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One-dimensional photonic crystals bound by light
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Through rigorous simulations, the light scattering induced optical binding of one-dimensional (1D) dielectric
photonic crystals is studied. The optical forces corresponding to the pass band, band gap, and band edge are
qualitatively different. It is shown that light can induce self-organization of dielectric slabs into stable photonic
crystals, with its lower band edge coinciding with the incident light frequency. Incident light at normal and
oblique incidence and photonic crystals with parity-time symmetry are also considered.
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I. INTRODUCTION

Optical trapping—the localization and manipulation of
small particles by a carefully sculpted laser beam—has
become an invaluable tool in various scientific areas spanning
fundamental and applied sciences [1–7], wherever small
particles are involved. Ingenious ways were invented to shape
the laser beam to achieve novel functionalities. Nevertheless,
the simultaneous manipulation of a collection of particles in
proximity is still rather challenging: The particles scatter light,
thereby redistributing the spatial light intensity, which in turn
alters the optical force [8–10]. In other words, the optical forces
are not solely determined by the incident field, but also by the
distribution of the particles. Such mutual interaction is termed
“optical binding” [8] and has been investigated experimentally
[11–19] and theoretically [20–29].

This paper is devoted to the optical binding in one-
dimensional (1D) dielectric photonic crystals (PCs), which
consist of periodically arranged dielectric slabs in air. By
using the transfer matrix method [30], we calculated the elec-
tromagnetic fields within a 1D PC consisting of N dielectric
slabs, where N ranges from 20 to 1000 in our calculation. We
then calculated the time-averaged optical force using a surface
integral of the Maxwell stress tensor. We then searched for
equilibrium configurations of the PC by using molecular static
simulation [31]. Finally, we verified the stability of the PC in
equilibrium using the linear stability analysis.

We rigorously showed that a 1D PC consisting of alternating
dielectric and air layers can be stabilized by illuminating it with
a laser tuned to the lower band edge of the PC. The dynamical
matrix approach was also employed to verify the stability of a
PC with infinitely many unit cells. We considered a 1D PC at
normal or oblique incidence.

Last but not least, we studied a 1D PC with parity-time
(PT ) symmetry, where the dielectric constant now satisfies
ε(x) = ε∗(−x). The Hermiticity of an operator for a physically
observable quantity is a fundamental axiom in quantum
mechanics, which guarantees a real eigenvalues spectrum.
Bender et al. showed that a PT -symmetric Hamiltonian can
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also guarantee a real spectrum. It has been shown that an optical
system can also possess PT symmetry [32]. Here we showed
that when the PT symmetry is exact, the optical binding of a
1D PC could also organize itself into a stable PC.

II. RESULTS

A. Optical forces in a 1D dielectric PC

We consider an N-slab PC consisting of alternating di-
electric and air layers. Its unit cell is illustrated in Fig. 1(a).
The corresponding photonic band structure calculated by the
standard transfer matrix method [30] is plotted in Fig. 1(b),
where εdiel = 4 (dielectric constant of the dielectric), μdiel = 1
(permeability of the dielectric), ddiel = 80 nm (thickness of
the dielectric), and dair = 120 nm (thickness of air). The same
physics was observed when similar dielectric constants and
lattice constants were used.

Under laser illumination, light can exert optical forces
on the slabs. For the collection of parallel, infinitely large
dielectric slabs in air, the time-averaged optical force F
(hereafter referred to as the “optical force” for simplicity) is
given by

F =
6∑

i=1

∫
surface i

↔
T · da =

∫
surface 1

↔
T · da +

∫
surface 2

↔
T · da,

(1)

where a is the area of the surface, the surfaces 1–4 are depicted
in Fig. 1(a) by the yellow dotted lines, and the surfaces 5 and
6 are the top and bottom cover of the rectangle formed by
surfaces 1–4. The time-averaged Maxwell stress tensor in the
air (surfaces 1 and 2) [33] is given by

↔
T = 1

2
ε0

[
EE∗+c2BB∗−1

2
(E · E∗)

↔
I−c2

2
(B · B∗)

