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We derive quantum trajectories (also known as stochastic master equations) that describe an arbitrary quantum
system probed by a propagating wave packet of light prepared in a continuous-mode Fock state. We consider
three detection schemes of the output light: photon counting, homodyne detection, and heterodyne detection. We
generalize to input field states in superpositions and mixtures of Fock states and illustrate our formalism with
several examples.
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I. INTRODUCTION

Propagating Fock states, wave packets with a definite
number of photons, are well suited for the role of relaying in-
formation between nodes of a quantum computing device [1].
In the optical and microwave domains, single-photon fields are
routinely produced and manipulated, with ongoing progress to-
ward higher photon numbers [2–4]. Taking advantage of Fock
states for quantum technology necessitates a theoretical under-
standing of their interaction with fundamental quantum com-
ponents, e.g., an atom coupled to a waveguide or a transmon
coupled to a transmission line in superconducting circuit QED.

Two useful tools for understanding light-matter interactions
are master equations (MEs) and stochastic master equations
(SMEs). Each is an equation of motion for the reduced state of
a quantum system that is coupled to an electromagnetic field.
After interacting with the system the field propagates away,
carrying with it information. The ME is a differential equation
for the unconditional reduced system state and ignores any
information in the field. The information is not gone; however,
and may be retrieved by performing measurements of the out-
put field. A time-continuous measurement of the output fields
can be used to find the conditional state of the system, known
as a quantum trajectory [5,6]. The equation that takes the
sequence of measurement results and determines the system
state’s conditional evolution is called an SME. Different types
of field measurement—for instance, direct photon counting or
quadrature measurements—yield different SMEs.

The form of an SME depends on the input state of the field.
SMEs for Gaussian input fields (vacuum, coherent, thermal,
and squeezed) were derived a long time ago [7] and are widely
used [8–12]. Due to the inherently nonclassical nature of Fock
states, their SMEs have proven more elusive. Propagating
Fock states possess temporal correlations which are mapped
onto entanglement between system and field as they interact.
Consider a single-photon field interacting with a quantum
system; see Fig. 1. Classically, two paths have been taken by
time t : (i) the photon has interacted with the system at some
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previous time t ′ � t , or (ii) the photon has not yet arrived at the
system and can be found with certainty in the remaining, future
input field t ′ > t . The origin of system-field entanglement is
the superposition of these options. This is a departure from
the typically considered situation for open quantum systems
where the input field at time t is uncorrelated both with the
system and with the field at all other times.

In this article we derive SMEs for an arbitrary quantum
system probed with a propagating Fock state. The temporal
correlations in the input field and the entanglement between
the system and field are accounted for with a set of coupled
equations. We consider three different detection schemes of
the output light: photon counting, homodyne detection of an
arbitrary quadrature, and heterodyne detection. We extend our
derivation to include input fields in superpositions or mixtures
of Fock states and to inefficient measurements of the field.

Previously some aspects of our theory have been developed.
The unconditional MEs for one- and two-photon input fields

quantum
system

(b)

(a)

record

FIG. 1. Depiction of a propagating wave packet interacting with
a quantum system followed by measurement of the scattered field.
The temporal wave packet is given by a slowly varying envelope
ξ (t) modulating fast oscillations at the carrier frequency. We consider
a wave packet prepared in a nonclassical state of definite photon
number, a Fock state |Nξ 〉. (a) At time t0, prior to the interaction,
the system and field are unentangled. (b) At a later time t > t0, a
portion of the wave packet has interacted with the system, and the
scattered field has been detected. A quantum trajectory describes
the conditional reduced state of the system, ρsys(t |R), given the
measurement record R.
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were introduced by Gheri et al. [13] and later extended to
many photons in the Fock-state MEs of Baragiola et al. [14].
A step towards Fock-state SMEs was given by Gheri et al. [13],
where they suggested enlarging the Hilbert space to include the
source of a single photon using a cascaded approach [15,16].
The SMEs for input fields containing any superposition or
mixture of vacuum and a single photon were given by Gough
et al. [17,18]. Recently various mathematical techniques have
extended these results to SMEs for multiphoton input fields
[19] and for a class of continuous matrix-product states
that includes time-ordered, multiphoton states [20]. These
derivations proceed in the Heisenberg picture and rely on
mathematical techniques unfamiliar to the physics community.
In contrast we provide a Schrödinger-picture derivation, based
on the temporal structure of propagating Fock states, that gen-
eralizes the Wiseman-Milburn techniques [7,8]. Our approach
gives insight into the physical significance of the equations,
provides solid footing for useful generalizations, and enables
SMEs for any state of the field in a given temporal mode.

This article is organized as follows. In Sec. II we present the
physical model for the interaction of a quantum system with
a continuous-mode field using input-output formalism. The
properties of Fock states are summarized with an emphasis on
a temporal decomposition of the field, and a formal description
of continuous field measurements and quantum trajectories is
given. In Sec. III we present the main results of this article:
the SMEs for quantum systems probe by continuous-mode
Fock states when the output fields are subject to three types
of measurement: photon counting, homodyne detection, and
heterodyne detection. In Sec. IV we generalize the SMEs to
superpositions and mixtures of Fock states and show how to
model imperfect detection and add additional decoherence. As
a pedagogical example, we analyze conditional dynamics of a
two-level atom in Sec. V. Finally, we summarize our results
and provide an outlook in Sec. VI.

II. PHYSICAL MODEL AND FORMALISM

A. System-field interaction: Input-output theory

A quantum system interacting with a traveling field natu-
rally calls for a formulation in the time domain due to the time-
local nature of the interaction and measurements. Input-output
theory and the underlying continuous-mode quantization of
the field provide such a description [8,21]. Input-output
theory is often formulated for an effectively one-dimensional
electromagnetic field, such as arises for one-sided cavities
[21], photonic waveguides [22,23], transmission lines in circuit
QED [24], and paraxial free-space fields [25], although this
is not a necessary restriction [26]. Within this formalism,
enforcement of the weak-coupling limit, the Markov approxi-
mation, and the rotating wave approximation yields a quantum
stochastic differential equation for the time evolution operator
that governs unitary system-field dynamics [25,27].

Consider a one-dimensional, continuous-mode field de-
scribed by bosonic operators satisfying [b(ω),b†(ω′)] = δ(ω −
ω′). For quasi-monochromatic excitations, i.e., when the
spectral bandwidth is much smaller than the carrier frequency
�ω � ωc, we define slowly varying, Fourier-transformed field
operators [28]:

b(t) ≡ 1√
2π

∫ ∞

−∞
dω b(ω)e−i(ω−ωc)t . (1)

They satisfy the commutation relations [b(t),b†(t ′)] = δ(t −
t ′) and are often referred to as white-noise operators, akin to
classical white noise, which is δ-correlated in time. Here t is a
label for the mode of the field that interacts with the system at
time t . Due to the singular nature of b(t) and b†(t), it is often
preferable to work with the quantum noise increments over an
infinitesimal time interval [t,t + dt):

dBt =
∫ t+dt

t

ds b(s), dB
†
t =

∫ t+dt

t

ds b†(s), (2a)

d�t =
∫ t+dt

t

ds b†(s)b(s). (2b)

In the interval [t,t + dt) the operators dBt and dB
†
t are

infinitesimal annihilation and creation operators, and d�t

is the infinitesimal number operator. The increments act
nontrivially only on [t,t + dt), e.g.,

dBt = I[0,t) ⊗ dB[t,t+dt) ⊗ I[t+dt,∞), (3)

where the interval [0,t) represents the past Hilbert space of
the field (the output field), the infinitesimal interval [t,t + dt)
the field presently interacting with the system, and the interval
[t + dt,∞) the future field. The rules for taking products of
the quantum noise increments are given by the Itō table [21],

dBtdB
†
t = dt, dBtd�t = dBt ,

(4)
d�td�t = d�t , d�tdB

†
t = dB

†
t ,

with all other products vanishing to order dt .
Over the infinitesimal time interval [t,t + dt), the time

evolution operator [21,29],

Ut = Isys ⊗ It − dt
(
iHsys + 1

2L†L
) ⊗ It

−L†S ⊗ dBt + L ⊗ dB
†
t + (S − Isys) ⊗ �t, (5)

describes the unitary coupling of the field operators [Eq. (2)]
to system operators Hsys, L, and S, which are determined from
the Hamiltonian governing the underlying physical system
[30,31]. From this interaction, the output relations for the
quantum noise increments are [32,33]

dBout
t = dtL ⊗ It + S ⊗ dBt , (6a)

d�out
t = dtL†L ⊗ It + L†S ⊗ dBt

+ S†L ⊗ dB
†
t + Isys ⊗ d�t . (6b)

These are the standard input-output relations [8,21,34] for
system Hamiltonian Hsys and “jump operator” L. Each relation
is the coherent sum of two contributions: the free field and
system scattering.

B. Continuous-mode Fock states

Quasi-monochromatic, continuous-mode fields have a con-
venient description in terms of the input operators of Eq. (1)
[35]. The utility of this description becomes evident when
one considers that interactions [Eq. (5)] and measurements
are local in time. The continuous-mode field is represented in
a continuous temporal tensor-product space, Hfield = ⊗

i Hti ,
where Hti is the Hilbert space associated with the field at time
ti [25]. The statistics of field states that factorize with respect
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to a given time t ,

|	〉 = |	t)〉 ⊗ |	[t 〉, (7)

are specified independently on each time interval: the past
[t0,t) and the future [t,∞). Field states that factorize tempo-
rally with respect to all times are described by a temporal
tensor-product state,

|	〉 =
⊗

i

|	ti 〉, (8)

whose statistics can be independently specified over any time
interval. Critical to the derivation of a ME or SME is whether
the input field is described by a temporal tensor-product state.

