. Therefore we may
neglect the far off resonant interaction terms in the last line of
the Eq. (30). Such an approximation is a type of rotating wave
approximation when viewing the system in the interaction
picture. By keeping resonant terms of Eq. (30) (i.e., discarding
ν± modes), atoms and the a− mode photons are coupled via
the effective Hamiltonian

H ′
1 = ωASz + ωca

†
−a− + g√

2
(S−a

†
− + H.c.), (33)

which is the Hamiltonian of the Tavis-Cummings model
[55,56]. Since [S2,H ′

1] = 0, the quantum number s is a
constant of motion.

According to the effective Hamiltonian H ′
1, atoms in the

collective state |s,ms = −s〉 are nonradiating, since they
cannot emit a photon to the a− mode by lowering the quantum
number ms . This is connected to the BIC in the previous
section, where the |βK〉 given in Eq. (25) can be rewritten
as

|βM−s〉 ≈ |s,ms = −s〉|0b〉|0L,0R〉, (34)

with |0b〉 being the vacuum field state in the b1 mode. For
example, Eq. (26) corresponds to the singlet state with s = 0.
A general derivation of Eq. (34) can be obtained by using
Eq. (25) with c0,n obtained in Eq. (23) and Clebsch-Gordan
coefficients.

B. Evolution to subradiant states

Consider the system in the subradiance regime with atoms
initially prepared in a superposition of |s,ms〉 states and no
photon in the cavities; the initial state is then given by

|ψ(0)〉 =
M∑

s=0

s∑
ms=−s

Cs,ms
|s,ms〉|0b〉|0L,0R〉, (35)
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where Cs,ms
are some coefficients. As the system evolves,

atoms would be de-excited by emitting a photon into the a−
mode according to H ′

1, and hence the quantum number ms

is lowered by 1. Furthermore, since the a− mode is damped
because of its coupling to the outside modes [governed by
H2 in Eq. (2)], de-excitation of atoms will continue until the
quantum number ms reaches the lowest possible value ms =
−s. Therefore the system would eventually be trapped as a
mixture of |s, − s〉 for different s’s.

In terms of the reduced density matrix ρ obtained by taking
the trace over the outside field modes, the final ρ would be a
mixed state:

ρ ≈
M∑

s=0

ps |s, − s〉〈s, − s| ⊗ |0〉T T 〈0|, (36)

where ps = ∑s
ms=−s |Cs,ms

|2 and |0〉T ≡ |0b〉|0L,0R〉 for
brevity.

To verify the above result, we calculate the time evolution of
ρ by the master equation method. Assuming that the coupling
strengths ηL(ω) and ηR(ω) in Eq. (2) are frequency indepen-
dent, the outside field modes are equivalent to Markovian
oscillator baths at zero temperature. This leads to the usual
Markovian master equation:

ρ̇ = −i[H1,ρ] +
∑

μ=L,R

γc

2
D[aμ]ρ, (37)

where H1 is the original Hamiltonian in Eq. (1) without
using the approximation in the previous subsection, and the
superoperator D is defined by

D[X]ρ = (2XρX† − X†Xρ − ρX†X). (38)

In writing Eq. (37), we have used ηL(ω) = ηR(ω) = √
γc/2π ,

with γc being the leakage rate of the end cavities. Note
that decoherence effects on atoms due to interactions with
noncavity modes have been omitted in the master equation.
This is justified as long as the relevant relaxation rates of atoms
are sufficiently small so that the steady state of ρ defined by
Eq. (37) can be established before decoherence effects become
significant.

We have solved the master equation numerically for the
M = 2 case, and the numerical steady state agrees well with
the approximation given in Eq. (36). Specifically, we consider
the two atoms in the left (right) cavity are initially prepared
in the excited (ground) states, and all the field modes are in
the vacuum state. In this case, s = 0,1,2 are allowed quantum
numbers.

In Fig. 3 we illustrate the numerical results by showing the
time dependence of the probability in the trapped state |βi〉,
which is Pi = 〈βi |ρ|βi〉, obtained from the master equation.
We see that P2 is a constant because the initial system with
an excitation number K = 2 has a partial overlap with trapped
state |β2〉, and it will remain a constant. As the system evolves,
P0 and P1 increase from zero and become steady, and so the
system is trapped in the lower states |β1〉 and |β0〉. Note that
|β0〉 is just the trivial ground state of the system. For the
parameters used in Fig. 3, we have verified that |β2〉 and |β1〉
are well approximated by Eq. (34) and the steady value of
Pi agrees well with pM−i defined after Eq. (36) within 1%
discrepancy.
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i = 1

i = 2

0.5

0.4
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FIG. 3. Occupation probabilities of the states |βi〉 for i = 0,1,2
as a function of dimensionless time λt . The evolution is obtained by
solving the master equation (37) numerically with the parameters
M = 2, N = 2, g/λ = 0.1, γc/λ = 1 and the initial state has an
excitation number K = 2 (see the text).