↔
I
]
, (2)

where E and B are the electric and magnetic fields, ε0 is the

permittivity of the free space, c is the light speed in vacuum,
↔
I

is the 3 × 3 identity matrix, and * denotes taking the complex
conjugate. By symmetry, the contributions from surfaces 3 and
4, and 5 and 6 (which are not shown) are canceled. For TE and
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FIG. 1. (a) Schematic showing a linearly polarized plane wave
with a modest intensity of 1.33 × 10−2 mW/μm2 normally incident
on a PC consisting of alternating layer of dielectrics and air. (b)
The photonic band structure for a PC with εdiel = 4, εair = 1, μdiel =
μair = 1, ddiel = 80 nm, and dair = 120 nm. Here q is the Bloch wave
vector and � = ddiel + dair. The photonic band gap is shaded in blue.

TM incidence, Eq. (1) can be simplified to

Fz

A
= 1

2
ε0(|A0|2 + |B0|2 − |C0|2 − |D0|2)cos2θ. (3)

Here Fz/A is the z component of optical force per unit area,
θ is the incident angle, |A0| and |B0| are the amplitudes of the
forward and backward electric field on the left side of the slab
(surface 1), and |C0| and |D0| are the corresponding quantities
on the right side (surface 2).

Figures 2 and 3 plot the optical forces acting on the
PC when it was illuminated at the four selected frequencies
marked by the arrows in Fig. 1(b) at normal incidence. When
illuminated at the pass band [Fig. 2(a)], the optical forces
oscillate along the length of the PC, due to the interference
between the forward and backward propagating waves. We
note that since the reflected waves for the PC with 20 and
40 slabs are different, their optical forces are also different.
However, the oscillatory character of the optical force is
generic for PCs illuminated at a frequency within the pass
band. It is noteworthy that the amplitude of oscillating force
vanishes when 2

√
εdielddiel = mλ (m = 1,2,3 · · ·), where λ is

the incident wavelength in air. This condition corresponds to
unit transmission for every slab and thus the force goes to zero.
The forces associated with an incident wavelength inside the
first band gap were plotted in Figs. 2(b) and 3(b). The field
attenuates rapidly as it propagates through the PC, so are the

FIG. 2. The optical forces acting on the individual slab at the four
representative frequencies marked in Fig. 1(b) by colored arrows.
Solid blue line: 20 slabs; dotted magenta line: 40 slabs. (a) Pass band
marked by the dashed-dotted orange arrow, (b) band gap marked by
the solid green arrow, (c) lower band edge marked by the dotted red
arrow, and (d) upper band edge marked by the dashed violet arrow.
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FIG. 3. The optical forces acting on an N = 1000 PC at the four
representative frequencies marked by arrows in Fig. 1(b). (a) Pass
band marked by the dashed-dotted orange arrow, (b) band gap marked
by the solid green arrow, (c) lower band edge marked by the dotted red
arrow, and (d) upper band edge marked by the dashed violet arrow.

forces. Figures 2(c) and 3(c) show the forces associated with
the lower band edges while Figs. 2(d) and 3(d) show the forces
associated with the upper band edges. The curves in Figs. 2(c)
and 2(d) appear to be linear, but for a larger PC, as shown in
Figs. 3(c) and 3(d), the linear relationship no longer holds.

B. Equilibrium configurations

As discussed in Sec. II A and depicted in Fig. 2, the force
acting on a PC is generally nonzero. We shall now explore the
possibility of binding and self-organizing a 1D PC using light
induced forces. We searched for equilibrium configurations
where the force acting on each slab is zero or equal using
molecular static simulations [31] by relaxing a periodic PC.
The former is known as static equilibrium (zero force), while
the latter is known as dynamical equilibrium (equal force)
where the entire structure will move with its shape being fixed.