The elementary continuous-mode state is vacuum, given by
the product state,

|0〉 ≡
⊗

i

|0ti 〉 = |0〉 ⊗ |0〉 ⊗ · · · , (9)

indicating vacuum at every time. From vacuum, continuous-
wave coherent states are constructed by displacing each
vacuum component in |0〉 to the same amplitude, |α〉 =⊗

i |αti 〉 [35].
Field states that do not factorize in time are inherently

nonstationary and can possess temporal correlations. We now
construct normalized, nonstationary continuous-mode fields
in a single temporal mode, with particular emphasis on
propagating Fock states. Consider a quasi-monochromatic
field in temporal mode ξ̃ (t) = ξ (t)eiωct . Rapid oscillations at
the carrier frequency ωc are modulated by a slowly varying
wave packet ξ (t) that is square-normalized:∫

ds|ξ (s)|2 = 1. (10)

Field states are constructed in the temporal mode ξ (t) by the
wave packet creation operator [35],

B†(ξ ) ≡
∫

ds ξ (s)b†(s), (11)

which satisfies [B(ξ ),B†(ξ )] = 1. For example, a wave-packet
coherent state with time-varying amplitude α(t) = α0ξ (t),
for complex peak amplitude α0, is generated from vac-
uum by a continuous-mode displacement operator: |αξ 〉 =
D[α(t)]|0〉 = exp[α∗

0B
†(ξ ) − α0B(ξ )]|0〉 [35].

A propagating single photon in the wave packet ξ (t) is
generated by applying the wave packet creation operator
[Eq. (11)] directly to continuous-mode vacuum [13,35], |1ξ 〉 =
B†(ξ )|0〉. This can be interpreted as superposition of photon
creation times weighted by ξ (t) [35–37]. A straightforward
extension provides the definition of continuous-mode Fock
states (referred to hereafter as Fock states) with n photons
[14,35],

|nξ 〉 = 1√
n!

[B†(ξ )]n|0〉, (12)

satisfying 〈mξ |nξ 〉 = δm,n. The action of the quantum noise
increments in Eq. (2) on Fock states is [14]

dBt |nξ 〉 = dt
√

nξ (t)|n − 1ξ 〉, (13)

d�t |nξ 〉 = dB
†
t

√
nξ (t)|n − 1ξ 〉. (14)

1. Temporal decomposition

Shortly we consider the interaction of Fock states with an
arbitrary quantum system. These interactions are time-local
[Eq. (5)], so it is convenient to perform a temporal decomposi-
tion of the field state where the input Fock state is expressed in
a basis where its projection on the time of interaction is made
explicit. This is achieved by decomposing the wave-packet
creation operator, B†(ξ ), into three intervals: the past [t0,t),
the current [t,t + dt), and the future [t + dt,∞). The current
interval is infinitesimal, such that the probability of detecting
two photons simultaneously is vanishingly small [8,38,39]
(equivalent to dB

†
t dB

†
t = 0 in the Itō table). With respect

to this decomposition, the wave-packet creation operator in
Eq. (11) is

B†(ξ ) =
∫ t

t0

ds ξ (s)b†(s)︸ ︷︷ ︸
≡B

†
t)(ξ )

+ξ (t) dB
†
t +

∫ ∞

t+dt

ds ξ (s)b†(s)︸ ︷︷ ︸
≡B

†
[t+dt (ξ )

,

(15)

where B
†
t)(ξ ) and B

†
[t+dt (ξ ) create photons in the past and future

with respect to t . We have used abbreviated interval notation,
[t0,t) → t) and [t,∞) → [t . Each portion of the wave packet
creation operator in Eq. (15) acts on a different interval of
multimode vacuum,

|0〉 = |0t)〉 ⊗ |0t 〉 ⊗ |0[t+dt 〉, (16)

where |0t 〉 is the infinitesimal vacuum at the current time
interval. Applying Eq. (15) to this decomposition of the
vacuum we obtain a temporal decomposition of the single-
photon wave packet:

|1ξ 〉 = |1t)〉 ⊗ |0t 〉 ⊗ |0[t+dt 〉 +
√

dtξ (t)|0t)〉 ⊗ |1t 〉 ⊗ |0[t+dt 〉
+ |0t)〉 ⊗ |0t 〉 ⊗ |1[t+dt 〉, (17)

where the infinitesimal single-photon state in the current time
interval is [8]

|1t 〉 = dB
†
t√

dt
|0t 〉. (18)

Inserting Eq. (15) into the definition of a Fock state in Eq. (12)
gives the temporal decomposition:

|nξ 〉 = 1√
n!

[B†
t)(ξ ) + ξ (t) dB

†
t + B

†
[t+dt (ξ )]n|0〉. (19)

Further details about the temporal decomposition of Fock
states can be found in Appendix A.

A basis for field states in an infinitesimal interval [t,t + dt)
can be constructed from the infinitesmal states |0t 〉 and |1t 〉
[39, Sec. V A]. A relative-state decomposition of an n-photon
Fock state in this basis yields

|nξ 〉 = |0t 〉〈0t |nξ 〉 + |1t 〉〈1t |nξ 〉 (20a)

= |0t 〉 ⊗ |nξ 〉 +
√

n dtξ (t)|1t 〉 ⊗ |n − 1ξ 〉, (20b)

which can also be found by expanding Eq. (19), as shown in
Appendix A. The state |nξ 〉 is the partial projection of a Fock

023819-3



BEN Q. BARAGIOLA AND JOSHUA COMBES PHYSICAL REVIEW A 96, 023819 (2017)

state onto infinitesimal vacuum:

|nξ 〉 ≡ 〈0t |nξ 〉. (21)

By taking the inner product of Eq. (20b) with itself we relate
the inner product of |nξ 〉 to the original wave packet

〈nξ |nξ 〉 = 1 − n dt |ξ (t)|2〈n − 1ξ |n − 1ξ 〉 (22a)

= 1 − n dt |ξ (t)|2, (22b)

where in the second line we used 〈n − 1ξ |n − 1ξ 〉 = 1 − (n −
1) dt |ξ (t)|2〈n − 2ξ |n − 2ξ 〉 and kept terms to order dt .

C. Continuous measurement of the field

After the system and field interact and become entangled
the output field is measured. Continuous-time measurements
are described by a time-ordered sequence of infinitesimal
measurements collected as the field impinges on the detection
apparatus. The infinitesimal time interval is short enough
that the probability of detecting two photons is negligible;
other situations are obtained by integrating over time. In an
infinitesimal interval, a projective measurement with outcome
R is described by the partial projector,

�R = It) ⊗ |Rt 〉〈Rt | ⊗ I[t+dt , (23)

where |Rt 〉 = aR|0t 〉 + bR|1t 〉 with |aR|2 + |bR|2 = 1. The
partial projector in Eq. (23) and its complement act nontrivially
only on the infinitesimal interval where the measurement is
performed, [t,t + dt). Together they constitute a two-outcome
positive-operator valued measure (POVM) that resolves the
identity on the infinitesimal Fock space,

∑
R �R = It) ⊗ It ⊗

I[t+dt = Ifield.
A sequence of such infinitesimal measurements over a

time interval [t0,t) comprises a continuous measurement.
The collection of measurement results R, referred to as the
measurement record, is described by a partial projector,

�R = |R〉〈R| ⊗ I[t , (24)

where |R〉 is a tensor product of infinitesimal projective
eigenstates, as in Eq. (23):

|R〉 = |R[t−dt,t)〉 ⊗ · · · ⊗ |R[t0,t0+dt)〉 =
⊗

ti

|Rti 〉. (25)

The partial projectors resolve the identity over the time interval
[t0,t), ∫

dR |R〉〈R| = It), (26)

and, with Eq. (24), over the full Fock space [39, Sec. V].
Regardless of the specific record R, the measured portion of
the field becomes disentangled from the the future field.

D. Quantum trajectories

Consider an initially unentangled quantum system and
continuous-mode field described by the joint state,

ρjoint(t0) = ρ0 ⊗ |	〉〈	|, (27)

where ρ0 is the initial system state and |	〉 the initial field
state. The time evolution operator that entangles the system

and field in each infinitesimal time interval [t,t + dt) has the
general form given in Eq. (5). The total time evolution from
t0 to t is given by the time-ordered product of infinitesimal
unitaries:

U (t0,t) = U (t − dt,t) · · · U (t0,t0 + dt)

=
←−∏

s

U (s,s + dt). (28)

Through unitary evolution the entangled joint state of the
system and field at time t is given by

ρjoint(t) = U (t0,t)ρjoint(t0)U †(t0,t). (29)

When measurements are performed on the output field,
the joint state is conditioned on the random measurement
outcomes. For a measurement record R described by the
projector in Eq. (24), the conditional joint state is found with
the usual measurement update rule

ρjoint(t |R) = |R〉〈R|U (t0,t)ρjoint(t0)U †(t0,t)|R〉〈R|
Pr(R)

, (30)

where Pr(R) is the probability of obtaining R. It will become
useful to describe this quantum operation on the joint state
with a conditional evolution operator CR that includes the
interaction U (t0,t) and measurements |R〉 on the interval [t0,t):

CR ≡ 〈R|U (t0,t) ⊗ I[t . (31)

Then Eq. (30) can be written

ρjoint(t |R) = CRρjoint(t0)C†
R

Pr(R)
⊗ |R〉〈R|, (32)

with probability given by

Pr(R) = Tr
[
C

†
RCRρjoint(t0)

]
. (33)

We note that in many physical situations the measured portion
of the field is destroyed by the detection process. Destructive
measurements can be obtained by tracing over the past field in
Eq. (30), leaving only a classical measurement record and the
future input field.

