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Experimental demonstration of negative-valued polarization quasiprobability distribution
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Polarization quasiprobability distribution defined in the Stokes space shares many important properties with
the Wigner function for position and momentum. Most notably, they both give correct one-dimensional marginal
probability distributions and therefore represent the natural choice for the probability distributions in classical
hidden-variable models. In this context, negativity of the Wigner function is considered as proof of nonclassicality
for a quantum state. On the contrary, the polarization quasiprobability distribution demonstrates negativity for all
quantum states. This feature comes from the discrete nature of Stokes variables; however, it was not observed in
previous experiments, because they were performed with photon-number averaging detectors. Here we reconstruct
the polarization quasiprobability distribution of a coherent state with photon-number resolving detectors, which
allows us to directly observe for the first time its negativity. Furthermore we derive a theoretical polarization
quasiprobability distribution for any linearly polarized quantum state.
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I. INTRODUCTION

Noncommuting observables do not exist in classical
physics, but arise in quantum mechanics and optics. They
lead to difficulties in attempts to describe quantum states in
a semiclassical way, because it is impossible to define a joint
probability distribution for such observables. As a remedy,
quasiprobability distributions have been proposed, which can
take negative values and therefore violate one of the main
axioms of probability theory.

The most well-known example of noncommuting observ-
ables is the canonical pair of position and momentum, and
the most remarkable corresponding joint quasiprobability
distribution is the Wigner distribution [1]. Its major distinctive
feature is that, in contrast to, e.g., the Glauber-Sudarshan
P representation [2,3] or the Husimi-Kano Q representation
[4,5], it gives correct marginal distributions for position and
momentum [6]. Therefore, it represents the natural choice
for the probability distributions in classical hidden-variable
models. Because of this property, it is widely accepted that the
negativity of a Wigner distribution means the nonclassicality
of the quantum state [6–11].

Mathematical objects with properties similar to those of the
Wigner function have been defined for many different systems
and observables due to its unique features. In particular, it
was done for discrete-valued position and momentum [12],
for the Hermite-Gaussian and Laguerre-Gaussian modes of an
optical beam [13], and for the canonical pair of the angle and
the angular momentum of vortex states [14].

The analog of the Wigner distribution for the three
noncommuting Stokes observables [see Eqs. (3)]—the polar-
ization quasiprobability distribution (PQPD)—was developed
in Refs. [15,16]. Although PQPD represents only part of
the density matrix, the so-called polarization sector [17–
20], it remains a powerful tool. PQPD fully describes the
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polarization properties of a quantum state and gives correct
one-dimensional marginal probability distributions for all
Stokes observables and their linear combinations.

Note also that the Wigner function quantum tomography
requires an additional beam phase-locked with the light under
study. It could be either the local oscillator beam in the standard
implementations, or an additional coherent beam in the method
which involves displacement of the state under investigation
and then measurement of the photon number parity [21,22],
or a coherent beam in another polarization, see [11], Sec. V.
At the same time, polarization tomography does not require
it. This is a great advantage in experiments, especially in the
experiments with broadband light [23].

Because Stokes observables commute with the photon-
number operator, PQPD for a quantum state can be described as
a sum of PQPDs for photon-number (Fock) states with certain
weights. Therefore, in principle, each subspace with a fixed
photon number can be represented separately. This property
of PQPD was used to find extremal quantum states [19] or
to investigate polarization squeezing in each photon-number
subspace [20].

An unusual feature of PQPD is that it takes negative
values for all quantum states of light, even for the “most
classical” coherent ones. The physical origin of this behavior
was explored theoretically in Ref. [11]. The negativity appears
because the Stokes observables are discrete valued, that is,
their single-dimensional marginal distributions are defined
only for the integer values of the arguments. On the other
hand, the full PQPD as well as its two-dimensional marginal
distributions could possess symmetry features impossible for
the discrete argument functions. Their negativity resolves
this contradiction. At the same time, this feature was never
observed in polarization tomography experiments [15,23–26],
because all these experiments were performed with photon-
number averaging detectors, which smoothed the measured
photon-number statistics and washed out the nonclassical
features of PQPD.
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Thus, photon-number resolving detection is crucial for
observing the intrinsic negativity of PQPD. This is a non-
Gaussian operation, and it can be used to prepare states
with a negative Wigner function [27,28]. At the same time,
PQPD is defined in terms of Stokes observables and therefore
photon-number resolving detection is an essential part of
its measurement. In other words, negativity is not just an
(inconvenient) mathematical feature of PQPD but has a deep
physical meaning.