Our discussion in this subsection so far has assumed ωA =
ωc, which is a condition required for the BIC solution (Sec. III).
A nonzero detuning δ ≡ ωc − ωA would lead to an incomplete
destructive interference, and so photons would escape to the
continuum through the end cavities. However, we find that the
rate of such a loss can be significantly suppressed in the χ 	 1
limit. Specifically, consider a system in a certain trapped state
|βi〉 with small magnitude of δ compared with λ; we then find
that the probability loss rate γd is proportional to γcK(2M −
K + 1)δ2χ2/λ2, which decreases with χ2 [57]. Hence in the
χ 	 1 limit the trapped states in the detuned system can be
maintained in a relatively long (but finite) time scale.

C. Linear analysis of the quantum-cavity regime

In this subsection we turn to the quantum-cavity regime
where χ � 1. The fact that atoms are weakly excited in this
regime allows us to make the following approximation:

J−
μ ≈

√
Mdμ, J+

μ ≈
√

Md†
μ, J z

μ = d†
μdμ − M/2, (39)

where dμ and d†
μ (μ = L,R) are annihilation and creation op-

erators satisfying the bosonic commutation relation [dμ,d†
ν ] =

δμν . Such an approximation can be derived by keeping the
leading term in the Holstein-Primakoff transformation [58],
which is justified because 〈J z

μ〉 	 M/2 for BICs in the

χ
√

M � 1 regime.
By using approximation (39), H1 in Eq. (1) can be expressed

as

H1 = ωc(a†
LaL + a

†
RaR + F

†
0 F0 + F

†
+F+ + F

†
−F−)

+a
†
L(ξ+F+ + ξ−F−) + aL(ξ+F

†
+ + ξ−F

†
−)

+a
†
R(ξ+F+ − ξ−F−) + aR(ξ+F

†
+ − ξ−F

†
−), (40)

where ωA = ωc is assumed, and

F+ = g
√

M(dL + dR) + 2λb1√
2
√

g2M + 2λ2
, (41)

F− = dL − dR√
2

, (42)

F0 = g
√

Mb1 − λdL − λdR√
g2M + 2λ2

(43)
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are annihilation operators associated with three orthogonal
polaritonic modes defined by the atomic oscillators and the
middle cavity, and they satisfy the commutation relations
[Fα,F

†
α′] = δαα′ for bosons. In addition, the coupling coef-

ficients ξ± are given by ξ+ =
√

g2M + 2λ2/
√

2 and ξ− =√
g2M/

√
2.

By Eq. (43), we see that the polaritonic mode F0 does
not couple to aR and aL, and hence F0 is isolated from the
continuous modes outside. The quantum cavity therefore refers
to the F0 mode in which energy can be confined. In particular,
the F0 mode is mainly photonic because F0 ≈ b1 in the χ � 1
limit.

The performance of the quantum cavity is limited by
various loss mechanisms. Here we examine the loss due to the
spontaneous emission of photons from atoms into noncavity
modes. Without loss of generality, a nonzero detuning δ ≡
ωc − ωA is included in the following discussion. Assuming
atoms experience a collective decay, the damping can be in-
troduced by adding an imaginary part to the atomic frequency.
Specifically, we make use of the linearized Hamiltonian and
replace ωA by ωA − iMγA/2, where γA is the single-atom
spontaneous decay rate (the factor M is due to the collective
spontaneous decay). Then by the Heisenberg equations of
motion one can obtain a close set of differential equations
for the expectation values of aμ,dμ, and b1:

i 〈ȧμ〉 = λ 〈b1〉 + g
√

M 〈dμ〉 +
(

ωc − i
γc

2

)
〈aμ〉 , (44)

i 〈ḃ1〉 = ωc 〈b1〉 + λ 〈aL〉 + λ 〈aR〉 , (45)

i 〈ḋμ〉 = g
√

M 〈aμ〉 +
(

ωc − δ − i
MγA

2

)
〈dμ〉 , (46)

where μ = L,R and the outside modes are assumed to be in
the vacuum state. Alternatively, one can obtain these equations
from the master equation with collective atomic damping
included.