Jack and Collett employed a joint-state description similar
to Eq. (30) to study non-Markovian light-matter interactions
[39]. While it provides the full, conditional joint state, such
a description is difficult to evaluate in practice due to the
immense Hilbert space of the continuous-mode field. Here we
present an alternate approach and focus on the reduced system
state,

ρsys(t) = Trfield[ρjoint(t)], (34)

as the field is continuously measured. From Eq. (34) forward,
we use simplified notation that does explicitly refer to the
entire measurement record R, except when necessary.

Typically a SME, or quantum trajectory, is a way to write
the the evolution of the reduced system state as the solution to
a stochastic differential equation [5]:

dρsys(t) = ρ̄sys(t + dt |Rt )

Pr(Rt )
− ρsys(t). (35)

The primary mathematical objects in the derivation of SMEs
are the Kraus operators MR = 〈Rt |U (t,t + dt)|ψfield〉. Given
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measurement result Rt , the Kraus operators provide a method
for the explicit calculation of the unnormalized conditional
state above,

ρ̄sys(t + dt |Rt ) = MRρsys(t)M
†
R, (36)

and the probability of outcome Rt ,

Pr(Rt ) = Tr[M†
RMRρsys(t)], (37)

which normalizes the state. The reduced-state dynamics are
Markovian when the input field factorizes temporally with
respect to the interaction and measurements, e.g., vacuum and
coherent states. In this case, the map for the reduced state from
time t to t + dt [Eq. (36)] is entirely specified by the joint state
at time t , the entangling unitary [Eq. (5)], and the measurement
result in that interval, Rt .

For input fields that do not admit a temporal tensor-product
factorization, such as continuous-mode propagating Fock
states (Sec. II B), the reduced-system dynamics are manifestly
non-Markovian, and the SME cannot be written in the form
of Eq. (35). The major result of this manuscript is a technique
to generalize this SME to the case of propagating Fock-state
input fields, which we present in Sec. III.

III. FOCK-STATE STOCHASTIC MASTER EQUATIONS

We are now equipped to tackle the primary focus of this
paper: conditional dynamics for a quantum system probed
by a continuous-mode, propagating Fock state. Our approach
uses a set of coupled SMEs. Their derivation follows from an
extension of the standard approach to deriving SMEs in the
Schrödinger picture, which begins by identifying the Kraus
operators for infinitesimal measurements of the field [8].

In Sec. III A we describe the mathematical objects that
arise in the derivation. In the subsections that follow we derive
the SMEs for photon counting, homodyne, and heterodyne
measurements. In each section, we state the result and then
provide the derivation for interested readers. The Heisenberg-
picture formulation of the Fock-state SMEs is given in
Appendix B.

A. Structure of the SMEs

We begin with a quantum system and input field in the joint
state

ρjoint(t0) = ρ0 ⊗ |Nξ 〉〈Nξ |, (38)

with the system initially in state ρ0 and the field described by a
propagating N -photon Fock state |Nξ 〉, given by Eq. (12). As
the wave packet arrives, the system and field become entangled
by the infinitesimal unitary [Eq. (5)]. Then the output portion
of the field is measured. For arbitrary time t the joint state of
the system and field is formally given by Eq. (30), and the
reduced system state by

ρsys(t) = 1

Pr(R)
Trfield[CRρ0 ⊗ |Nξ 〉〈Nξ |C†

R]. (39)

We show below that the SME for the reduced system state
ρsys(t) couples to a family of density-matrix-like operators,

ρm,n(t) ≡ 1

Pr(R)
Trfield[CRρ0 ⊗ |mξ 〉〈nξ |C†

R], (40)

for 0 � {m,n} � N . These operators represent fixed photon-
number subspaces and coherences between them. Clearly, for
N -photon Fock-state input the reduced system state is given
by the top-level equation: ρsys(t) = ρN,N (t). The operators
ρm,n(t), which have the same Hilbert-space dimension as
ρsys(t), first arose in the single- and two-photon MEs of
Gheri et al. [13] and reappeared for conditional and un-
conditional reduced-state dynamics in a variety of settings
[14,17–19]. Their initial conditions (CR = I ) are

ρm,n(t0) = Trfield[ρ0 ⊗ |mξ 〉〈nξ |] = δm,nρ0; (41)

that is, the diagonal operators (m = n) are initialized to
the system state ρ0. The off-diagonal operators (m = n) are
initially zero, are traceless at all times, and satisfy ρm,n(t) =
ρ
†
n,m(t) [13,14].

The field trace in the definition of ρm,n(t) can be explicitly
taken to find the formal quantum operation described by
Eq. (40). At time t , the past portion of the field has interacted
with the system and subsequently been measured while the
future portion of the field has not. We show in Appendix A
the decomposition of an input Fock state into a future and past
basis of Fock states with respect to a chosen time t . These bases
are defined over two disjoint temporal modes which together
comprise the initial wave packet mode. For a field that has
been detected up to time t , the field trace can be formally
taken using the (normalized) Fock basis over the future wave
packet, |n[t 〉,

ρm,n(t) = 1

Pr(R)

∞∑
n′=0


m,n′
R ρ0

(


n,n′
R

)†
, (42)

where the Kraus operators are


m,n′
R = 〈n′

[t |CR|mξ 〉 = (〈n′
[t | ⊗ 〈R|)U (t0,t)|mξ 〉. (43)

Our derivation here does not require these full Kraus operators,
but we introduce the machinery here for completeness, noting
that it will be used in future work to illustrate system-field
correlations.

In the Fock-state SME derivations that follow, the unnor-
malized operators,

ρ̄m,n(t + dt |Rt ) = 1

Pr(R)
Trfield

[
Mm

R (t)ρ0Mn†
R (t)

]
, (44)

are updated in each infinitesimal interval with a quantum
operation described by the Fock-state pseudo-Kraus operators,
Mn

R(t), defined for each input photon number n as indicated by
the superscript. These are found by amending CR to include the
additional conditional dynamics on the current time interval,
given by Ut and |Rt 〉, and then acting on an input Fock state
|nξ 〉:

Mn
R(t) ≡〈Rt |UtCR|nξ 〉. (45)

The pseudo-Kraus operators are distinct from the Kraus
operators [Eq. (43)] because they still have support on the
Hilbert space of the future field. However, we will make
judicious use of Mn

R(t) in the following derivations of the
Fock-state SMEs, and for simplicity we henceforth refer to
them as the Fock-state Kraus operators.

In the derivations below, we show that the ρm,n(t) couple
among themselves and form a closed, Markovian set of
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equations which can be solved to ultimately find ρsys(t). The
differential equations have the form

dρm,n(t |Rt ) = ρ̄m,n(t + dt |Rt )

Pr(Rt )
− ρm,n(t), (46)

where, importantly, each dρm,n(t) is a function only of ρm,n(t),
ρm−1,n(t), ρm,n−1(t), and ρm−1,n−1(t) for m,n � 0. The lowest
level equation (m = n = 0) for dρ0,0(t) closes and is only a
function of ρ0,0(t) [40]. As ρm,n(t) = ρ

†
n,m(t), there are at most

1
2 (N + 1)(N + 2) independent equations [14].

The probability of obtaining the infinitesimal measurement
outcome Rt is given by the conditional expectation value of
the infinitesimal projector [Eq. (23)] with respect to the joint
state. Using the Fock-state Kraus operators, it can be written as

Pr(Rt ) = 1

Pr(R)
Tr

[
MN†

R (t)MN
R (t)ρ0

]
, (47)

for an initial N -photon Fock state. Note that in Eq. (46) all
the ρm,n(t) are rescaled by Eq. (47) for a given measurement
outcome. The result is that only the top-level matrix ρN,N (t),

which is indeed the physical reduced state ρsys(t), remains
normalized to unit trace, while the traces of other ρm,n(t) may
vary.

The Fock-state SMEs are found by careful manipulation of
Eq. (44) and of the measurement probability [Eq. (47)] such
that both can be written entirely in terms of the operators
ρm,n(t). Then Eq. (46) describes a closed set of coupled
equations that can be solved, and the physical reduced state
[Eq. (40)] extracted. Below we go through this derivation in
detail for the Fock-state photon-counting SME.

B. Fock-state photon-counting SME

We begin with the photon-counting SME for a quantum
system probed by an N -photon Fock state. After interacting
with the quantum system, the output fields are sent to a
photodetector. Let N (t) denote the number of photons detected
up to time t . In the interval [t,t + dt) the random variable
dN counts the number of photons, with at most one photon
detected. Thus, dN has outcomes 0 (vacuum detection) and 1
(photon detection). The conditional evolution under continu-
ous photon counting is given by the set of coupled SMEs,

dρm,n(t) = dt(−i[Hsys,ρm,n] − 1

2
{L†L,ρm,n}+ − √

mξ (t)L†Sρm−1,n − √
nξ ∗(t)ρm,n−1S

†L − √
mn|ξ (t)|2ρm−1,n−1)

+ Pr(J )ρm,n + dN

[
Lρm,nL

† + √
mξ (t)Sρm−1,nL

† + √
nξ ∗(t)Lρm,n−1S

† + √
mn|ξ (t)|2Sρm−1,n−1S

†

Pr(J )/dt
− ρm,n

]
,

(48)

where the ρm,n are defined in Eq. (40) (henceforth we suppress the argument t , except where necessary), for m,n ∈ {0,...,N}.
The reduced system state is given at all times by the top-level equation, ρsys = ρN,N , whose evolution is tied to that of other
operators ρm,n. The initial conditions for ρm,n are given by Eq. (41). Conditional expectation values of system operators are taken
with respect to the reduced system state as usual; e.g., E[X(t)|R] = Tr[Xρsys(t)].