In this work, we have performed polarization tomography
for a coherent state of light using single-photon detectors.
To this end, we have developed a procedure for the high-
quality reconstruction of the PQPD using a limited data set.
The reconstructed distribution demonstrates well-pronounced
negative-valued areas.

Moreover, we have derived the PQPD for any linearly
polarized quantum state. Being in general quite complicated,
the PQPD expression can be drastically simplified for many
important quantum states.

II. STOKES OBSERVABLES AND PQPD

A quantum state of light can be fully described by its
density operator ρ̂. For states with two polarization modes
the PQPD W (S1,S2,S3) is defined as the Fourier transform of
the polarization characteristic function χ (u1,u2,u3),

W (S1,S2,S3) =
∫ ∞

−∞
χ (u1,u2,u3)

× exp

⎛
⎝−i

3∑
j=1

ujSj

⎞
⎠du1 du2 du3

(2π )3
, (1)

where

χ (u1,u2,u3) = Tr

⎡
⎣ρ̂ exp

⎛
⎝i

3∑
j=1

uj Ŝj

⎞
⎠

⎤
⎦, (2)

uj ∈ R. The Stokes operators Ŝj are defined as

Ŝ1 = n̂H − n̂V , Ŝ2 = â
†
V âH + â

†
H âV ,

Ŝ3 = i(â†
V âH − â

†
H âV ), (3)

where âH and âV are the photon annihilation operators for the
horizontal (H) and vertical (V) polarization modes, and n̂H,V =
â
†
H,V âH,V are photon-number operators in these modes. All

Stokes operators can be represented as the differences of
photon-number operators in certain modes, therefore the
corresponding Stokes observables, e.g., S1, can only take
integer values n ∈ Z.

III. PQPD RECONSTRUCTION

A standard setup for polarization tomography (see Fig. 1)
consists of quarter- and a half-wave plates (λ/4 and λ/2),
a polarizing beam splitter, and two detectors (D1 and D2).
For each pair of settings of the quarter-wave (β̃) and half-
wave (α̃) plates, such a setup measures a different arbitrary
Stokes operator Ŝαβ = n̂1 − n̂2. The operators n̂1,2 correspond
to the photon numbers in the mode transmitted or reflected by

FIG. 1. Left: experimental setup. A weak coherent state is
prepared by attenuating the second harmonic of a Nd:YAG laser
(Nd:YAG 2ω) with neutral density filters (NDF). A standard setup
for polarization tomography consists of a quarter- and a half-wave
plate (λ/4 and λ/2), a polarizing beam splitter, and two detectors
(D1 and D2). We use a Glan-Taylor prism (GP) as a polarizing beam
splitter and two avalanche photodiodes as detectors. Right: points at
which tomographic measurements are performed are shown on the
Poincaré sphere.

the polarizing beam splitter and are measured by D1 or D2,
respectively.

The angles α ∈ [0,2π ] and β ∈ [−π/2,π/2] that define a
point on the Poincaré sphere (see Fig. 1) are determined by the
settings of the wave plates,

α = 4α̃ − 2β̃, β = 2β̃. (4)

An arbitrary Stokes operator Ŝαβ can be represented in
Cartesian coordinates (Ŝ1,Ŝ2,Ŝ3) as

Ŝαβ = (Ŝ1 cos α + Ŝ2 sin α) cos β + Ŝ3 sin β. (5)

It is clear that this operator possesses inversion symmetry
Ŝ(α+π)(−β) = −Ŝαβ , thus measurements only on half of the
Poincaré sphere suffice for the full reconstruction of any state.

