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Spatial instabilities of light bullets in passively-mode-locked lasers
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Recently, the existence of robust three-dimensional light bullets (LBs) was predicted theoretically in the output
of a laser coupled to a distant saturable absorber. In this paper, we analyze the stability and the range of existence
of these dissipative localized structures and provide guidelines and realistic parameter sets for their experimental
observation. In order to reduce the complexity of the analysis, we first approximate the three-dimensional
problem by a reduced equation governing the dynamics of the transverse profile. This effective theory provides
an intuitive picture of the LB formation mechanism. Moreover, it allows us to perform a detailed multiparameter
bifurcation study and to identify the different mechanisms of instability. It is found that the LBs experience
dominantly either homogeneous oscillation or symmetry-breaking transversal wave radiation. In addition, our
analysis reveals several nonintuitive scaling behaviors as functions of the linewidth enhancement factors and the
saturation parameters. Our results are confirmed by direct numerical simulations of the full system.
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I. INTRODUCTION

Light bullets (LBs) consist of pulses of light that are
simultaneously confined in the transverse and propagation
directions. In the context of dissipative systems, LBs can be
considered localized states (LSs) and are thus attractors of the
dynamics. These hypothetical objects have attracted a lot of
interest in the last 20 years for both fundamental and practical
reasons. In practice, LBs should be addressable; that is, they
should be individually turned on and off, and one can envision
that they would circulate indefinitely within an optical cavity
as elementary bits of information.

Traditionally, the optical confinement scenario that would
lead to LBs is envisioned through conservative mechanisms
in which a self-focusing nonlinearity compensates for the
spreading effect of chromatic dispersion and/or diffraction.
Seminal works demonstrated, however, that if the number of
spatial dimensions is too large (d⊥ � 2), LBs are unstable
and collapse [1], which is a result discovered earlier in the
field of plasma physics [2]. Other confinement mechanisms
were envisioned in forced dissipative system, and LBs were
predicted in optical parametric oscillators [3] and bistable
cavities [4–6] with instantaneous nonlinearities.

Recently, a regime of temporal localization was predicted
and experimentally demonstrated in a semiconductor passively
mode-locked laser [7]. Passive mode locking (PML) is a
well-known method for achieving short optical pulses [8].
It is achieved by combining two elements, a laser amplifier
providing gain and a nonlinear loss element, usually a saturable
absorber. For proper parameters, this combination leads to
the emission of temporal pulses much shorter than the cavity
round-trip τ . It was shown in [7] that, if operated in the
long-cavity regime, the PML pulses become individually
addressable temporal LSs coexisting with the off solution. In
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this long-cavity regime, the round-trip time τ is made much
longer than the semiconductor gain recovery time τg ∼ 1 ns,
which is the slowest variable. Interestingly, this temporal
localization regime was found to be compatible with an
additional spatial confinement mechanism, which led to the
theoretical prediction of a regime of stable three-dimensional
LBs [9].

While preliminary results based upon direct numerical
integration allowed finding some basic estimates of the
stability range for a generic parameter set, a full bifurcation
study of the system described in [9] is still lacking. However,
a multiparameter analysis considering the various design
factors of a passively mode-locked laser system would be
of high relevance, particularly to experimental groups, as it
would inform upon the proper parameter ranges in which
an experimental realization may take place. In particular,
assessing not only the range of existence of the LBs but also
their destabilization mechanisms is of paramount importance.
However, the LBs presented in [9] are particularly stiff
multiple-time-scale objects in which the optical pulse is
followed by a material “trail” that differs in extension by
three orders of magnitude. This stiffness, which occurs in the
temporal domain or, equivalently, along the propagation axis,
is exacerbated by the presence of the transverse dimensions
that make a bifurcation analysis of two- and three-dimensional
LBs a challenging problem.

We perform the analysis in this paper in two steps. First,
we approximate the solutions of the three-dimensional (3D)
problem by the product of a slowly evolving transverse profile
and a short pulse propagating inside the cavity. This allows
us to obtain a reduced model governing the dynamics of
the transverse profile. This effective theory allows us to
consider the LBs as if they were static diffractive spatial
autosolitons, similar to those in [10]. We show that the
transverse profile is governed by an effective Rosanov equation
which allows for a detailed multiparameter bifurcation study
and also allows us to identify the different mechanisms of
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instability. For that purpose, we employ the continuation and
bifurcation package PDE2PATH [11]. It is found that the light
bullets experience dominantly either homogeneous oscillation
or symmetry-breaking lateral wave radiation. In addition,
our analysis reveals several nonintuitive scaling behaviors
as a function of the linewidth enhancement factors and the
saturation parameter. In the second stage, our predictions are
confirmed by extensive direct numerical simulations of the
spatiotemporal dynamics of the full system.

II. MODEL

We describe the passively mode-locked laser using the
generic Haus partial differential equation (PDE) [8]. We
consider a situation in which a broad-area gain chip is coupled
to a distant saturable absorber (SA) with telescopic optics
in self-imaging conditions, as in [12]. In this situation, each
point of the gain section is mapped onto the absorber section
and vice versa. The diffraction in our system is the result of
the propagation within the active sections. We assume that
it is considered sufficiently small to justify the use of the
paraxial approximation, as in [13]. We also work in the limit
of moderate gain G and saturable absorption Q such that
the uniform field limit applies. In this context, the equation
governing the evolution of the field profile E(r⊥,z,σ ) over the
slow time scale σ reads

∂σE =
{√

κ

[
1 + 1 − iα

2
G(r⊥,z,σ ) − 1 − iβ

2
Q(r⊥,z,σ )

]