The probability of detecting a photon, the “jump” probability, in the time interval [t,t + dt) is

Pr(J ) = dt Tr[L†LρN,N +
√

Nξ (t)L†SρN−1,N +
√

Nξ ∗(t)S†LρN,N−1 + N |ξ (t)|2ρN−1,N−1
]
. (49)

This probability is, in fact, the conditional expectation value of the infinitesimal output photon number operator Eq. (7),
E[d�out

t |R]. Here we use the notation Pr(J ) with the implicit understanding that the jump probability is conditional and depends
on the prior measurement record R. The detection probability [Eq. (49)] is a result of photons radiating from the system (first
term), photons in the free field (last term), and interference between the two (remaining terms). It is important to note that the
trace of ρN−1,N−1, or indeed of any ρm,n other than the reduced system state ρsys, is not constrained to be equal to 1 [41].

One can also write Eq. (48) in an alternate form,

dρm,n(t) = dt Lm,n[G,ξ (t)]

+ dJC(t)

[
Lρm,nL

† + √
mξ (t)Sρm−1,nL

† + √
nξ ∗(t)Lρm,n−1S

† + √
mn|ξ (t)|2Sρm−1,n−1S

†

Pr(J )/dt
− ρm,n

]
, (50)

where

dJC(t) ≡ dN − Pr(J ) (51)

is called the photon-counting innovations. We have grouped the system operators into the operator-triple, G = (S,L,Hsys), and
introduced Lm,n[G,ξ (t)], which is shorthand notation for a superoperator that acts on a set of ρm,n operators as follows:

Lm,n[G,ξ (t)] ≡ −i[Hsys,ρm,n] + DL[ρm,n] + √
mξ (t)[Sρm−1,n,L

†] + √
nξ ∗(t)[L,ρm,n−1S

†]

+√
mn|ξ (t)|2(Sρm−1,n−1S

† − ρm−1,n−1
)
, (52)

where the Lindblad superoperator is

DL[ρ] ≡ LρL† − 1
2 (L†Lρ + ρL†L). (53)

Equation (52) is simply the unconditional part of the evolution,
that is, the Fock-state MEs derived in Ref. [14].
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1. Derivation

The joint system-field state is initialized at t0 in the unentan-
gled state given by Eq. (38). At a later time t > t0, continuous
photon counting has generated a measurement record R.
The projectors for photon counting in an infinitesimal time
interval are constructed from eigenstates of the infinitesimal
photon-number operator d�t . Using Carmichael’s notation
[5,6] we label the infinitesimal outcomes as Rt ∈ {∅,J },
describing either vacuum or a single photon, respectively.
These correspond to eigenstates |0t 〉 and |1t 〉 [Eq. (18)]
with respective eigenvalues {0,1}. The associated infinitesimal
measurement projectors [Eq. (23)] are

�∅ = It) ⊗ |0t 〉〈0t | ⊗ I[t+dt , (54a)

�J = It) ⊗ |1t 〉〈1t | ⊗ I[t+dt . (54b)

The conditional joint state [Eq. (30)] is subject to entangling
interaction and measurement in the infinitesimal time interval
[t,t + dt). Our task now is to find the reduced physical state
and associated unnormalized operators ρ̄m,n, given by Eq. (44),
for each of the two outcomes in that interval.

We begin with the case of vacuum detection (Rt = ∅). The
vacuum Kraus operators from Eq. (45) are of the form

Mn
∅(t) =〈0t |UtCR|nξ 〉. (55)

We insert the entangling unitary [Eq. (5)] and use the relative
state decomposition of the input field with respect to the current
time [Eq. (20)] and find

Mn
∅(t) =

[
Isys − dt

(
iHsys + 1

2
L†L

)]
CR|nξ 〉

− dt
√

nξ (t)L†SCR|n − 1ξ 〉. (56)

To arrive at this expression, we first simplified products of
dBt and d�t using the Itō table in Eq. (4). The remaining
quantum noise increments satisfy [dBt ,CR] = [dB

†
t ,CR] =

[d�t,CR] = 0, since they are defined on nonoverlapping time
intervals. Thus they can be pulled through CR and applied
directly to the Fock state |nξ 〉 via Eq. (13). Finally, the partially
projected Fock states, |nξ 〉 = 〈0t |nξ 〉, are the remnants of
projecting onto vacuum [see Eq. (20)].

To find the unnormalized conditional operators for vacuum
detection, we insert Eq. (56) into Eq. (44):

ρ̄m,n(t + dt |∅) = 1

Pr(R)
Trfield

[
CR

(
ρ0 ⊗ |mξ 〉〈nξ |

)
C

†
R

− idt[Hsys,CR(ρ0 ⊗ |mξ 〉〈nξ |)C†
R]

− dt
1

2
{L†L,CR(ρ0 ⊗ |mξ 〉〈nξ |)C†

R}+
− dt

√
mξ (t)L†SCR(ρ0 ⊗ |m−1ξ 〉〈nξ |)C†

R

− dt
√

nξ ∗(t)CR(ρ0 ⊗ |mξ 〉〈n−1ξ |)C†
RS†L

]
.

(57)

While the probability of the prior record, Pr(R), appears, the
operators remain unnormalized because the current vacuum-
detection probability has not been included.

The critical final step to the derivation lies in writing
Eq. (57) exclusively in terms of input Fock states |nξ 〉; that
is, those defined over the entire input wave-packet mode. This
is done by rearrangement of the relative-state decomposition
for an n-photon Fock state, given in Eq. (20). Consider the first
term in Eq. (57). Under a field trace this relation gives

Trfield[CRρ0 ⊗ |mξ 〉〈nξ |C†
R]

= Trfield[CRρ0 ⊗ |mξ 〉〈nξ |C†
R] (58)

− dt
√

mn|ξ (t)|2Trfield[CRρ0 ⊗ |m − 1ξ 〉〈n − 1ξ |C†
R],

= Trfield[CRρ0 ⊗ |mξ 〉〈nξ |C†
R]

− dt
√

mn|ξ (t)|2Trfield[CRρ0 ⊗ |m − 1ξ 〉〈n − 1ξ |C†
R].

(59)

The second term on the right-hand side of Eq. (58) is not in
terms of the initial wave packet, so in the second equality we
recursively apply the same procedure and keep terms to order
dt . Now, we use the definition of ρm,n(t) in Eq. (40) to get the
key relation:

1

Pr(R)
Trfield[CRρ0 ⊗ |mξ 〉〈nξ |C†

R]

= ρm,n(t) − dt
√

mn|ξ (t)|2ρm−1,n−1(t). (60)

We repeat this procedure for the remaining terms in Eq. (57),
neglecting terms of order dt2. The conditional map can now
be written entirely in terms of the operators ρm,n:

ρ̄m,n(t + dt |∅) = ρm,n − dt
√

mn|ξ (t)|2ρm−1,n−1

− idt[H,ρm,n] − dt 1
2 {L†L,ρm,n}+

− dt
√

mξ (t)L†Sρm−1,n

− dt
√

nξ ∗(t)ρm,n−1S
†L. (61)

The operators ρ̄m,n(t + dt |∅) are normalized by the prob-
ability of detecting vacuum in the time interval [t,t + dt),
i.e., ρm,n(t + dt |∅) = ρ̄m,n(t + dt |∅)/ Pr(∅). To obtain the
vacuum-detection probability we substitute the top-level Kraus
operators, MN

∅ (t), into Eq. (47):

Pr(∅) = 1 − Pr(J )

= 1 − dtTr[L†LρN,N +
√

Nξ (t)L†SρN−1,N

+
√

Nξ ∗(t)ρN,N−1S
†L + N |ξ (t)|2ρN−1,N−1]. (62)

The probability of vacuum detection is now expressed entirely
in terms of the operators ρm,n. The prior normalization,
Pr(R)−1, is absorbed into each of the ρm,n through their
definition [Eq. (40)]. Using the standard Taylor expansion of
the denominator to order dt [42] we find

ρm,n(t + dt |∅) = ρm,n − dt
√

mn|ξ (t)|2ρm−1,n−1

− i dt[H,ρm,n] − dt 1
2

{
L†L,ρm,n

}
+

− dt
√

mξ (t)L†Sρm−1,n

− dt
√

nξ ∗(t)ρm,n−1S
†L

+ Pr(J )ρm,n. (63)
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The case of photon detection (Rt = J ) proceeds similarly.
The Fock-state Kraus operator for photon detection is

Mn
J (t) = 〈1t |UtCR|nξ 〉

=
√

dt(LCR|nξ 〉 + √
nξ (t)SCR|n − 1ξ 〉). (64)

These are then applied using Eq. (44) to find ρ̄m,n(t + dt |J ),
just as was done for vacuum detection. Indeed, we follow
the same procedure using Eq. (60) to express the right-hand
side entirely in terms of the operators ρm,n, to arrive at the
expression:

ρ̄m,n(t + dt |J ) = dtLρm,nL
† + dt

√
mξ (t)Sρm−1,nL

† + dt
√

nξ ∗(t)Lρm,n−1S
† + dt

√
mn|ξ (t)|2Sρm−1,n−1S

†. (65)

The operators ρ̄m,n(t + dt |J ) are normalized by dividing by the probability of detecting a photon, Pr(J ), found from Eq. (47)
and given explicitly in Eq. (49).