In the experiment, for each point on the Poincaré sphere (for
each α and β), acquisition of many Sαβ values is needed. From
these values we calculate the probabilities Wαβ(n) that Sαβ are
equal to n. From these probabilities we restore the polarization
characteristic function χαβ(λ) in spherical coordinates (λ,α,β)
[11]:

χαβ(λ) =
∞∑

n=−∞
Wαβ(n)eiλn, λ ∈ [0,∞). (6)

These spherical coordinates (λ,α,β) are related to the Carte-
sian ones (u1,u2,u3) by the following transformations:

u1 = λ cos α cos β, u2 = λ sin α cos β, u3 = λ sin β.

(7)

Thus, using these transformations, Eq. (1) can be rewritten as

W (S1,S2,S3) = − 1

(2π )2

∫ 2π

0
dα

∫ π/2

0
dβ cos β

×
∞∑

n=−∞
Wαβ(n)δ(2)(Sαβ − n), (8)

where δ(2)(x) is the second derivative of the Dirac delta
function. Here we exploit the symmetry of Ŝαβ and perform
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integration over the radial coordinate λ. As a result, we obtain
the equation for reconstructing the PQPD W (S1,S2,S3) from
the experimentally measured probabilities Wαβ(n).

The reconstruction of PQPD Wε(S1,S2,S3) from the exper-
imentally acquired data set [Eq. (8)] requires some approxi-
mation δε(x) for the Dirac delta function δ(x). Here ε is the
smoothing parameter. We choose the Gaussian approximation,

δε(x) = 1

2ε
√

π
e−x2/4ε2

, (9)

and similarly for the derivatives of δ(x). The value of the
smoothing parameter ε should be chosen properly depending
on the reconstructed state, the acquired data set, and the
interpolation method (see below). On the one hand, it has
to be small enough to represent all features of the PQPD (a
large ε masks them), but on the other hand, small values of ε

lead to a lot of artifacts in the reconstructed distribution (the
so-called reconstruction noise).

IV. EXPERIMENT AND DATA PROCESSING

We have performed the polarization tomography of a
horizontally polarized weak coherent state |γ 〉. This state
was produced by strongly attenuating a coherent beam at
the wavelength 532 nm generated by a pulsed Nd:YAG laser
(Nd:YAG 2ω) with 10-ns pulse duration and 10-kHz repetition
rate (see Fig. 1). The laser power stability was about 2%.

Attenuation (or any other linear losses) does not change
the statistical properties of a coherent state: the state remains
coherent, but the mean number of photons |γ |2 is reduced.

The attenuation to a single-photon level was performed by
a neutral density filter (NDF). The resulting probability of a
single-photon detection event p1 ≈ |γ |2 was equal to 0.189.
In this case, p1 was at least one order of magnitude higher
than the probabilities of two-photon and higher-order detection
events. Therefore we ignored such events and considered
only single-photon and no-photon detection events (with the
probability p0).

We used avalanche photodiodes as single-photon detectors
(D1 and D2). The photodiodes were gated electronically syn-
chronously with the laser pulses. The gating led to considerable
reduction of dark count rate of the detectors, so the latter was
only 0.1% from the total mean count rate. Nevertheless it was
subtracted from the measured count rate. The data for each
tomographic measurement were acquired for 120 s.

The points (αk,βl) on the Poincaré sphere where to-
mographic measurements were performed cover the upper
hemisphere (β � 0) with a step of 8◦ (see Fig. 1). These
points have been accessed by different combinations of the
settings for the quarter- and half-wave plates with the steps
equal to 4◦ and 2◦, respectively (and for β̃ = 45◦, the “north”
pole of the Poincaré sphere was accessed). For each point from
this discrete set we calculated the experimental probabilities
W̃αkβl

(n), where n = {−1,0,1}.
The full experimental data set W̃αkβl

(n) is not suitable for the
final integration over α and β in Eq. (8), because it is defined
on a discrete set {αk,βl}. Thus it should be interpolated by a
continuous function. The interpolated function Wαβ(n) is given
by the convolution sum of the data points W̃αkβl

(n) with the

interpolation kernel u(α,β),

Wαβ(n) =
∑
αk,βl

W̃αkβl
(n)u(α − αk,β − βl). (10)