−1 + 1

2γ 2
∂2
z + (d + i)	⊥

}
E(r⊥,z,σ ), (1)

where γ is the bandwidth of the spectral filter representing,
e.g., the resonance of a Vertical-Cavity Surface-Emitting Laser
(VCSEL) [14], 	⊥ = ∂2

x + ∂2
y is the transverse Laplacian,

κ is the fraction of the power remaining in the cavity after
each round-trip, and α and β are the linewidth enhancement
factors of the gain and absorber sections, respectively. The
amount of diffraction in the combined gain and absorber
sections can be described by a diffraction length that was
used in Eq. (1) to normalize the transverse space variables
r⊥ = (x,y). As such, the transverse domain size L⊥ becomes a
bifurcation parameter. For small L⊥, the system is governed by
its transverse boundary conditions, and conversely, localized
states may occur when L⊥ � 1. The parameter d represents
the small amount of field diffusion incurred, for instance, by
the dependence of the reflectivity of the VCSEL distributed
Bragg reflectors upon the angle of incidence. The longitudinal
variable (z) is identified as a fast-time variable and represents
the evolution of the field within the round-trip. The carrier
dynamics reads

∂zG = 
G0 − G(
 + |E|2) + Dg	⊥G, (2)

∂zQ = Q0 − Q(1 + s|E|2) + Dq	⊥Q, (3)

where G0 is the pumping rate, 
 = τ−1
g is the gain recovery

rate, Q0 is the value of the unsaturated losses, s is the ratio
of the saturation energy of the gain and SA sections, and
Dg,q are the scaled diffusion coefficients. In general, the
noninstantaneous response of the active medium represented

FIG. 1. Exemplary solutions of Eqs. (1)–(3) showing the intensity
profile of a stable LB. (a) Isosurface at 1% of the maximal
value. (b) Cross sections in the three orthogonal planes defined
as x = 0, y = 0, and z = 0. (c) and (d) The corresponding
cross-section profiles. Parameters are (γ,κ,α,β,
,G0,Q0,s,d) =
(40,0.8,1.5,0.5,0.04,0.425,0.354,30,10−2).

by the variable G implies a lack of parity along z for
the LSs generated by Eqs. (1)–(3) (see [15] for details).
In Eqs. (1)–(3) the fast time z has been normalized to the
SA recovery time that we assume to be τsa = 20 ps. Setting
γ = 40 and 
 = 0.04 corresponds to a FWHM of 250 GHz for
the gain bandwidth and a carrier recovery time τg = 500 ps.
Assuming a diffraction length of l⊥ = 1 μm and a domain size
L⊥ = 190 corresponds to a 190-μm broad-area device. The
typical dimensions of the LB are lLB ∼ 10 μm and τLB ∼ 4 ps.
Finally, it was shown in [9] that carrier diffusion plays almost
no role in the dynamics, so we set the diffusion coefficients
Dg,q = 0. For proper system parameters, Eqs. (1)–(3) sustain
the existence of stable three-dimensional light bullets as
depicted in Fig. 1. The details regarding the numerical method
used to solve Eqs. (1)–(3) can be found in Sec. A4 of Appendix.
If not otherwise stated, all the data represented in the figures
are dimensionless.

Exploiting the seminal work of New [16] and the fact
that the LBs are composed of variables evolving over widely
different time scales, one can find an approximate model
governing the shaping of the transverse profile. We assume
that the field reads E(r⊥,z,σ ) = A(r⊥,σ )p(z), with p(z) being
a short normalized temporal pulse of length τp that represents
the temporal LS upon which the LB is built and A(r⊥,σ )
being a slowly evolving amplitude. Separating the temporal
evolution into the fast and slow parts corresponding to the
pulse emission and the subsequent gain recovery allows us to
find the equation governing the dynamics of A as

∂tA = (d + i)
(
∂2
u + ∂2

v

)
A + f (|A|2)A. (4)

Defining h(P ) = (1 − e−P )/P , P = |A|2, the function f

reads

f (P ) = (1 − iα)g(1 + q)h(P ) − (1 − iβ)qh(sP ) − 1; (5)

see Sec. A1 for more details. We defined in Eqs. (4) and (5)
the scaled spatial and temporal coordinates as t = (1 − √

κ)σ
and (u,v) =

√
1 − √

κ(x,y). The effective parameters are
the gain normalized to threshold g and the normalized
absorption q, g = G0/Gth and q = Q0/( 2√

κ
− 2). We defined

Gth = 2√
κ

− 2 + Q0 as the threshold gain value above which
the off solution (E,G,Q) = (0,G0,Q0) becomes unstable.
All the localized states are found below the threshold for
which G < Gth or, equivalently, g < 1. We note that in the
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representation given in Eqs. (4) and (5) in which the threshold
is automatically unity, the only parameters that appear are
(g,q,α,β,s) as the cavity losses κ have been factored out.
Note, however, that Eqs. (1)–(3) are obtained in the limit of
small gain and losses. A too strong departure from the good
cavity limit would necessitate larger gain, which would induce
additional nonlinearities. Here, the losses could not be factored
out anymore.

Interestingly, Eq. (4), which governs the dynamics of the
transverse profile, is a so-called Rosanov equation [10,17]
that is known in the context of static transverse autosolitons
in a bistable interferometer. In these works one assumes a
monomode continuous-wave (cw) emission along the longi-
tudinal propagation direction which allows, via the adiabatic
elimination of the material variables, us to find an effective
equation for the transverse profile. The nonlinear function
h(P ) would correspond to a static saturated nonlinearity,
i.e., h(P ) → 1/(1 + P ). A similar result can be obtained by
setting ∂zG = ∂zQ = 0 in Eqs. (1)–(3). However, the adiabatic
approximation of the gain along the propagation direction
would be incorrect for a semiconductor material, and the
reaction time of the gain is known to profoundly affect the
stability of spatiotemporal structures [6]. In order to validate
our approach that consists of factoring the 3D light bullet into
the product of temporal and spatial LSs, we will compare the
results of the bifurcation analysis of the one-dimensional (two-
dimensional) Rosanov model with the numerical predictions
of the two-dimensional (three-dimensional) Haus equations.