For each infinitesimal measurement outcome {∅,J } we have expressed the conditional operators in terms of the ρm,n.
Consequently, we may write a set of coupled differential equations following the usual procedure [8,43]. For each outcome we
use Eq. (46) to get

dρm,n(t |∅) = dt
( − i[H,ρm,n] − 1

2 {L†L,ρm,n}+ − √
mξ (t)L†Sρm−1,n − √

nξ ∗(t)ρm,n−1S
†L − √

mn|ξ (t)|2ρm−1,n−1
)

+ Pr(J )ρm,n (66)

and

dρm,n(t |J ) = dt[Pr(J )]−1(Lρm,nL
† + √

mξ (t)Sρm−1,nL
† + √

nξ ∗(t)Lρm,n−1S
† + √

mn|ξ (t)|2Sρm−1,n−1S
†) − ρm,n. (67)

The Fock-state SME for photon counting, stated explicitly
in Eq. (48), is found by combining the conditional equations
for vacuum and photon detection into a single differential
equation by introducing a binary random variable dN that
satisfies dN2 = dN and has outcomes 0 (vacuum detection)
and 1 (photon detection). The conditional evolution is then
concisely expressed as

dρm,n(t) =dNdρm,n(t |J ) + (1 − dN)dρm,n(t |∅). (68)

When a photon is counted (dN = 1) the state is updated
with Eq. (67), otherwise (dN = 0) and it is updated with
Eq. (66). Before the current infinitesimal measurement is
performed, the conditional expectation value, E[dN |R] =
0 × Pr(∅) + 1 × Pr(J ) = Pr(J ), is simply the probability for
photon detection. Since E[dN |R] is of order dt , terms of order
dNdt vanish [21], which gives the Fock-state photon-counting
SME in Eq. (48).

An alternate way to write Eq. (48) is in terms of the photon-
counting innovations, dJC(t) ≡ dN − E[dN |R], which is
Eq. (51). The innovations is the difference between the
actual measurement outcome and the expected result and
characterizes how much is learned from the measurement.
The Fock-state photon-counting SME in Eq. (67) can be
transformed to innovations form,

dρm,n(t) = dtLm,n[G,ξ (t)] + dJC(t) dρm,n(t |J ), (69)

where Lm,n[G,ξ (t)] is defined in Eq. (52).
Provided that one knows the initial system state [44],

ensemble averaging over the Fock-state photon-counting SME
over trajectories yields the unconditional Fock-state master
equations in Ref. [14]. In innovations form this is evident
upon inspection since E[dJC(t)] = 0 by definition.

C. Fock-state homodyne SME

In homodyne detection, the output field is combined on a
balanced beam splitter with a local oscillator of phase φ. The
two fields exiting the beam splitter are sent to photodetectors,

whose subtracted photocurrents give the homodyne signal. The
conditional evolution under homodyne detection is given by
the set of coupled SMEs,

dρm,n(t) = dtLm,n[G,ξ (t)] + dJφ(t)Hm,n[G,ξ (t),φ], (70)

where Lm,n[G,ξ (t)] [Eq. (52)] describes the unconditional
evolution, and Hm,n[G,ξ (t),φ] is a generalization of Wise-
man’s conditioning map [45]:

Hm,n[G,ξ (t),φ]≡ e−iφLρm,n + eiφρm,nL
†

+e−iφ
√

mξ (t)Sρm−1,n+eiφ
√

nξ ∗(t)ρm,n−1S
†

−Kφρm,n. (71)

The expected homodyne current is given by

Kφ = Tr[(e−iφL + eiφL†)ρN,N + e−iφ
√

Nξ (t)SρN−1,N

+ eiφS†√Nξ ∗(t)ρN,N−1], (72)

which is equivalent to Tr[HN,N [G,ξ (t)]]. The homodyne
innovations dJφ(t),

dJφ(t) = dJφ − dtKφ, (73)

satisfy the properties of a classical Wiener process: zero mean,
E[dJφ(t)] = 0, and variance E[dJφ(t)2] = dt .

1. Derivation

Now that we have a thorough derivation of the Fock-state
SME for photon counting, we present the homodyne SME for
a quantum system probed by an N -photon Fock state with
fewer details, as much of the derivation proceeds in exactly
the same way.

The projectors for balanced homodyne measurement in an
infinitesimal time interval are constructed from eigenstates of
an infinitesimal quadrature operator [39,43]:

dQφ = e−iφdBt + eiφdB
†
t . (74)
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The measurement outcomes, labeled by Rt ∈ {±}, correspond
to eigenstates that are equal superpositions,

|±t 〉 = 1√
2
(|0t 〉 ± eiφ|1t 〉), (75)

with eigenvalues given by dQφ |±t 〉 = ±√
dt |±t 〉 [39,43]. The

associated infinitesimal measurement projectors are

�± =It) ⊗ |±t 〉〈±t | ⊗ I[t+dt . (76)

Modeling continuous homodyne measurement as a series of
two-outcome measurements is a straightforward consequence
of performing infinitesimal measurements in the single-photon
sector [39,43].

The homodyne Kraus operators are obtained from Eq. (45)
and Eq. (76). They can be conveniently written as superpo-
sitions of the photon-counting Kraus operators [Eq. (56) and
Eq. (64)]:

Mn
±(t) = 1√

2

[
Mn

∅(t) ± e−iφMn
J (t)

]
. (77)

The probabilities for the outcomes follow from the Kraus
operators [Eq. (47)],

Pr(±) = 1
2 (1 ±

√
dtKφ), (78)

and satisfy Pr(+) + Pr(−) = 1. We apply the Kraus operators
to find the SME for each ρm,n, just as was done for the case
of photon counting above. After expanding Eq. (44), we use
the relation in Eq. (60) to rewrite the expression entirely in
terms of the ρm,n matrices. Then, the unnormalized conditional
operators are

ρ̄m,n(t + dt |±) = 1
2 {ρm,n + dtLm,n[G,ξ (t)]

±
√

dt[Hm,n[G,ξ (t),φ] + Kφρm,n]}, (79)

where the homodyne conditioning map Hm,n[G,ξ (t),φ] and
expected homodyne current Kφ are given in Eqs. (71)–(72).

The conditional states [Eq. (79)] and probabilities [Eq. (78)]
are combined into differential equations for each ρm,n using
Eq. (46) by expanding the denominator to order dt and
collecting terms. We introduce a random variable dJφ that
takes on values ±√

dt . From the conditional expectation val-
ues E[dJφ|R] = √

dt × Pr(+) − √
dt × Pr(−) = dtKφ and

E[dJ 2
φ |R] = dt , the variance of dJφ is dt . Thus we define the

homodyne innovations as dJφ(t) ≡ dJφ − E[dJφ|R] which
is equivalent to Eq. (73). As stated above, this satisfies the
properties of a classical Wiener process: mean zero and
variance dt . After some algebra, the differential updates
corresponding to each measurement are combined into the
Fock-state homodyne SME [Eq. (70)].

D. Fock-state heterodyne SME

Continuous heterodyne detection [8,43,46–48] simultane-
ously measures two orthogonal quadratures, either by mixing
the output fields with a detuned local oscillator or performing
double homodyne detection. For orthogonal quadratures spec-
ified by the phases φ ∈ {0,π/2}, the Fock-state heterodyne

SME is

dρm,n(t) = dtLm,n[G,ξ (t)] + 1√
2
dJ0(t)Hm,n[G,ξ (t),0]

+ 1√
2
dJπ/2(t)Hm,n[G,ξ (t),π/2], (80)

where Lm,n[G,ξ (t)] [Eq. (52)] describes the unconditional
evolution, and Hm,n[G,ξ (t),φ] is the conditioning map for
each quadrature [Eq. (71)]. Each quadrature has a homodyne
innovations Jφ(t) [Eq. (73)] satisfying the properties of a
classical Wiener process.

1. Derivation

As measurements of orthogonal quadratures do not com-
mute, heterodyne detection is a more general measurement of
the field described by a POVM.

In an infinitesimal time interval each quadrature is described
by Eq. (74) with phases φ ∈ {0,π/2}, respectively. Each
quadrature measurement has two outcomes, which are not
independent, giving the four joint outcomes {++̃, + −̃, −
+̃, − −̃}. The Kraus operators of the infinitesimal field
measurement are

ϒ±,±̃ =It) ⊗ |±,±̃t 〉〈±,±̃t |√
2

⊗ I[t+dt , (81)

which are composed of the four nonorthogonal states:

|±,±̃t 〉 = 1√
2

(
|0t 〉 + ±1±̃i√

2
|1t 〉

)
. (82)

The POVM elements corresponding to the outcomes are
E±,±̃ = ϒ

†
±,±̃ϒ±,±̃= 1

2 |±,±̃t 〉〈±,±̃t | and obey
∑

s,r Es,r=It .
The heterodyne Kraus operators can be written in terms of

the photon-counting Kraus operators [Eq. (56) and Eq. (64)]:

Mn
±,±̃(t) =1

2

[
Mn

∅(t) + 1√
2

(±1±̃i)Mn
J (t)

]
. (83)

The outcomes probabilities follow from Eq. (47),

Pr(±,±̃) =1

4

[
1 +

√
dt
2

( ± K0±̃Kπ/2
)]

, (84)

where Kφ are the quadrature currents [Eq. (72)].
For each measured quadrature we define a random variable,

dJ0 = ±√
dt and dJπ/2 = ±̃√

dt , which together satisfy
the property dJidJj = dtδi,j so that [(dJi + dJj )/

√
2]2 =

dt . The statistics are found from the marginal probability
distributions, e.g., Pr(±̃) = Pr(−,±̃) + Pr(+,±̃), and for each
we define an innovations akin to Eq. (73). Following the same
procedure in Sec. III C, we obtain Eq. (80).