Various interpolation kernels can be used. The simplest one is
a rectangular function u(α,β) = �(α)�(β), where

�(x) =
{

1, |x| < 1/2,

0, |x| � 1/2.
(11)

The integration of such an interpolated function (e.g., as part
of the Fourier or Radon transform) gives exactly the same result
as when the integration is replaced by the summation. Such a
replacement was always used for reconstruction in polarization
tomography [23–26]. Unfortunately, with this interpolation,
the transformations are accompanied by rather high noise. One
can overcome this problem by collecting more experimental
points (αk,βl) or by using different interpolation kernels. In-
terpolation methods are well-developed for image resampling
[29,30]. It has been shown that several interpolation kernels
could suppress the reconstruction noise by more than 30 dB
better than the rectangular-function kernel.

In our case, the probabilities Wαβ(n) could not be negative;
hence we needed a strictly positive kernel. We chose a positive
cubic spline kernel u(α,β) = u(α)u(β) [29], where

u(x) =
{

2|x|3 − 3|x|2 + 1, |x| � 1,

0, |x| > 1.
(12)

This kernel suppresses the noise very well and is at the same
time quite simple. For each interval between the data points,
e.g., [xk,xk+1], the interpolation requires only the experimental
data from the endpoints of the interval (xk and xk+1). Hence
this kernel has the same simplicity as the linear interpolation
kernel, but a better performance.

V. RESULTS

Using this interpolation and the approximation (9) with
ε = 0.02, we have reconstructed the PQPD Wε(S1,S2,S3). Its
cross sections along the (S2,S3) plane at different values of
S1 and the one-dimensional (1D) cut along S2 (S1 = 0 and
S3 = 0) are shown in Fig. 2.

In general, each distribution contains a central peak at the
origin of the Stokes space (S ≡

√
(S1)2 + (S2)2 + (S3)2 = 0)

and a jump from negative values to positive ones at S = 1.
The central peak, which appears because of the no-photon
detection events, is more than two orders of magnitude higher
than the jump, which happens because of the single-photon
ones. At values S > 1 there is only the reconstruction noise
[Fig. 2(g)].

The reconstructed distribution Wε(S1,S2,S3) is in agree-
ment with the theoretical one for our case (see the Appendix
for derivation of the full theoretical distribution):

W (S,θ,φ) = p0δ3(S) + p1 cos θ

4πS2
δ(S − 1)

− p1(1 + cos θ )

4πS
δ′(S − 1), (13)

where δ3(S) = δ(S1)δ(S2)δ(S3), δ′(x) is the first derivative of
the Dirac delta function. Here we use spherical coordinates
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FIG. 2. Cross sections of the reconstructed PQPD Wε(S1,S2,S3)
(with ε = 0.02) along the (S2,S3) plane at S1 = 1 (a), S1 = 0.5 (b),
S1 = 0 (c,d), S1 = −0.5 (e), S1 = −1 (f), and S1 = −1.5 (g). In panel
(d), the color code is changed to highlight the jump at S = 1. Panel
(h) presents the 1D cut of the reconstructed PQPD along S2 (S1 = 0
and S3 = 0).

(S,θ,φ):

S1 = S cos θ, S2 = S sin θ cos φ, S3 = S sin θ sin φ.

(14)

From these formulas we calculated the theoretical PQPD
Wε(S1,S2,S3) for the same probabilities of single-photon
(p1 = 0.189) and no-photon detection events (p0 = 0.811) as
in the experimental case. We used the same approximation
(9) and the same value of the smoothing parameter ε = 0.02.
The same cross sections are shown for both distributions
(Fig. 3). The experimental and theoretical distributions are
almost indistinguishable. The only differences are caused by
the reconstruction noise [Fig. 2(g)] and imperfections of the
half- and quarter-wave plates [Fig. 2(f)]. We want to stress
here that the plotted theoretical PQPD is not a simulation of
any kind, it is just a smoothed exact distribution [Eq. (13)].

FIG. 3. Same as Fig. 2, but for the theoretical PQPD Wε(S1,S2,S3)
smoothed by ε = 0.02.