We note that we operate in a parameter regime where the
function f (P ) possesses two fixed points. One solution is
unstable and corresponds to a lower-intensity temporal LS,
while the stable fixed point corresponds to a higher-intensity
LS. As such, the system is not bistable for the cw solution,
preventing the existence of static transverse autosolitons. It
is, however, bistable for the amplitude of the temporal LS
whose spatial profile may, for proper parameters, coalesce
into a transverse soliton. In the following, we will call the
homogeneous spatial solution the temporal LS with a uniform
spatial profile.

Spatial LSs can be found within the region of bistability
of the homogeneous solution. As such, studying in which
conditions the homogeneous solutions of Eqs. (4) and (5)
develop a hysteresis region provides information about the
proper parameters for spatial localization. This analysis is
performed in Sec. A2 (see in particular Figs. 8 and 9). We
summarize here our main results. The critical value of qc

above which one obtain a subcritical region as a function of the
normalized gain g reads qc = 1/(sc − 1). In the presence of
a subcritical region, the folding point, i.e., the minimal value
for the gain gm for which one can obtain a nonzero solution
[see, for instance, the lower red circle in Fig. 2(a)], can be
approximated by

gm = −W−1(−e−1− q

s )

1 + q
, (6)

with the Lambert W function Wn. The extent of the subcritical
region in which one may expect spatial LSs is then g ∈ [gm,1].
The asymptotics in the limit of large saturation and large

FIG. 2. Comparison between the behavior of the branch of the
single LS solution (solid blue line) and that of the homogeneous
solution (red dash-dotted line) calculated for α = 1.5, β = 0.5. The
evolution of (a) the spectral parameter ω and (b) the (peak) intensity
P as a function of the normalized gain g is presented. (c) Three
exemplary stationary LS profiles existing for different values of g.
The LS is stable between the saddle-node bifurcation point (SN)
and the Andronov-Hopf bifurcation point (H0; thick blue line).
(d) The real (solid red line) and imaginary (dashed blue line) parts
of the corresponding critical eigenfunction ψ0. Other parameters are
q = 1.27, s = 30, d = 0.01.

absorption simply read

lim
s→∞ gm = 1

1 + q
, lim

q→∞ gm = 1

s
. (7)

Our results indicate that large values of the normalized
absorption q and large saturation parameters s of course favor
the breadth of a subcritical region, in agreement with intuition.
However, less intuitive is that a saturation effect exists and
marginal increases of the bistability domain are found for s >

20 and q > 2; see Fig. 9 in the Appendix for more details on
the evolution of the folding point.

III. RESULTS

The single-LS solutions of Eqs. (4) and (5) can be found in
the form

A(u,v,t) = a(u,v) e−iωt , (8)

where a(u,v) is a complex amplitude with the localized field
intensity P = |a|2 and ω represents the carrier frequency of
the solution. Substituting Eq. (8) into Eqs. (4) and (5), we are
left searching for unknowns a and ω of the following equation:

(d + i)
(
∂2
u + ∂2

v

)
a + iωa + f (|a|2)a = 0. (9)

To directly track the LS solutions of Eq. (9) in parameter
space, we make use of PDE2PATH [11,18], a numerical pseudo-
arc-length bifurcation and continuation package for systems
of elliptic partial differential equations. Details regarding the
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numerical implementation of the problem can be found in
Sec. A3.

Evolution of the folding point of the LS solution. As
mentioned, the LS branch also possesses a folding point;
see, for instance, the blue circle denoted SN in Fig. 2 which
represents the minimal value of the gain at which localized
states can be obtained. The analysis of the primary folding
point of the LS branch gSN as a function of the normalized
absorption q and the saturation parameter s is detailed in
Sec. A3. It is found that gSN follows closely the evolution
of the folding point of the uniform solution gm with q and s

(compare Figs. 9 and 10 of the Appendix, respectively). That
is, our predictions for the evolution of the folding point of the
homogeneous solution hold also for the LS branch, and our
approximate analytical expression can be used as a guideline.
The one-dimensional folding point is always shifted a few
percent toward higher current values compared to the uniform
case [see Figs. 2(a) and 2(b) and compare the red and blue
curves]. A similar shift for the two-dimensional case exists
with respect to the one-dimensional situation (see Fig. 10 in
the Appendix).

Bifurcation analysis in one dimension. We now turn our
attention to the possible mechanisms of instability occurring
for increased values of the gain, and we present in Fig. 2 the
bifurcation diagram of Eq. (9) as a function of g calculated
for α = 1.5 and β = 0.5. In particular, Fig. 2(a) represents
the spectral parameter ω of the homogeneous solution (red
dash-dotted line) and that of the one-dimensional LS (solid
blue line) as a function of the gain g, while the power P as a
function of g for both homogeneous (dash-dotted red line) and
LS (solid blue line) solutions is depicted in Fig. 2(b). In the case
of the LS we plot the peak intensity of the solution. We note
that the bistability range of the single LS solution is contained
in that of the homogeneous one. In addition, in Fig. 2(c) we
depict three exemplary stationary LS profiles that exist for
different values of g, as indicated by enumerated labels in
Figs. 2(a) and 2(b). The power of the LS changes significantly
along the branch, leading to the formation of narrow peaks of
high intensity at the upper power branch.