E. Conditional expectation values

The conditional expectation value of a joint operator O ∈
Hsys ⊗ Hfield is

E[O(t)|R] ≡ 1

Pr(R)
Tr[CRρ0 ⊗ |Nξ 〉〈Nξ |C†

RO]. (85)

For system operators, O = X(t0) = X ⊗ Ifield, performing the
field trace allows the conditional expectation value to be
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written in terms of the reduced system state that arises from
the solutions of the SMEs above:

E[X(t)|R] = Tr[ρsys(t)X]. (86)

Conditional expectation values for general field operators
do not have as simple a reduction as in Eq. (86). However,
for the output quantum noise increments given by Eq. (6),
O = Isys ⊗ dBout

t and O = Isys ⊗ d�out
t , the conditional ex-

pectation values are readily calculated for Fock-state input.
Using the solutions to the Fock-state SMEs, conditional
expectation values of field observables can be calculated.
Inserting the Hermitian output field observables, d�out

t and
dQout

φ , into Eq. (85):

E
[
d�out

t |R] = Pr(J ), (87a)

E
[
dQout

φ |R] = dtKφ. (87b)

These quantities have indeed already appeared in the proba-
bilities for the measurement outcomes [Eq. (49) and Eq. (78)].
The conditional statistics for infinitesimal measurements are
fully determined by four operators: the reduced system state
ρN,N along with the three auxiliary operators, ρN−1,N , ρN,N−1,
and ρN−1,N−1. This is a straightforward consequence of the fact
that such measurements are described in a basis with at most
one photon.

As an example, we may be interested in the conditional
photon-counting statistics given homodyne measurements up
to time t . We first solve Eq. (70) for a given homodyne record
R, then use the solutions to calculate Pr(J ), which is equivalent
to E[d�out

t |R] according to Eq. (87a).

F. System-field entanglement

As the quantum system and input Fock state interact they
become entangled, and at intermediate times signatures of this
entanglement are present in the reduced system state. Although
the measurements disentangle the portion of the field that has
been detected, entanglement between the quantum system and
future field persists.

Indeed, even when the input system state is pure, a trace
over the field yields a mixed reduced state since the system has
become correlated with the unmeasured field, as was studied
recently for a two-level atom interacting with a single-photon
Fock state [49]. This is in contrast to input field states
that factorize temporally, where the reduced conditional state
remains pure if the field is measured with perfect efficiency.
Thus, a stochastic Schrödinger equation for a pure-state wave
function does not apply for Fock-state input, and one is
required to use SMEs.

IV. GENERALIZATIONS

A. Superpositions and mixtures of Fock states in the same
wave packet

In this section, we generalize the Fock-state SMEs to input
states in superpositions and mixtures of Fock states. Since the
Fock states, |nξ 〉, form a complete basis in the temporal mode
ξ (t), they can be used to construct any state in that wave packet.

For an initial field state,

ρfield(t0) =
∑
m,n

cm,n|mξ 〉〈nξ |, (88)

there are two modifications to the Fock-state SMEs presented
in Sec. III. First, the reduced system state is constructed
from the ρm,n(t) using the coefficients cm,n. Second, this
reduced system state changes the form of the measurement
probabilities. However, the coupled SMEs are identical to
those for pure Fock-state input. Below we discuss the details.

Given an input field with the form of Eq. (88), the reduced
system state at time t is

ρsys(t) =
∑
m,n

cm,nρm,n(t), (89)

where ρm,n(t) are solutions to the respective Fock-state SMEs
in Sec. III (photon counting, homodyne, or heterodyne). In
other words, the form of the SMEs that couple the ρm,n

operators is not modified for superpositions and mixtures of
Fock states. However, the diagonal elements and off-diagonal
coherences in Eq. (88) do affect measurements of the output
fields by modifying the conditional probabilities, Pr(Rt ), that
normalize the postmeasurement matrices ρm,n(t).

For the Fock-state photon-counting SME the probability of
detecting a photon at time t becomes

Pr(J ) = dt
∑
m,n

cm,nTr[L†Lρm,n + √
mξ (t)L†Sρm−1,n

+√
nξ ∗(t)S†Lρm,n−1 + √

mn|ξ (t)|2ρm−1,n−1],

(90)

with the probability of vacuum detection given by Pr(∅) =
1 − Pr(J ). The photon-counting SME for superpositions or
mixtures of Fock states is found by using the detection
probability [Eq. (90)] in either form of the Fock-state photon-
counting SME [Eq. (48) and Eq. (69)]. The reduced system
state is found by combining the solutions according to Eq. (89).

For homodyne detection the probabilities Pr(±) and condi-
tioning map Hm,n[G,ξ (t),φ] [Eq. (78) and Eq. (71)] involve
the modified expected quadrature current:

Kφ =
∑
m,n

cmnTr[(e−iφL + eiφL†)ρm,n + e−iφ
√

mξ (t)Sρm−1,n

+ eiφ
√

nξ ∗(t)S†ρm,n−1]. (91)

The homodyne SME for superposition or mixtures of Fock
states is found by using the modified Kφ [Eq. (91)] in the
Fock-state homodyne SME [Eq. (70)] and then combining
the solutions according to Eq. (89) to get the reduced system
state. The Fock-state heterodyne SME [Eq. (80)] is modified
similarly.

In Appendix B we give the Heisenberg-picture form of the
Fock-state SMEs for the general input fields in Eq. (88).

B. Imperfect detection

To model detectors of imperfect quantum efficiency η (0 �
η � 1) the Fock-state SMEs and unconditional Fock-state
MEs are combined with respective weights η and 1 − η [8].
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For photon counting, the standard-form Fock-state photon-
counting SME becomes

dρm,n(t) = dNηdρm,n(t |J ) + ηdρm,n(t |∅)

+ dt(1 − η)DL[ρm,n]. (92)

The probability Pr(J ) is a statement about the output field—it
is the probability that a photon arrives at the detector. However,
the fact that an imperfect detector may not register the photon
is captured by the modified conditional expectation value,
E[dNη|R] = η Pr(J ). Inserting this relation in the photon-
counting innovations [Eq. (51)] the transformation to the
innovations-form SME is straightforward. For homodyne and
heterodyne detection, the Fock-state SMEs are obtained by
modifying the innovations in Eqs. (70) and (80) according to
dJφ(t) → √

ηdJφ(t) [8].

C. Additional decoherence

Additional decoherence channels can be included by
amending the Fock-state SMEs. For each ρm,n the actions of
the Lindblad superoperators corresponding to the decoherence
channels are added to the differential maps dρm,n(t). When
the dissipation arises from heat baths, it can be derived
explicitly by including additional modes in the evolution
unitary [Eq. (5)] and then tracing them out. For example, a
stationary thermal bath with mean photon number 〈n〉 that
couples linearly to the system via the operators L̃ and L̃†

introduces additional Lindblad terms the equations of motion
for ρm,n(t). Specifically, to each dρm,n(t) the following terms
are added:

(〈n〉 + 1)DL̃[ρm,n] + 〈n〉DL̃† [ρm,n], (93)

where the first describes decay and the second incoherent
thermal driving.

V. EXAMPLE: CONDITIONAL DYNAMICS OF A
TWO-LEVEL ATOM

As an introduction and guide to using the Fock-state SMEs,
we present a brief study of conditional dynamics for a two-
level atom with eigenstates |g〉 and |e〉. The total Hamiltonian
(h̄ = 1) for the atom-field system is

H = Hatom + Hfield + Hint. (94)

The bare Hamiltonian for the atom with transition frequency
ω0 is Hatom = ω0

2 σz, where σz = |e〉〈e| − |g〉〈g|. The positive-
frequency, continuous-mode field is described by a bare
Hamiltonian Hfield = ∫ ∞

0 dω ωb†(ω)b(ω), with field operators
satisfying [b(ω),b†(ω′)] = δ(ω − ω′). Finally, the atom-field
interaction is described by the Hamiltonian [21],

Hint = −i

∫ ∞

0
dω κ(ω)[σ+b(ω) − σ−b†(ω)], (95)

where κ(ω) is the dipole-field interaction strength at frequency
ω, and σ+ = |e〉〈g| and σ− = |g〉〈e| are the atomic raising and
lowering operators. Making the usual Markov approximation
[5,21], the coupling strength is linearized around the atomic
resonance frequency, � ≡ 2π |κ(ω0)|2, and the lower limit of
integration in Eq. (95) is extended to −∞. In an interaction
picture with respect to H0 = ωc

2 σz + Hfield, where ωc is the

carrier frequency of the input wave packet, the resulting
(S,L,H )-operators [31] that appear in the time evolution
operator [Eq. (5)] are

S = Isys, (96a)

L =
√

�σ−, (96b)

Hsys = −�0σz, (96c)

with σz = |e〉〈e| − |g〉〈g| and detuning �0 ≡ ωc − ω0. The
atom is probed by a Fock state |Nξ 〉 [Eq. (12)] with resonant
carrier frequency (ωc = ω0) in a Gaussian wave packet given
by

ξ (t) =
[

(�ω/�)2

2π

]1/4

exp

[
− (�ω/�)2

4
(t − t0)2

]
. (97)

The dimensionless spectral bandwidth, �ω/�, is defined such
that the variance of |ξ (t)|2 is (�ω/�)−2.