The simulation results can be summarized as follows.
After relaxation, if an equilibrium configuration is found, the
slabs sometimes organize themselves into aperiodic structures
(especially for small N), sometimes a PC with a nearly
uniform separation between the slabs (for large N). Irrespective
of the incident wavelength, the equilibriums found (if any)
using molecular static are dynamic equilibrium configurations.
When the reflection of light is not zero, the total force acting on
the entire PC has to be greater than zero. Accordingly, dynamic
equilibrium is the only possibility, as static equilibrium must
have zero total force. Moreover, dynamical equilibrium with
more slabs will generally be associated with a smaller force
on each slab, as Fz/A ∼ 1/N for each slab (the values of
the force per unit area on each slab for dynamic equilibrium
with N = 50, 500, and 1000 are, respectively, 3.5 × 10−3,
3.6 × 10−4, and 1.8 × 10−4 in units of pN/μm2 at an incident
light intensity of 1.33 × 10−2 mW/μm2). The equilibrium
separations (lattice constants) between adjacent slabs were
plotted in Fig. 4. The lattice constant is generally uniform
except near the end of the PC. We also identified the
corresponding static equilibriums when the PC is illuminated
by a pair of identical counterpropagating plane waves, either
coherent or incoherent, as shown in Fig. 5. The lattice constants
are shown in Fig. 5(a) and 5(b) for coherent and incoherent
counterpropagating waves, which are highly uniform.

Figure 6 plotted the band structure for a PC before (solid
blue line) and after (dashed red line) relaxation. The initial
PC was being illuminated by a linear polarized plane wave
at the upper band edge of its first band gap. After relaxation,
the PC rearranged itself into another PC whose lower band
edge coincided with the incident light frequency. This same

FIG. 4. The separations (or lattice constants) between two adja-
cent slabs in stable PCs with 50 (solid blue line), 500 (dashed red
line), and 1000 (dotted black line) slabs bound by light.
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FIG. 5. The lattice constants of the PC illuminated by a pair of
identical counterpropagating plane waves, which can be coherent (a)
or incoherent (b).

phenomenon was observed in all simulations we performed. In
fact, in all of our simulations, if the equilibrium configuration
is a PC, one of its lower band edges always coincides with
the incident wavelength. The more the slabs, the less deviation
from the equilibrium configurations to the ideal PCs.

C. Stability analysis

We adopted the linear stability analysis from Ref. [21]
to investigate the stability of the optically bound PC. In

FIG. 6. Band structures of initial PC (solid blue line) and the
newly formed PC (dashed red line). Clearly, the lower band edge of
the final PC is aligned with the incident frequency.

FIG. 7. Natural vibration frequencies for infinite PCs calculated
by using the dynamical matrix approach, where the dynamical matrix
is approximated by those of finite-sized PCs with 50 (solid blue
line), 500 (dashed red line), and 1000 (dotted black line) slabs. The
good agreement fors different N indicates good convergence. The
frequencies are all positive, indicating stability.

short, their stabilities are dictated by the natural vibration
frequencies through the dependence in e−i�t , where � is
the natural vibration frequency. Depending on the nature of
the natural vibration frequencies, the vibrational modes of
an equilibrium configuration can be stable (real frequency),
unstable (imaginary frequency), neutral (zero frequency), qua-
sistable (complex frequency), or complex unstable (complex
frequency) [21]. All periodic equilibrium configurations we
found fulfill the condition that incident frequency matches one
of the lower band edges of the PC. Moreover, all of them are
stable in the sense that their natural vibration modes are real
numbers.

We then considered the stability of an infinite PC by
using the dynamical matrix approach which is outlined in the
Appendix [34]. The needed dynamical matrix was calculated
approximately by using the matrix formed by a finite PC with
50, 500, and 1000 slabs. The fact that the results for 50 (solid
blue line), 500 (dashed red line), and 1000 (dotted black line)
slabs agree excellently well with each other in Fig. 7 suggests
a good convergence of our results. As shown in Fig. 7, the
natural vibration frequencies are all real; it is clear that when a
PC is illuminated at the lower band edge, we can find a stable
equilibrium state even for an infinite PC. The existence of a
stable PC when illuminated at the lower band edge can be
understood heuristically [35]. The force is zero when both the
arrangement of the slabs and the field patterns are symmetrical,
which happens at the band edges only. In other frequencies, the
slab arrangement is still symmetrical, but not the fields, so the
force is not zero. At the lower band edge, the electromagnetic
energy is mainly localized in the dielectrics; since the gradient
force tends to drive dielectrics to the high-intensity region,
the equilibrium is expected to be stable. On the contrary,
for the upper band edge, even though it also corresponds to
an equilibrium, its electromagnetic energy is localized in air,
rendering it unstable.