Apart from the overall information regarding the branch
morphology, the linear stability of a particular LS solution
along the branch can be obtained directly during continuation.
The stability analysis of Eqs. (4) and (5) reveals the existence of
several neutral eigenvalues, corresponding to the translation,
phase, and Galilean invariances (cf. Refs. [19,20] for static
autosolitons). The results of the linear stability analysis
are shown in Figs. 2(a) and 2(b). Here, thick (thin) blue
curves correspond to stable (unstable) LS solutions. The LS
stability domain lies between the saddle-node bifurcation point
(SN) and the Andronov-Hopf (AH) bifurcation point (H0).
There, the branch of the LS gets destabilized via symmetric
oscillations, i.e., a breathing of the LS profile (see Video 1 in
the Supplemental Material [21]). An example of the real (solid
red line) and imaginary (dashed blue line) parts of the critical
eigenfunction ψ0 associated with this breathing instability is
shown in Fig. 2(d).

We note that it was shown in [9] that, similar to the case of
static autosolitons [17,19], the branch of the one-dimensional
LS forms a spiral in the (g,ω) plane for vanishing linewidth
enhancement factors of both the gain and absorber sections.

FIG. 3. Bifurcation diagram for a two-dimensional LS obtained
for α = 1.7, β = 0.5 as a function of the gain g, showing the evolution
of (a) the spectral parameter ω and (b) the peak intensity P . The
LS is stable between the saddle-node bifurcation point (SN) and
the AH bifurcation point (H2; thick blue line). The secondary AH
bifurcation point is indicated as H0. Two insets in (b) show intensity
profiles, corresponding to unstable (labeled 1) and stable (labeled 2)
LS solutions obtained at the same gain value g = 0.705. (c) and (d)
The real parts of both n = 0 and n = 2 critical modes calculated at
g = 0.68, respectively. Other parameters are the same as in Fig. 2.

We show here that, for more realistic values of (α,β), one
finds a simpler branch structure that possesses a single fold.
Our analysis of the evolution of the spiral structure of the
branch and of the spectral parameter ω as a function of the
gain g for small values of (α,β) can be found in Fig. 11 in
the Appendix. We also note that for these more realistic values
of (α,β) the breadth of the stable region is more extended,
	g = gH0 − gSN ∼ 0.1, while 	g ∼ 0.03 in [9]. These results
indicate that the range of stable LB existence can be widely
improved by the proper design of the experimental devices.

Bifurcation analysis in two dimensions. We performed a
similar analysis in two transverse dimensions obtained for
fixed values of α = 1.7 and β = 0.5. Our results are presented
in Fig. 3, where the dependence of the evolution of the spectral
parameter ω [Fig. 3(a)] and the peak intensity P [Fig. 3(b)] on
the gain g is shown. Note that the overall morphology of the
two-dimensional LS branch resembles the one-dimensional
behavior (compare Fig. 2). However, it turns out that a richer
dynamics occurs and that additional modes of instability are
found in two transverse dimensions. Besides a symmetrical
radiation mode [see Fig. 3(c)] leading to an Andronov-Hopf
bifurcation, similar to that in the one-dimensional case and also
denoted H0, compression-elongation oscillations in the two
orthogonal directions are also possible [see Fig. 3(d)], which
correspond to a bifurcation point denoted H2. By defining
the polar angle φ in the transverse plane, we can summarize
the situation by saying that the point spectrum of the two-
dimensional LS contains modes ∝ einφ with n = 0, ± 2. The
mode with n = 0 results in a symmetrical change in the size of
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FIG. 4. (a) and (b) One-dimensional stability diagrams showing
the threshold for the fold (blue triangles) and n = 0 AH bifurcations
(red circles) in terms of the dependence of α on the gain g for
(a) β = 0.5 and (b) α = 1.5. (c) and (d). The same stability diagrams
in two dimensions. Green squares depict the Andronov-Hopf line
corresponding to the n = 2 instability. The range of stability grows
with α and shrinks with β.

the LS, and n = ±2 correspond to a deformation of the LS in
two perpendicular directions. Figures 3(c) and 3(d) show the
real parts of n = 0 and n = 2 critical modes, respectively.

Our linear stability analysis indicates that similar to the
one-dimensional case, the LS solution appears in a saddle-node
bifurcation (SN) at low gain, while at high current the dominant
mechanism of instability consists of an AH bifurcation at point
H2, where the corresponding n = ±2 modes become unstable
(see Video 2 in the Supplemental Material [21]). That is, the
thick (thin) blue curve in Figs. 3(a) and 3(b) corresponds to the
stable (unstable) LS. In addition, two insets in Fig. 3(b) show
intensity distributions, corresponding to unstable (labeled 1)
and stable (labeled 2) parts of the LS branch obtained at
the same gain value g = 0.705. Finally, the AH bifurcation
point H0 indicates a secondary instability of the LS with
respect to modes with n = 0 (see Video 3 in the Supplemental
Material [21]). Here, additional symmetrical oscillations of
the LS shape are expected. Notice that the order of both AH

bifurcations strongly depends on the linewidth enhancement
factors of both gain and absorber sections.

Range of existence of the single LS. In [9], the linewidth
enhancement factors of both the gain and absorber sections
were set α = β = 0 as a demonstration that the carrier-induced
self-focusing effects played no role in the LB formation and
that the confinement mechanism was different than the one
found in conservative systems as in [1]. In this section, we
study the influence of α and β factors that are set to more
typical values, and we find that an extended range of stability
exists by mapping the position of points H0 and H2 limiting the
existence of stable LBs at high current. Adding to these results
the evolution of the folding point SN allows us to disclose
the range of existence of stable LSs in one and two transverse
spatial dimensions.