It is clear that the distribution Wε(S1,S2,S3) possesses a
rotation symmetry in the plane (S2,S3). Thus it is convenient to
use cylindrical coordinates (S1,S23,φ), with the radial coordi-
nate S23 ≡

√
(S2)2 + (S3)2 = S sin θ , instead of the Cartesian

ones (S1,S2,S3). Due to this symmetry, up to experimental
imperfections a cross section at some angle φ (e.g., φ = 0)
demonstrates all features of the PQPD (Fig. 4).

Our experimental reconstruction shows that in realistic
cases we are interested only in the main δ′ contributions of
Eq. (A24). Moreover in most cases p0 is much higher than pn

for n � 2, therefore [see Eqs. (A9) and (A26)]

W (S,θ,φ) ≈ p0δ3(S) − 1

2πS

∞∑
n=1

pn

2n

n∑
k=0

(
n

k

)

×

 n−1

2 �∑
ñ=0

Bn
kñδ

′(S − n + 2ñ) cosk θ, (15)

where Bn
kñ is a constant value defined in Eq. (A25).
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FIG. 4. Cross sections of the experimental (left) and theoretical
(right) PQPD Wε(S1,S23,φ) (with ε = 0.02) at φ = 0. In all figures,
the color code is changed to highlight the jump at S = 1.

From Eq. (15) it is evident that an n-photon state gives a
contribution not only around S ≈ n, but also around S ≈ n −
2ñ, 0 � ñ � 
(n − 1)/2�. This has a simple physical meaning:
n photons split by a beam splitter into (n − ñ) and ñ photons
give Sαβ = n − 2ñ.

This property provides a possibility to infer probability
pn by comparing the experimental and theoretical PQPDs
in an experimental setup that does not allow measuring
Sαβ = n. In the case of significant pn the experimental
PQPD will have a contribution proportional to a noticeable
cosn θ factor around S ≈ n − 2ñ, ∀ ñ � 1, which cannot be
produced by contributions from the lower photon-number
probabilities pn−2ñ.

Furthermore Eq. (15) can be even more simplified in the
case of strongly decaying photon-number distribution, e.g., for
coherent or thermal light with low mean number of photons,
pn  pn+j ,{∀ n � 0,j � 2}:

W (S,θ,φ) ≈ p0δ3(S) − 1

2πS

∞∑
n=1

pnδ
′(S − n) cos2n(θ/2).

(16)

In such form it looks simple and extremely convenient for the
comparison with experimental results.

VI. CONCLUSION

We have shown experimentally the full reconstruction of
the PQPD from measurements using photon-number resolving
detectors. As a result we observed the intrinsic negativity
of PQPD originating from the discrete nature of the Stokes
observables. For our reconstruction we have elaborated a
procedure that leads to a high-quality PQPD from a relatively
small data set. Finally, we derived the theoretical PQPD
distribution that is valid for any linearly polarized state, which
is especially interesting for states with low photon numbers.

The PQPD reconstruction with photon-number resolving
detectors is very promising because these detectors can resolve
up to tens of photons with more than 90% quantum efficiency
[31–35]. These detectors can advance polarization tomography

in this direction and make it a useful tool for quantum state
characterization.
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APPENDIX: CALCULATION OF THE
THEORETICAL PQPD

To describe the reconstructed PQPD W (S1,S2,S3) we
calculate the theoretical distribution. In the general case of
linearly (horizontally) polarized state the density operator is

ρ̂ =
∞∑

n=0

pn|n〉〈n|H ⊗ |0〉〈0|V . (A1)

Similar to the case of the experimental data processing,
the starting point is the definition of the PQPD and the
polarization characteristic function [Eqs. (1) and (2)]. The
derivation of the theoretical distribution requires the use of
spherical coordinates (λ,ξ,ρ) that differ from (λ,α,β) used in
the experimental data processing:

u1 = λ cos ξ, u2 = λ sin ξ cos ρ, u3 = λ sin ξ sin ρ.