D. One-dimensional PC with PT symmetry

Here, we consider a 1D PC system possessing PT
symmetry. A one-dimensional PT -symmetric PC is shown
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FIG. 8. (a) Schematic diagram showing a 1D PT -symmetric PC.
(b) Real part of the band structure for εG = 4 − ϒi, εL = 4 + ϒi,
εair = 1.0, μG = μL = μair = 1, dG = dL = 80 nm, dair = 120 nm,
and ϒ = 2.0. Here q is the Bloch wave vector, and the lattice constant
is � = dG + dL + 2dair. (c) Trajectories of the exceptional points of
M in (q,ϒ) space. The gray region stands for the PT exact phase,
and the white region for the PT broken phase. (d) The imaginary
part of the band structure for the same configuration in (b).

in Fig. 8(a) of which the real and imaginary parts of the band
structure are plotted in Figs. 8(b) and 8(d) where εG = 4 − ϒi,
εL = 4 + ϒi, εair = 1.0, dair = 120 nm (thickness of the air),
dG = dL = 80 nm (thickness of the dielectric with gain or
loss), and ϒ = 2.0. The points where two lines in the band
structure merge together are exceptional points [32,36–38]
beyond which the band structure develops an imaginary
component, corresponding to a broken PT symmetry. A
nonzero positive imaginary part in the frequency implies
the fields are unboundedly increasing with time (∝e−iωt =
e−iRe[ω]t eIm[ω]t , it diverges with increasing t). Accordingly, the
optical binding when thePT symmetry is broken will be more
complicated and is a time-dependent problem. We shall not
consider these situations here as they are not an equilibrium
configuration. The trajectories of the exceptional points of M
in the (q,ϒ) space is plotted in Fig. 8(c). The gray region
stands for the PT exact phase, while the white region stands
for the PT broken phase. One can see that for ϒ > 3.9, there
will be no PT exact phase for any q. For q and ϒ within
the PT exact phase region (shaded), the type of stable optical
binding of PC we described in previous sections of this paper
is possible.

Similar to a lossless PC, the lower band edge corresponds
to a stable configuration. If we fixed the incident wavelength,
Fig. 9(a) shows PCs with ϒ = 2,4,5 rearranged themselves
into PCs with different lattice constants. However, in all cases,
their lower band edges coincided with the incident wavelength
[Fig. 9(b)]. Alternatively, in addition to having equilibrium
configuration at the same wavelength, we can make the PCs
with ϒ = 2,4,5 to share the same lattice constants. For each
ϒ , we chose the incident wavelength to match the lower band
edge of the desired PC. The band structures of the PC after
relaxation are plotted in Fig. 9(c), and their lattice constants at
equilibriums are shown in Fig. 9(d), which are essentially the
same for different ϒ . Finally, the natural vibration frequencies
for the PT -symmetric PCs with 50, 500, and 1000 slabs
were calculated and all of them are real and positive. This
demonstrates that the equilibrium configurations are stable.

E. Oblique incidence

The lattice constants at equilibrium for 30°, 45°, 60°,
and 80° are, respectively, 131.1 nm, 144.8 nm, 162.4 nm, and
182.9 nm. Initially the lower band edges associated with
the four incident angles are at different frequencies; after
relaxation, the PCs rearranged themselves such that all their
lower band edges coincided with the incident wavelength. The
stability is also verified by linear stability analysis.