As we mentioned above, in the one-dimensional case, at
high current the dominant mechanism of instability consists
of an Andronov-Hopf bifurcation Hn, with n = 0, whereas
in the two-dimensional case we identified several modes of
destabilization, one where the amplitude of the LS oscillates
uniformly in space (n = 0) and another where the breadth of
the LS breathes (n = 2). In order to study the influence of the
α and β factors on the stability range of the single-LS solution
we perform a two-parameter continuation of the fold and AH
bifurcation points as a function of the gain g and the linewidth
enhancement factors of the gain and the absorber sections. Our
results are depicted in Fig. 4.

Figures 4(a) and 4(c) represent the stability diagrams in the
(g,α) plane for the fixed value of β = 0.5 for one and two
spatial dimensions, respectively. Here, blue triangles indicate
the fold threshold, whereas red circles stand for the boundary
of the AH bifurcation with n = 0. In addition, in Fig. 4(c) green
squares depict the second AH line, n = 2. Note that depending
on the relation between α and β, one of these two oscillation
modes can govern the primary instability threshold. Our results
reveal that in both one and two dimensions the range of the
stability increases toward higher α values. Although the fold
position remains almost constant for increasing α, both AH
lines move toward higher currents. However, the width of the
stability region strongly depends on β, as shown in Figs. 4(b)
and 4(d), where the stability diagram for increasing β and a
fixed moderate value of α = 1.5 is presented for both one- and
two-dimensional continuations. Here, in both cases the range
of stability decreases for growing β.

Finally, we performed a similar analysis as a function of
the saturation parameter s as shown in Fig. 5. One notices that

FIG. 5. One-dimensional stability diagrams showing the threshold for the fold (blue triangles) and the n = 0 AH bifurcations (red circles)
in terms of the dependence of s on the gain g for (α,β) = (1.5,0.5). The range of stability shrinks for too large values of s. Similar trends are
found in in two dimensions.
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FIG. 6. Two-dimensional bifurcation diagram showing the region
of stable existence of the LBs by integrating the two-dimensional
Haus equation in (x,z) as a function of the gain g and the parameters
α (left) and β (right). The color code represents the energy of
the LB E . The range of stability increases with α and decreases
for small values of β, in agreement with Fig. 4. Similar trends
were found in three dimensions. Parameters are (γ,κ,
,Q0,s,d) =
(40,0.8,0.04,0.3,30,10−2) and β = 0.5 (left), α = 1.5 (right).

for generic values of (α,β) = (1.5,0.5), the stability region
decreases if the saturation parameter s gets too large, which is
a counterintuitive result.

Numerical simulations of the Haus model. By using the
guidelines obtained from the analysis of the homogeneous
and transverse solutions, we now turn our attention to the
predictions obtained by directly integrating Eqs. (1)–(3); the
details of the numerical methods are given in Sec. A4. Our
results are summarized in Fig. 6, in which we plot the energy
of the LB, E = ∫∫ |E|2dxdz, and depict the region of stable
existence as a function of the gain g and the linewidth
enhancement factors α and β. Nicely, the dominant trends
predicted by analyzing the effective equation of the transverse
profile equation (4) are confirmed, a strong increase of the
stable region with α and a moderate decrease for increasing
β. In Video 4 in the Supplemental Material [21], we depict
the instability mechanisms in two dimensions that correspond
to H0, as predicted, while in three dimensions, the dominant
mechanism is governed by the H2 instability (see Video 5 in
the Supplemental Material [21]).

The transverse and longitudinal FWHM, the frequency shift
ω, and drifting speed υ of the LBs are presented in Sec. A4.

A behavior similar to that predicted in Fig. 5 can be
found when performing the integration of the Haus model in
Eqs. (1)–(3) as a function of the saturation parameter s. Our
results are summarized in Fig. 7, where we represent the
energy; the other parameters of the solutions are depicted in
Sec. A4. The dominant trends of a decrease in the region of
existence with increased values of s is confirmed.

IV. CONCLUSION

In conclusion, we discussed how the dynamics of 3D
light bullets can be successfully approximated in a wide
parameter range by a simplified model governing the dynamics
of the transverse profile. The bifurcation analysis of this
effective model allows us to obtain guidelines regarding
the existence and stability of the LBs found in the full
problem. We have found that, as a function of the gain,
the stability range is governed by the evolution of a lower
limit point where the LB solution ceases to exist and an
upper one where the system develops a breathing instability
that can result either in a homogeneous oscillation of the
profile or in orthogonal compression-elongation oscillations.
We have found that, contrary to intuition, too large saturation
parameters or modulation of the losses are either detrimental
or irrelevant to the range of stability of the LBs. Finally, direct
numerical simulations performed on a High Performance
Computer of the full system confirmed the predictions of
the simplified model. In our analysis we have found that the
mechanism of instability of the LBs is essentially that of the
transverse profile. Yet we believe that additional instabilities
may take place for larger values of (α,β) for which the temporal
LS that acts as the backbone of the spatial soliton can become
unstable. Finally, instabilities that do not pertain to either
the spatial or the temporal degree of freedom but to both
simultaneously cannot be ruled out and will be a topic of
further studies.
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APPENDIX

1. Derivation of the effective Rosanov equation

We assume that the field reads E(r⊥,z,σ ) = A(r⊥,σ )p(z),
with a short normalized temporal pulse p(z) of length τp and
a slowly evolving amplitude A(r⊥,σ ). Next, we use the fact
that, during the emission of a LB, the stimulated terms are

FIG. 7. Two-dimensional bifurcation diagram showing the region of stable existence of the LBs by integrating the two-dimensional Haus
equation as a function of the gain g and the modulation of the absorption q. The color code represents the energy of the LB E for increasing
values of the saturation parameter s. We find that the range of stability decreases with increasing values of s. Similar trends were found in three
dimensions. Parameters are (γ,κ,α,β,
,d) = (40,0.8,1.5,0.5,0.04,10−2).
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dominant in Eqs. (2) and (3), i.e., |E|2 � 1, such that