(A2)

The polarization characteristic function for the density
operator (A1) is equal to [11]

χξρ(λ) =
∞∑

n=0

pn(cos λ + i sin λ cos ξ )n. (A3)

We expand the binomial and replace the sine and cosine by
exponentials:

χξρ(λ) =
∞∑

n=0

pn

2n

n∑
k=0

(
n

k

) n−k∑
l=0

k∑
m=0

(
n − k

l

)(
k

m

)

× (−1)m(cos ξ )keiλr , (A4)

where r = n − 2l − 2m and ( n

k
) is a binomial coefficient.

In contrast to previous works, e.g., Ref. [16], here we use
the characteristic function without an approximation of large
n. Therefore the obtained PQPD will be valid for any n.

For the future integration of Eq. (A4) in Eq. (1) we specify
three different groups of summation terms. In the first one
r = 0 and k = 0, in the second one r = 0 and k > 0, and in
the third one r �= 0. We denote the corresponding parts of
PQPD as W0, W̄0, and W̄ . So

W (S1,S2,S3) = W0 + W̄0 + W̄ . (A5)

As numerical calculations show, W0 is a trivial δ contribution
around S = 0, W̄0 is nontrivial around S = 0, and W̄ is the
main (most interesting) contribution for S > 0.
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The first group can be directly integrated in Eq. (1):

W0(S1,S2,S3) =
∞∑

f =0

p2f

22f

(
2f

f

)
δ(S1)δ(S2)δ(S3). (A6)

For the second contribution we obtain

W̄0(S1,S2,S3) =
∞∑

f =0

p2f

22f

f∑
g=1

(
2f

2g

) min(2g,f )∑
m =

max(0,2g − f )

×
(

2f − 2g

f − m

)(
2g

m

)
(−1)mI

k=2g

r=0 , (A7)

where

I k
r =

∫ ∞

−∞
(cos ξ )keiλr exp

⎛
⎝−i

3∑
j=1

ujSj

⎞
⎠du1 du2 du3

(2π )3
.

(A8)

Here we removed combinations that give zero contribution.
Only terms with even n and k give nonzero contribution around
S = 0.

Unfortunately, the integral I
k=2g

r=0 cannot be expressed in
any simple analytical form. However, in the cases relevant
to polarization tomography with photon-number resolving
detectors, this fact does not play a significant role. First, the
most interesting is the behavior of PQPD at S > 0. Second, in
these cases quantum states have large probability of no-photon
detection events (p0) that is much bigger than probabilities of
two-photon and higher-order detection events (pn for n � 2).
Therefore, the first group of summation terms [Eq. (A6)] can
be simplified and the second group does not play a significant
role. Thus we obtain for the contributions around S = 0

W0(S,θ,φ) + W̄0(S,θ,φ) ≈ p0δ3(S). (A9)

The other terms in Eq. (A4) form the main contribution

W̄ (S1,S2,S3) =
∞∑

n=1

pn

2n

n∑
k=0

(
n

k

)∑
lm

, (A10)

where

∑
lm

=
n−k∑
l=0

k∑
m=0

(
n − k

l

)(
k

m

)
(−1)mIk

r �=0. (A11)

We can perform integration over λ in Eq. (A8) by recom-
bining the summation members in Eq. (A11) and using the

Leibnitz integral rule. So we obtain

∑
lm

=
n−k∑
l=0

k∑
m=0

(−1)m+1

2(2π )2

(
n − k

l

)(
k

m

)
∂2Iξ

(∂y)2

∣∣∣∣
y=r �=0

,

(A12)

where

Iξ =
∫ π

0
dξ

(cos ξ )k

S sin θ
Iρ̄, (A13)

Iρ̄ =
∫ 2π

0
dρ̄ δ(P − cos ρ̄), (A14)

and

P = y − S cos ξ cos θ

S sin ξ sin θ
. (A15)

At first we perform integration over ρ̄ in Eq. (A14),

Iρ̄ = 2√
1 − P 2

�

(
P

2

)
. (A16)

If S < |y| then P > 1 regardless of ξ and θ , thus Iρ̄ = 0
and Iξ = 0. If S > |y| then Iρ̄ �= 0 only if |P | < 1. The last
condition restricts the limits of integration in Iξ .