A. Few-photon Fock states

We solve the Fock-state SMEs in Sec. III for few-photon
input for each of the three measurements: photon counting,
homodyne, and heterodyne. For each measurement type we
calculate a single trajectory for the atom initialized in its
ground state, ρ0 = |g〉〈g|, and the input field in an N -photon
Fock state. We numerically integrate the set of coupled
equations for ρm,n and then extract the conditional reduced
system state: ρsys = ρN,N . From ρsys, conditional expectation
values are then calculated as usual; see Eq. (86).

1. Single quantum trajectories

We begin by examining the conditional excitation probabil-
ity, Eq. (86), for Pr(e) ≡ Tr[|e〉〈e|ρsys(t)] for each of the mea-
surement types. In Fig. 2 we plot single trajectories for N = 1
and N = 2 input photons. The trajectories for photon counting
are of particular interest, as Fock states are eigenstates of total
photon number. These trajectories display discrete jumps at the
photon detection times—in (a) there is one jump, and in (b)
there are two, corresponding to the number of input photons
N . The vacuum-detection evolution up to the first detection
time is deterministic, given by the first line of Eq. (48). At the
first detection time the single-photon trajectory returns to zero,
indicating a quantum jump to the atom’s ground state.

However, something curious happens for the N = 2 trajec-
tory in Fig. 2(b): Pr(e) abruptly increases at the first photon
detection. Similar quantum jumps up have recently been
studied by Blocher and Mølmer [50] for a decaying atom.
Indeed, the conditional excitation probability may jump up or
down depending on time of detection [see Fig. 2(c)]. Further
simulations (not shown) indicate that this is a generic feature
of photon counting arising from interference between input
and reradiated fields.

Insight into the conditional dynamics can be seen in the
trajectories of the Bloch vector, �σ = (〈σx〉,〈σy〉,〈σz〉), shown
in Figs. 2(c) and 2(d). The Bloch-vector components are
〈σi(t)〉 ≡ Tr[ρsys(t)σi] for Pauli operators on the pseudospin,
σx = |e〉〈g| + |g〉〈e|,σy = −i(|e〉〈g| − |g〉〈e|). As pure Fock
states have no associated phase, the excitation dynamics for
photon-counting trajectories lie entirely on the z axis of
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FIG. 2. Single trajectories for a two-level atom interacting with propagating N = 1 (top row) and N = 2 (bottom row) Fock states when
the output fields are subject to continuous photon counting, homodyne, and heterodyne measurements. Detection times are indicated for the
photon-counting trajectory. Unconditional dynamics, calculated from the Fock-state ME, are shown. (a, b) Conditional excitation probability
Pr(e) = 〈e|ρsys(t)|e〉. The input Gaussian wave packet |ξ (t)|2 is shown (thin black filled gray), where ξ (t) is given by Eq. (97) with �ω/� = 1
and t0 = 0. (c, d) Projection of the Bloch sphere onto the xz plane showing the trajectories of the conditional Bloch vector. For heterodyne
detection measurement of both quadratures drives the Bloch vector out of the xz-plane (not shown). (e, f) Conditional reduced-state purity,
Tr[ρ2

sys(t)], for the same trajectories.

the Bloch sphere. At the center of the Bloch sphere, where
Pr(e) = 0.5, the atom is maximally entangled with the field and
the reduced state reaches its minimum purity. For the diffusive
cases of homodyne and heterodyne detection, the phases
associated with the measurements drive the reduced atomic
state off the z axis, as seen in the Bloch-sphere representations
of the state in Figs. 2(a) and 2(b). This results in reduced states
of higher purity in general. Since the atom is prepared in a pure
state, atom-field entanglement is revealed by the reduced-state
purity of the atom, Tr[ρ2

sys(t)], plotted in Figs. 2(e) and 2(f).

2. Ensemble-averaged quantities

In early work by Dalibard et al. [51], quantum trajectories
for vacuum input fields were used not as a description
of a single-shot continuous measurement, but rather as a
tool to efficiently simulate ensemble-averaged, unconditional
evolution. This relies on the fact that as the number of
trajectories becomes large, the ensemble average over quantum
trajectories approaches the unconditional ME. Convergence
to the ME is similarly true for Fock-state input fields, as
demonstrated in Fig. 3. For each input field preparation with
N = {1,2,4} photons, we simulated 1000 trajectories of the
photon-counting SMEs. In the top row, we illustrate agreement
of the ensemble-averaged SME and the ME for Pr(e).

Below, in the second row of Fig. 3, we plot total photon
counts as a function of time. In any particular trajectory
the photon detection times are random, but as t → ∞ the

total number of detections is equal to the number of input
photons. The ensemble average over trajectories approaches
the unconditional integrated photon flux,

∫ t

0 dt ′〈d�out
t ′ 〉. This is

directly calculated from the input-output field relation [Eq. (7)]
using the Fock-state MEs as described in Ref. [14].

B. Fock-state approximation to a coherent state

A continuous-mode coherent state with amplitude α(t) =
α0ξ (t), with peak amplitude α0 [52], can be expanded in the
basis of Fock states as [35]

|αξ 〉 = e−|α0|2/2
∞∑

n=0

(α0)n√
n!

|nξ 〉. (98)

The total mean photon number is 〈n〉 = |α0|2 and peak input
photon flux is 〈n〉 max|ξ (t)|2. A finite approximation to |αξ 〉
is found by truncating the Fock expansion at chosen photon
number ntrunc, and renormalizing.

We return to the two-level atom in Sec. V. Here we consider
the case where the atom is probed by a coherent-state wave
packet |αξ 〉 with amplitude α0 = √

5 corresponding to 〈n〉 = 5,
and the output fields are measured via continuous homodyne
detection. The wave packet is Gaussian [Eq. (97)] with
�ω/� = 1. In Fig. 4 we compare the conditional coherent-
state dynamics to those for Fock-state approximations of
increasing truncation ntrunc in Eq. (98). The input state is
a superposition of Fock states, so the reduced system state
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FIG. 3. Ensemble-averaged expectation values for a two-level interacting with Fock states with N = 1 (left column), N = 2 (middle
column) N = 4 (right column) photons for continuous photon-counting measurements. Here 1000 trajectories were simulated, 60 of which are
shown. For each N a single example trajectory is highlighted (solid curve exhibiting jumps) with times of detection indicated by black arrows
on the time axis. The ensemble average over trajectories converges to the unconditional Fock-state ME. (a, c) Excitation probability Pr(e). The
input Gaussian wave packet |ξ (t)|2 is shown (thin black filled gray), where ξ (t) is given by Eq. (97) with �ω/� = 1 and t0 = 0. (d, f) Total
photon counts as a function of time. Every trajectory has exactly N photon counts, and the asymptotic ensemble averages and unconditional
expectation values approach N . Average total photon counts for the input Fock state,

∫ t

0 dtN |ξ (t)|2, is shown in black.

is given by Eq. (89). Under identical measurement records,
the approximate Fock-state conditional expectation values
converge to the coherent-state values as the truncation level
increases, as seen in columns (a)–(c). Shown for comparison
are the unconditional ME dynamics for the Fock-state approx-
imation [14,53], which likewise converge.

For coherent-state input, the conditional state of the atom
remains pure at all times and its Bloch vector is confined
to the surface of the Bloch sphere. Entanglement generated
between the atom and field in each infinitesimal time interval
is immediately recovered by the measurement, which projects
the joint state into a tensor-product state. This is evident from
the coherent-state trajectory, which traces out the boundary
of the Bloch sphere in the xz plane. When the truncation
level of the the Fock-state approximations is low, Fig 4(a),
for example, the conditional Bloch vector enters the interior
and the reduced-state becomes mixed, signaling residual
entanglement with the future, unmeasured field.

VI. CONCLUSION

We have presented the stochastic master equations that
describe the conditional reduced-state dynamics for a quantum
system interacting with a propagating N -photon Fock state.
Our derivation of the Fock-state SMEs for different detection
schemes uses Kraus operators and a temporal decomposition
of the input fields, rather than the methods of quantum filtering
theory [34].

A method complementary to our coupled SMEs exists,
which treats the input Fock state as arising from a cascaded

source. This was originally suggested for a single photon by
Gheri et al. [13] and Gough et al. [17,18], and generalized to N

photons by Gough and Zhang [54]. Further, many alternative
approaches have been developed to study quantum interactions
with propagating photons. These include path-integral-based
MEs [55], generalized input-output theory [56], direct calcu-
lations of the scattering matrix [57], time-domain treatment
of the joint-state wave function [58–60], and diagrammatic
methods [61]. It would be interesting to see if such methods
could be extended to describe field measurements and the
resulting quantum trajectories.

The Fock-state SMEs presented here can be extended
to more general fields. For input states with large mean
fields, a Mollow transformation can be used to reduce the
number of Fock states required for a faithful simulation
[31, see Sec. VII B 1]. By choosing a temporal-mode basis,
as was done for Fock-state MEs in Refs. [14,53], our methods
can be straightforwardly extended to more general N -photon
states whose spectral density functions do not factorize [62].
Recently, using a non-Markovian embedding in the Heisenberg
picture, SMEs for such states were derived by Song et al. in
Ref. [19].