−
∫ τp

0
G|E|2dz 


∫ τp

0
∂zG dz = Gf − Gi, (A1)

with Gi (Gf ) being the gain before (after) the pulse
emission (see [16,22] for more details). By integrating
Eq. (2) in the regime |E|2 � 1 we find that G(z) =
G(0) exp (− ∫ z

0 |p|2|A|2dz′) and Gf = Gi exp (−|A|2). Con-
sidering Eq. (3) with similar arguments, one finds Qf =
Qi exp (−s|A|2). Multiplying the field equation (1) by p̄,
integrating over the pulse length, neglecting the contribution
γ −1ṗ, and using the above expression of the stimulated terms,
we find that the equation governing the dynamics of the
transverse profile reads

∂σA = (d + i)	⊥A + AF (|A|2). (A2)

The expression of the nonlinear function F is

F= √
κ

[
1 + 1 − iα

2
G0h(P ) − 1 − iβ

2
Q0h(sP )

]
− 1,

with h(P ) = (1 − e−P )/P . We replaced in the expression of
F the values of the gain and the absorption at the beginning of
the pulse with their equilibrium values by taking advantage of
the long-cavity limit. It allows us to assume that the gain and
absorption entirely lose their memory at the next round-trip.

The lasing threshold above which the off solution
(E,G,Q) = (0,G0,Q0) becomes unstable is

Gth = 2√
κ

− 2 + Q0. (A3)

As we operate in the region below threshold in which the
temporal LSs are bistable with the trivial off solution, we
define the gain normalized to threshold and the normalized
absorption q as

g = G0/Gth, q = Q0/

(
2√
κ

− 2

)
. (A4)

Defining the scaled spatial and temporal coordinates as t =
(1 − √

κ) σ and (u,v) =
√

1 − √
κ (x,y) yields the normal-

ized equations

∂tA = (d + i)
(
∂2
u + ∂2

v

)
A + f (|A|2)A,f (P )

= (1 − iα)g(1 + q)h(P ) − (1 − iβ)qh(sP ) − 1,

where we define F = f/(1 − √
κ) and P = |A|2.

2. Behavior of the homogeneous solution

The monochromatic solutions of Eqs. (4) and (5), denoted
as A = √

P exp (−iωt) with P ∈ R, are given by Re(F ) = 0,
which yields the implicit relation between gain and power

g = 1 + qh(sP )

(1 + q)h(P )
. (A5)

As we consider the transverse profile of a LB, P actually
corresponds to the power carried by the temporal LS, and
the multiple solutions of Eq. (A5) should be identified with
temporal LSs with different power densities. Once P is

FIG. 8. (a) Evolution of the bistability regime for s = 10 and
increasing values of q = 0.05, 0.75, and 2 (black lines). (b) Approx-
imation of the folding point (Pm, gm) for s = 10 and q = 2.5 (blue
circle). In both cases the homogeneous solution is represented by a
black line, and the asymptotic expansions for low and high power are
represented by dashed red and dotted blue lines, respectively.

known, the carrier frequency of the solution can be found
independently solving

ω = αg(1 + q)h(P ) − βqh(sP ). (A6)

Supercritical-subcritical transition point. A simple Taylor
expansion of Eq. (A5) around the threshold gives the relation

g = 1 + p
1 + q(1 − s)

2(1 + q)
. (A7)

As such, the solution curve experiences a transition from
supercritical toward subcritical when

1 + qc(1 − sc) = 0, (A8)

yielding a relation between the critical saturation sc and the
breadth of the absorber modulation qc.

High-power branch. The upper solution branch, for which
the values of P are large, can be approximated by replacing
the nonlinear function h(P ) by its asymptotic value h ∼ 1/P ,
such that Eq. (A5) takes the form

g(P ) 
 P + q

s

1 + q
∼ P

1 + q
, (A9)

where we used the large-saturation approximation. The evolu-
tion of the solution from the supercritical toward the subcritical
regime is depicted in Fig. 8(a), along with the asymptotic
regimes for low and high intensities.

Folding-point approximation. The folding point is achieved
at powers at which the saturable absorber is saturated but the
gain is not. We replace only h(sP ) by its high-power expansion
in Eq. (A5) to find

g(P ) = P + q

s

(1 + q)(1 − e−P )
. (A10)

Searching for the folding point as a minimum of g(P ) yields
a solution Pm that is only a function of q/s and reads

Pm

(q

s

)
= −1 − q

s
− W−1(−e−1− q

s ), (A11)

with Wn(z) being the Lambert W function. We define the value
of the gain at the folding point as gm = g(Pm) as it is a measure
of the extent of the subcritical region

gm = −W−1(−e−1− q

s )

1 + q
. (A12)
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FIG. 9. (a) Evolution of the approximation of the folding point
as a function of s and different values of q that correspond to
q = 0.5 (solid black line), q = 1 (dashed red line), q = 2.5 (dotted
blue line), and q = 10 (dash-dotted green line). (b) Evolution of the
approximation of the folding point as a function of s and different
values of q that correspond to q = 0.5 (solid black line), q = 1
(dashed red line), q = 2.5 (dotted blue line), and q = 10 (dash-dotted
green line).

The accuracy of our approximation is depicted in Fig. 8(b)
by a blue circle. One can see that it is indistinguishable from
the exact value.