We solve the eigenvalues of the linear system defined by
the right-hand side of Eqs. (44)– (46). The eigenvalue with
the smallest imaginary part (denoted as �) corresponds to the
trapped mode, and � is its decay rate. After some calculations,
we have

� ≈ M2γAg2 + δ2γc

M2g4 + δ2γ 2
c /4

λ2, (47)

if g � max(γA,γc,λ). We characterize the performance of the
quantum cavity by the scaled quality factor Q̃ ≡ γc/�, which
is the (dimensionless) photon storage time of the quantum
cavity in units of the free cavity decay time γ −1

c . A quantum
cavity with Q̃ � 1 means that its photon storage time is much
longer than that in the free cavity.

In Fig. 4, we illustrate the dependence of Q̃ as a function
of δ. At resonance δ = 0, Q̃ = χ2γc/γA is a maximum and it
can be much larger than 1 in the χ � 1 regime. In addition,
by the width of the peak at half maximum, the high-quality
factor can be maintained in a range of detunings when
|δ| < Mg

√
γA/γc.

Q~

γ /γ  = 0.01cA

γ /γ  = 0.02cA

FIG. 4. Scaled quality factor Q̃ = γc/� as a function of dimen-
sionless detuning δ/γc. The parameters are M = 2, N = 2, g/λ = 10,
γc/λ = 1.

V. CONCLUDING REMARKS

To conclude, we have obtained an analytic solution of a type
of BIC formed by photons and atoms in a coupled-cavity array.
These BICs originate from a destructive quantum interference
effect which prevents excitations from being coupled to outside
field modes, even though the energy lies in the continuous
spectrum of the whole system. In addition, we identify a
subradiance regime and a quantum-cavity regime in which
most excitations are, respectively, atomic and photonic.

We have also examined the triple-cavity configuration in
detail. In the subradiance regime we found that the dynamics
is governed by the Tavis-Cummings Hamiltonian, which
suggests that a mixture of nonradiating atomic states can
be generated as a steady state of the free-evolution problem.
In the quantum-cavity regime, our analysis of the linearized
system, which includes atomic damping, has indicated that
photons can be stored in the quantum cavity with a lifetime
significantly longer than γ −1

c . Such an efficient trapping of
multiple photons may be used to explore quantum effects of
photon-atom interactions and applications in the cavity QED
[59] and circuit QED [60].

Finally, we would like to add two remarks on experimental
aspects of our model. First, like many other BICs based on
parameter tuning [5], the existence of our BIC relies on the
control of certain parameters, for example, ωA = �q . If these
parameters are close but not exactly equal to the required
values, a BIC would couple to the outside world and therefore
has a finite lifetime (a leaky resonance). The dynamics can
be analyzed by time-dependent perturbation theory, where the
deviations of parameters are treated as a perturbation to the
Hamiltonian. For a sufficiently weak perturbation, the system
can still be trapped in the BIC with a time that can be long
enough to produce observable effects. In other words, one may
still study the BICs via leaky resonance in experiments without
operating at perfect parameters. We have demonstrated this
feature in Fig. 4, where the quantum cavity is able to store
photons with a time much longer than the free cavity lifetime
1/γc even though the detuning is of the same size as the free
cavity linewidth. Similarly, in the subradiance regime, the loss
rate γd due to a finite detuning can be significantly suppressed
in the χ 	 1 limit.

Second, we note that decoherence of atoms is one of the
main obstacles for experiments. For example, a spontaneous
decay of an atom due to interaction with noncavity modes
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and various dephasing mechanisms would kick the system out
of the BIC. In particular, the quantum correlation between
the two atomic ensembles, which keeps atoms from radiating,
would be degraded. Therefore λ and g should be significantly
larger than decoherence rates of the system so that effects of
BICs (such as Fig. 3) can be established and observed before

appreciable decoherence takes place. The recent parameters
achievable in circuit QED are promising, because λ and
g in the 10–100-MHz range can be much higher than
decoherence rates (about 10–50 KHz) [60]. In addition, the
Tavis-Cummings model and its quantized energy spectrum
have been demonstrated experimentally in circuit QED [56].
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[52] A lattice with inhomogeneous complex hopping strengths can be
a model of parity-time (PT) symmetric systems and some recent
studies have explored BICs in such PT symmetric systems. See,
for example, S. Longhi and G. D. Valle, Phys. Rev. A 89, 052132
(2014); S. Longhi, Opt. Lett. 39, 1697 (2014).
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