III. CONCLUSION AND DISCUSSION

In the past two decades, researchers have tried to build
large-scale optically bound “materials,” but so far the effort
has not been successful. Some believe the failure is due to
the limited experimental setup such as the availability of laser
power. Some suggests it is an intrinsic instability of the optical
bound structure [2,39]. We demonstrated the optical binding
of a stable periodic 1D structure, which is a photonic crystal
illuminated at one of its lower band edges. We have repeated
our calculations for PCs with different lattice constants and
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FIG. 9. (a) The separations between two adjacent slabs of the
newly formed PCs (N = 50) with ϒ = 2.0 (solid blue line), ϒ = 4.0
(dashed red line), and ϒ = 5.0 (dotted black line). The incident
frequency is 0.5625 (ω�/2πc). (b) Band structure of the newly
formed PCs with ϒ = 2.0 (solid blue line), ϒ = 4.0 (dashed red
line), or ϒ = 5.0 (dotted black line). It is clear that the lower band
edges of the newly formed PCs align with the incident frequency. (c)
Band structure of the newly formed PCs with ϒ = 2.0 (solid blue
line), ϒ = 4.0 (dashed red line), and ϒ = 5.0 (dotted black line). (d)
The separations (lattice constants) between two adjacent slabs.

dielectric constants, and observed the same phenomenon. It
appears to us that we can use our approach to build any PC with
a single slab per unit cell, as long as the initial configurations
are not too far away from it. For example, if we want to build
a PC with a certain period, we can illuminate the collection
of slabs with a laser with a frequency equal to that of the
lower band edge of that desired PC. The collection of slabs
will automatically relax to the appropriate positions.

By using the dynamical matrix approach, we showed a PC
consisting of an infinite number of slabs can be stably bounded.
Our detailed studies on optical force also allowed an additional
degree of freedom in fine-tuning devices consisting of slabs,
such as photonic crystals, superlattices, planar cavities, etc.
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APPENDIX

1. Dynamical matrix approach

We label the slabs with n and m; zn denotes the z component
of the equilibrium position of the nth slab and its displacement
away from the equilibrium position is denoted by un. The
optical force acting on slab m, Fm, which is a function of the
coordinates of all slabs, can be expanded in a Taylor series
about the equilibrium positions zn:

Fm(zn + un) = Fm(zn) +
∑
n,m

∂Fm

∂un

un + · · ·

= Fm(zn) +
∑
n,m

Fm
n un + · · · . (A1)

For a static equilibrium, the first term is zero, because, by
definition, there is no force at an equilibrium. For a dynamical
equilibrium, Fm is independent of m by definition. As it is near
the equilibrium, the linear term dominates. The higher terms
in the expansion can be ignored.

The quantity Fn
mum is thus the force exerted on slab n when

slab m is displaced away from the equilibrium position by a
distance um in the z direction.

2. Equation of motion

For the displacement un of slab n, Newton’s law gives

Mnün −
∑
m

Fn
mum = 0. (A2)

For periodic structures, it is appropriate to write the
displacement un in terms of a plane wave with respect to the
slab coordinates according to the Bloch theorem:

un = 1√
Mn

u(qz)e
i(qzzn−ωt). (A3)

Here, qz denotes the z component of the Bloch wave vector.
Submitting this form into Eq. (A2) we can obtain an equation
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for the amplitude u:

ω2u(qz) +
∑
m

1√
MnMm

Fn
meiqz(zm−zn)u(qz) = 0. (A4)

Let

Dn
m(qz) = − 1√

MnMm

Fn
meiqz(zm−zn). (A5)

Here, Dn
m(qz) is the component of the dynamical matrix

↔
D(qz). A system of linear homogeneous equations only has
solutions (eigensolutions) when the following determinant

vanishes:

Det{
↔
D(qz) − ω2

↔
I} = 0. (A6)

Here
↔
I is the identity matrix.

The dynamical matrix needed is approximated by using the
matrix formed by a finite PC with 50, 500, and 1000 slabs,
and the resultant natural vibration frequencies are plotted in
Fig. 6. The fact that the results for 50, 500, and 1000 slabs
possess excellent agreement with each other indicates the
convergence of our results. As the natural vibration frequencies
are all positive, it is clear that even for an infinite PC,
at the lower band edge, we can find a stable equilibrium
state.
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