Finally, while the solution of Eq. (A12) using the Lambert
function is perhaps complicated, the asymptotic values of gm

in the limit of large saturation and large absorption are simply

lim
s→∞ gm = 1

1 + q
, lim

q→∞ gm = 1

s
. (A13)

The scaling behavior of the folding point as a function of s

using Eq. (A12) is represented in Fig. 9(a). We note that the
asymptotic behavior in Fig. 9(a) can be obtained only for very
large values of s. Similarly, the curves in Fig. 9(b) converge
toward gm = s−1 for unrealistically large values of q. However,
the behavior predicted by Eq. (A13) is qualitatively verified.

3. Bifurcation analysis of the Rosanov equation

a. Numerical method

The LS solutions of Eqs. (4) and (5) can be found in
the form A(r,t) = a(r) e−iωt , where r = (u,v) are normalized
transverse spatial coordinates, a(r) is the complex amplitude
with the field intensity P = |a|2 localized around some
point in space, and ω is the spectral parameter. To directly
track LS solutions of Eq. (9) in the parameter space, we
make use of PDE2PATH [11,18], a numerical pseudo-arc-length
bifurcation and continuation package for systems of elliptic
partial differential equations over bounded multidimensional
domains which is based on the finite-element methods of
MATLAB’s PDETOOLBOX and OOPDE toolbox.

In general, path-continuation procedures determine station-
ary solutions of a dynamical system combining prediction
steps where a known steady-state solution is advanced in
parameter space via a tangent predictor and correction steps
where Newton procedures are used to converge to the next
solution at a new value of the primary continuation parameter
[23,24]. In this way one can start at, e.g., a numerically
given solution, continue it in parameter space, and obtain
a solution branch including its stability. The primary con-
tinuation parameter is in our case the gain parameter g,
whereas the corresponding spectral parameter ω is used as
an additional free parameter that is automatically adapted to

FIG. 10. (a) Continuation of the folding point gSN of a single
LS branch as a function of the normalized absorption q and different
values of s that correspond to s = 10 (black lines), s = 20 (red lines),
s = 100 (blue lines), and s = 1000 (green lines). (b) Continuation of
gSN of a single LS branch as a function of s and different values
of q that correspond to q = 0.5 (black lines), q = 1 (red lines), and
q = 2.5 (blue lines). Dashed (solid) lines in both panels indicate one-
(two-) dimensional continuation.

the corresponding g during continuation. Further, one needs
an additional auxiliary condition to break the phase-shift
symmetry of the system in question in order to prevent the
continuation algorithm from trivially following solutions along
the corresponding degree of freedom. This condition can be
easily implemented by, e.g., setting the phase of the LS to zero
in the center of the computational domain.

To increase computational efficiency in two dimen-
sions, we exploit the rotational symmetry of the LS and
compute only one quarter of the physical domain �2 =
[−Lu,Lu]×[−Lv,Lv], with Lu = Lv = 90, using a grid with
Nu×Nv mesh points, Nu = Nv = 256. As a result Neumann
boundary conditions are imposed in both the u and v directions,
whereas periodic boundary conditions are employed in the
one-dimensional case. There, the continuation is performed
on the one-dimensional domain �1 = [−Lu,Lu] with Lu = 90
using Nu = 512 equidistant mesh points.

b. Evolution of the folding point of the LS with q and s

In this section we discuss the influence of the system
parameters, e.g., the normalized absorption q and the sat-
uration parameter s, on the behavior of the SN point g =
gSN of the single-LS branch in both one and two spatial
dimensions. To this aim we perform one- and two-dimensional
fold continuations for different q and s, and our results are
presented in Fig. 10.

Figure 10(a) shows the continuation of the folding point
gSN as a function of q, obtained for different values of s,
while in Fig. 10(b) fold continuation of gSN as a function of
s, for different values of q, is presented. Dashed (solid) lines
in both panels indicate one- (two-) dimensional continuation.
Note that the two-dimensional folding point is always shifted
to higher current values compared with the one-dimensional
case, but the overall evolution of the folding point gSN remains
the same. Furthermore, the behavior of gSN with q and s

follows the same trends as the homogeneous solution (see
Sec. A 2), including its asymptotic behavior in the limit of
large saturation and large absorption. That is, our predictions
for the folding point evolution of the homogeneous solution
hold for the folding point of the LS solution.
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FIG. 11. One-dimensional bifurcation diagram of Eq. (9) in the
(g,ω) plane calculated for increasing values of α at fixed β = 0.5.
For small α the branch of a single LS forms a spiral which unfolds
for increasing α. Different colors correspond to different values of α.
Other parameters are the same as in Fig. 2.

c. Unfolding of the spiral

Figure 11 shows the typical spiral shape obtained for the
branch of a LS in the (g,ω) plane at low values of α. One can see
that the spiral shape of the LS branch remains well preserved
for small values of α (see Fig. 11 for α = 0.3). However, for
increasing α the morphology of the branch changes: Beyond
a certain threshold, the end point of the spiral curve moves to
higher gain values (see Fig. 11 for α = 0.35, . . . ,0.5), leading
to the unfolding of the spiral (α = 0.6,0.7). There, the resulting
branch bifurcates from the threshold g = 1, exhibits a fold at a
certain g, and continues towards higher gain values; that is, it
coexists with the upper subbranch and always exhibits smaller
ω. This branch morphology remains for ascending α, as shown
in Fig. 2.