Using this result Eq. (A13) can be rewritten as

Iξ = H (S − |y|)
∫ z̄

−z̄

(
z + y cos θ

S

)k 2dz

S
√

z̄2 − z2
, (A17)

where z = cos ξ − y cos θ/S, z̄ = sin θ
√

1 − (y/S)2, and

H (x) =
{

0, x � 0,

1, x > 0 (A18)

is the Heaviside step function. We expand the binomial and
perform integration over z,

Iξ = 2π

S


k/2�∑
t=0

(
k

2t

)
(2t)!

(2t t!)2
(sin θ )2t (cos θ )k−2tF (y), (A19)

where

F (y) = H (S − |y|)
(

1 − y2

S2

)t(y

S

)k−2t

. (A20)

Again from the summation we remove the terms that give zero
contribution.

To take the second derivative in Eq. (A12) we open the
brackets in Eq. (A20) and obtain

∂2F (y)

(∂y)2
= [sgn(r)]k

k−2t∑
v1=0

t∑
v2=0

(
k − 2t

v1

)(
t

v2

)
(−1)v̄

2t−v2

Sv̄+t

d2

(dȳ)2
[(ȳ)v̄+tH (ȳ)], (A21)

where v̄ = v1 + v2, sgn(x) is the sign function and ȳ = S − |y|.
Therefore, using the fact that

d2

(dx)2
[xjH (x)] =

⎧⎨
⎩

δ′(x), j = 0,

δ(x), j = 1,

j (j − 1)xj−2H (x), j � 2,

(A22)
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we obtain an expression for
∑

lm:

∑
lm

= − ( sgn(r))k

4πS

n−k∑
l=0

k∑
m=0

(−1)m
(

n − k

l

)(
k

m

)[(
δ′(ȳ) − k[2 − (k − 1) tan2 θ ]

δ(ȳ)

2S

)
cosk θ

+

k/2�∑
t=0

k−2t∑
v1=0

t∑
v2=0

(
k

2t

)(
2t

t

)(
k − 2t

v1

)(
t

v2

)
(−1)v̄

2t+v2
(sin θ )2t (cos θ )k−2t (v̄ + t)(v̄ + t − 1)

(
ȳ

S

)v̄+t−2
H (ȳ)

S2

]∣∣∣∣
ȳ=S−|r|, r �=0

.

(A23)

It is convenient to rewrite Eq. (A23) using summation over ñ = l + m. In this case Eq. (A10) in spherical coordinates (S,θ,φ)
becomes

W̄ (S,θ,φ) = − 1

2πS

∞∑
n=1

pn

2n

n∑
k=0

(
n

k

) 
 n−1
2 �∑

ñ=0

Bn
kñ

[(
δ′(Sñ) − k[2 − (k − 1) tan2 θ ]

δ(Sñ)

2S

)
cosk θ

+

k/2�∑
t=0

k−2t∑
v1=0

t∑
v2=0

(
k

2t

)(
2t

t

)(
k − 2t

v1

)(
t

v2

)
(−1)v̄

2t+v2
(sin θ )2t (cos θ )k−2t (v̄ + t)(v̄ + t − 1)

(
Sñ

S

)v̄+t−2
H (Sñ)

S2

]
,

(A24)

where Sñ = S − (n − 2ñ) and

Bn
kñ =

min(k,ñ)∑
m =

max(0,k + ñ − n)

(
n − k

ñ − m

)(
k

m

)
(−1)m (A25)

is a constant value that depends on n, k, and ñ.
If we are interested only in the main δ′ contributions, W̄ (S,θ,φ) can be simplified

W̄ (S,θ,φ) ≈ − 1

2πS

∞∑
n=1

pn

2n

n∑
k=0

(
n

k

) 
 n−1
2 �∑

ñ=0

Bn
kñδ

′(Sñ) cosk θ. (A26)

Finally, the full PQPD W (S,θ,φ) under approximation p0  pn, n � 2, is obtained by combining Eqs. (A9) and (A24) [or
(A26) for δ′ contributions only]. Note that for our experimental case (single-photon and no-photon detection events) the full
PQPD is obtained rigorously without any approximations.
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