There are a number of applications of our theory. Single-
photon SMEs have already been used to study conditional
phase shifts on a cavity [63], nondestructive photon detection
[64], and conditional excitation probabilities [18,65]. Two-
mode, two-photon quantum trajectories have been used to
study an effective beam-splitter interaction using a mechan-
ical resonator [66] and excitation probabilities [67]. It is
foreseeable that our formalism could enable the study of
high-speed quantum feedback control [8,68] with nonclassical
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FIG. 4. Trajectories for a two-level atom interacting with finite approximations (orange) to a coherent-state wave packet (blue) of increasing
precision (Fock-state truncation level ntrunc), when the output fields are subject to homodyne detection. The coherent state is prepared with
〈n〉 = 5 photons. Convergence of a single trajectory is shown under the same noise realization (simulated measurement record). (a–c) Projection
of the Bloch sphere onto the xz plane showing the trajectories of the conditional Bloch vectors with respective Fock-state approximations. The
approximations are truncated at ntrunc = {2,6,10}, which account for {0.04,0.62,0.97} of the total photons in the coherent state. For comparison,
the Bloch vectors for the coherent-state and Fock-state-approximation MEs are shown. Below each Bloch sphere are the dynamics of 〈σx(t)〉
and 〈σz(t)〉. For reference the input Gaussian wave packet |ξ (t)|2 is shown in black filled gray, where ξ (t) is given by Eq. (97) with �ω/� = 1
and t0 = 0.

fields. Further, the Fock-state SMEs could allow for novel
state preparation using time-resolved postselection, where the
number of photons detected as well as the times of detection
are design parameters. Finally, the techniques of Sec. IV A
allow for the direct simulation of SMEs for exotic field states
by expressing them in a Fock basis.

Another broad application of the Fock-state SMEs is
the study of quantum networks with nonclassical inputs.
Carmichael and Gardiner [15,16] developed the theory of
cascaded quantum systems for situations where one quantum
system is driven by the output of another. Recently this
theory was expanded to include the scattering operator S and
formalized into the SLH framework for quantum networks
[69]. For a set of n cascaded quantum systems, the theory
describes rules to compose the separate Hamiltonians H (n),
linear coupling operators L(n), and scattering operators S(n)

for into a set of new (S,L,H )cas operators that describes the
joint system as a whole. An introduction can be found in
Ref. [31]. The cascaded coupling operators, (S,L,H )cas, are
used directly in the Fock-state SMEs above. Using the results
in Sec. IV A, our formalism allows simulating an arbitrary
field state input to the network.
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APPENDIX A: TEMPORAL DECOMPOSITION OF
FOCK STATES

Here we expand on the temporal decomposition of Fock
states within the wave packet ξ (t). With respect to a time t , the
wave packet creation operator decomposes as

B
†
t)(ξ ) =

∫ t

t0

dsξsb
†(s) +

∫ ∞

t

dsξsb
†(s) (A1)

= B
†
t)(ξ ) + B

†
[t (ξ ), (A2)

where by definition [B†
t)(ξ ),B†

[t (ξ )] = 0. Inserting this decom-
position into Eq. (12) and expanding the product, a Fock state
can be written

|nξ 〉 = 1√
n!

n∑
k=0

(
n

k

)
[B†

t)(ξ )]k[B†
[t (ξ )]n−k|0〉 (A3)

with binomial coefficient(
n

k

)
≡ n!

k!(n − k)!
. (A4)

The fact that Eq. (A3) does not factorize in time indicates
temporal correlations between photons in the past and future
time intervals. Applying a temporally decomposed wave
packet creation operator to vaccum generates unnormalized
Fock states over a time interval (chosen here to be the past
interval [t0,t), for illustration)

|nt)〉 = 1√
n!

[B†
t)(ξ )]n|0〉. (A5)

They are unnormalized:

〈nt)|nt)〉 = [1 − w(t)]n (A6)

〈n[t |n[t 〉 = [w(t)]n (A7)

with

w(t) ≡
∫ ∞

t

dt |ξ (t)|2 � 1, (A8)

because the division of ξ (t) creates two temporal modes that
are not individually square-normalized. Then we can express
Eq. (A3) as

|nξ 〉 =
n∑

k=0

√(
n

k

)
|kt)〉 ⊗ |n − k[t 〉. (A9)

Using Eq. (A6) the past and future Fock states can be
normalized,

|nt)〉 = [1 − w(t)]−
n
2 |nt)〉, (A10)

|nt)〉 = [w(t)]−
n
2 |nt)〉, (A11)

so that the temporal decomposition becomes

|nξ 〉 =
n∑

k=0

√(
n

k

)√
[1 − w(t)]k[w(t)]n−k|kt)〉 ⊗ |n − k[t 〉.

(A12)

1. Infinitesimal decomposition

Following the same procedure, we decompose the Fock
state according to the three-interval temporal decomposition in
Eq. (15). However, we choose to combine the past and future
wave packet creation operators, only making the distinction
with the current time interval [t,t + dt). To this end we define

B
†
ξ ≡ B

†
t)(ξ ) + B

†
[t+dt (ξ ). Then Eq. (19) can be written

|nξ 〉 = 1√
n!

[ξ (t) dB
†
t + B

†
ξ ]n|0〉

= 1√
n!

n∑
k=0

(
n

k

)
[ξ (t) dB

†
t ]k(B

†
ξ )n−k|0〉

=
[

1√
n!

(B
†
ξ )n + √

nξ (t) dB
†
t

1√
(n − 1)!

(B
†
ξ )n−1

]
|0〉

= |0t 〉 ⊗ |nξ 〉 +
√

n dtξ (t)|1t 〉 ⊗ |n − 1ξ 〉. (A13)

The third line follows from the Itō relation dB
†
t dB

†
t = 0, such

that the only nonvanishing terms are k = 0 and k = 1, and in
the last line we have used the definition of the infinitesimal
single-photon state [Eq. (18)]. Equation (A13) is the relative-
state decomposition in Eq. (20). The unnormalized Fock states

|nξ 〉 = (1/
√

n!)[B
†
ξ ]n|0t)〉 ⊗ |0[t+dt 〉 are defined on the joint

past-future Hilbert space, Ht) ⊗ H[t+dt , which excludes the
current interval. From Eq. (A13) the |nξ 〉 are clearly equivalent
to the definition in Eq. (21). Their inner product, 〈nξ |nξ 〉 =
1 − n dt |ξ (t)|2, can be worked out directly or by iteration as
in Eq. (22).

APPENDIX B: HEISENBERG-PICTURE
FOCK-STATE SMES

In some cases it proves useful to condition operators, rather
than quantum states, on the continuous measurement record
R. In the mathematical quantum filtering literature [34], this is
the preferred picture. Given the initial joint state ρ0 ⊗ ρfield, the
conditional expectation of a system operator X(t0) = X ⊗ I

[34], is

π (X) ≡ 1

Pr(R)
Trfield[ρfieldC

†
RXCR]. (B1)

Since π (X) is an operator, conditional expectation values
are found by taking the trace with the initial system state,
[πm,n(X)]† = πn,m(X†). For input fields of the form of Eq. (88),
the conditional operator in Eq. (B1) at time t is found by
solving a set of coupled SMEs for the Fock-state conditional
operators,

πm,n(X) ≡ 1

Pr(R)
〈mξ |C†

RXCR|nξ 〉, (B2)

and then reconstructing π(X) from the coefficients:

π(X) =
∑
m,n

c∗
m,nπm,n(X). (B3)

Note that [πm,n(X)]† = πn,m(X†). The SMEs for πm,n[X]
[18,19] can be extracted directly from the Fock-state SMEs
above using the cyclic property of the trace on each term. For
example, multiplying a term Aρm,n(t)B by X and taking the
trace over system and field one can show

Tr[Aρm,n(t)BX] = Trsys[ρ0πn,m(BXA)]. (B4)
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Repeating this procedure on each of the Fock-state SMEs in Sec. III and identifying the terms in the system trace yields the
SMEs in Heisenberg form.

For continuous photon counting the Heisenberg-picture Fock-state SME is

dπm,n(X) = dt

{
iπm,n([Hsys,X]) − 1

2
πm,n({L†L,X}+) − √

mξ ∗(t)πm−1,n(S†LX) − √
nξ (t)πm,n−1(XL†S)

}
+ Pr(J )πm,n(X)

+ dN

[
πm,n(L†XL) + √

mξ ∗(t)πm−1,n(S†XL) + √
nξ (t)πm,n−1(L†XS) + √

mn|ξ (t)|2πm−1,n−1(S†XS)

Pr(J )/dt

−πm,n(X)

]
(B5)

with probability of photon detection

Pr(J ) = dt
∑
m,n

c∗
m,nTrsys[ρ0{πm,n(L†L) + √

nξ (t)πm,n−1(L†S) + √
mξ ∗(t)πm−1,n(S†L) + √

mn|ξ (t)|2πm−1,n−1(I )}]. (B6)

For homodyne detection the Heisenberg-picture Fock-state SME is

dπm,n(X) = dt{iπm,n([Hsys,X]) + πm,n(D†
L[X]) + √

mξ ∗(t)πm−1,n(S†[X,L]) + √
nξ (t)πm,n−1([L†,X]S)

+√
mn|ξ (t)|2πm−1,n−1(S†XS − X)} + dJφ(t){eiφ[πm,n(LX) + √

mξ ∗(t)πm−1,n(S†X)] + e−iφ[πm,n(XL†)

+√
nξ (t)πm,n−1(XS)] − Kφπm,n(X)}, (B7)

where the adjoint-form Lindblad superoperator acting on X is D†
L[X] ≡ L†XL − 1

2 (L†LX + XL†L). The expected homodyne
current is

Kφ =
∑
m,n

c∗
mnTrsys[ρ0{πm,n(e−iφL + eiφL†) + eiφ

√
nξ (t)πm,n−1(S) + e−iφ

√
mξ ∗(t)πm−1,n(S†)}]. (B8)

The Heisenberg-form SME for heterodyne detection follows straightforwardly from the homodyne SME in analogy with Eq. (80).
In each case, the SME for conditional operator πm,n(X) includes terms that couple to other conditional system operators, e.g.,

πm−1,n(S†XL), whose SMEs must be also solved simultaneously.
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