4. Numerical simulation of the Haus equation

We solved Eqs. (1)–(3) by adding two additional free
parameters, ω and υ, which correspond to the oscillation
frequency and the drift velocity of the solution along the
propagation axis. In other words, the round-trip of the LBs
presents a small deviation with respect to the cold-cavity
round-trip time that corresponds to a drift υ in the reference
frame of the cold cavity where one takes a snapshot every
round-trip time (see [15] for more details). As such, Eq. (1) is
rewritten as

∂σE = (O1 + O2)E, (A14)

with the two operators O1,2 defined as

O1 = √
κ

[
1 − iα

2
G(r⊥,z,σ ) − 1 − iβ

2
Q(r⊥,z,σ )

]

+√
κ − 1 + iω, (A15)

O2 = 1

2γ 2
∂2
z + (d + i)	⊥ + υ∂z. (A16)

The values of the free parameters (ω,υ) are adapted during
the time integration via a simple control loop, allowing us to
determine the frequency by looking at the phase variation of the

peak of the LB and the drift along the propagation axis of the
intensity profile averaged over the transverse dimension(s). In
particular, canceling the natural drift of the solution along the
propagation axis by a proper value of υ allows us to maintain
the position of the LB close to the center of the numerical
domain.

We solved Eq. (A14) using a semi-implicit split-step
method in which the spatial operator O2 is evaluated in Fourier
space. Denoting Õ2 the differential operator in Fourier space,
the update sequence reads

E1 = En(1 + 	t × O1), (A17)

E2 = F−1[e	t×Õ2F[E1]], (A18)

En+1 = E2/(1 − 	t × O1). (A19)

As the carrier variables G and Q are not dependent on the slow
time, since we exploited the long-cavity limit, the operator
O1 can be obtained from the integration of Eqs. (2) and (3)
by knowing the preexisting field intensity distribution and
using Dirichlet boundary conditions at the beginning of the
integration domain that reads

(G,Q)(r⊥,z = 0) = (G0,Q0). (A20)

We used a physical domain �H =
[−Lx,Lx]×[−Ly,Ly]×[−Lz,Lz], with Lx,y = 160 and
Lz = 3, using a grid with Nx×Ny×Nz mesh points and
Nx,y,z = 128. Periodic boundary conditions are automatically
imposed in both the x,y directions as a consequence of
the differentiation in Fourier space. We applied standard
dealiasing with a 2/3 rule to the Fourier operator. As the
Fourier operator O2 is linear, no dealiasing is needed. As
such, one has to put dealiasing into O1 every time one goes
into the Fourier space, and we apply the 2/3 rule in F[E1]
only in Eq. (A18).

The time step was δt = 0.1, which gives indistinguishable
results for the LB parameters like energy, width, frequency,
and velocity compared to those for smaller time steps. The
main reason for this strong convergence property stems from
the fact that around a steady state O1 
 0, while the spatial
operator O2 is obtained via exponential differencing and is
therefore exact. As such, the remaining errors stems only from
the operator splitting. It is proportional to a commutator that
reads [1 ± 	t×O1,e

	t×Õ2 ] 
 0 since O1 
 0 at steady state.
A convergence analysis of the numerical method yielded the
expected second-order accuracy. Finally, we added to the field
equation white Gaussian noise with variance ξ = 10−4 mainly
to accelerate the escape from unstable solutions and to avoid
the detection of a false positive. The time integration was
	σ = 3×103.

The numerical bifurcation diagrams were obtained by
increasing g from a minimal value g = 0.4 up to g = 1 with a
step of δg = 2×10−3. As initial conditions, we used a spherical
solution Ei(x,y,z) = E0, with (x,y,z) verifying the relation(

x

Lx

)2

+
(

y

Ly

)2

+
(

z

Lx

)2

< 1, (A21)

with parameters Lx = Ly = 10, Lz = 0.26, and E0 = 1. After
an integration time of 	σ , if a stable LB solution is found, it
is used as an initial condition for the next value of g. After the
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FIG. 12. Two-dimensional bifurcation diagrams showing the region of stable existence of the LBs by integrating the two-dimensional
Haus equations (1)–(3) as a function of the gain g and the parameters α (top) and β (bottom). We represent (a) and (e) the FWHM in x,
(b) and (f) the FWHM in z, (c) and (g) the frequency of the solution, and (d) and (h) the drift velocity. As mentioned in the main text, the
range of stability increases with α and decreases for small values of β, in agreement with Fig. 4. Other parameters are (s,γ,κ,
,Q0,d) =
(30,40,0.8,0.04,0.3,10−2) and (a)–(d) β = 0.5 and (e)–(h) α = 1.5.

entire upward scan in g, the solution branch is further extended
via continuation downward from the first point that was found
using the spherical IC. This method allows us to get a good
approximation of the folding point limiting the branch at low
values of g. However, during such “blind” parameter sweeps,
a large fraction of the simulations consists of a dynamics in
which the field goes down to E = 0 or the spatiotemporal
profile explodes and invades the full numerical domain. As
such, special flags were introduced to cut the time integration.
This simple procedure diminishes the computation times by
several orders of magnitude. The scans along q were per-

formed with a step δq = 3×10−2. Simulations were performed
using 100 cores of Xeon E5 CPUs on a HPC cluster Bull
B510.

The results of the scan in the (α,g), (β,g) and (g,q)
planes are depicted in Figs. 12 and 13, where we represent
the characteristics of the LBs, such as their FWHM in the
transverse and longitudinal directions, the residual frequency,
and the velocity of motion along the propagation axis. As
mentioned in the main text, the stability region increases with
larger values of α and smaller values of β, while too large
values of s are detrimental.

FIG. 13. Two-dimensional bifurcation diagram showing the region of stable existence of the LBs by integrating the two-dimensional Haus
equation Eqs. (1)–(3) as a function of the gain g and the absorption q parameters, for increasing values of s. The top, central and bottom lines
correspond to s = 10, s = 30, and s = 90, respectively. We represent (a,e,i) the FWHM in x, (b,f,j) the FWHM in z, (c,g,k) the frequency of the
solution, and (d,h,l) the drift velocity. As mentioned in the main text, the range of stability decreases with larger values of s. Other parameters
are (α,β,γ,κ,
,d) = (1.5,0.5,40,0.8,0.04,10−2).
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