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Quantum cascaded systems offer the possibility to manipulate a target system with the quantum state of
a source system. Here, we study in detail the differences between a direct quantum cascade and coherent or
incoherent driving for the case of two coupled cavity-QED systems. We discuss qualitative differences between
these excitations scenarios, which are particularly strong for higher-order photon-photon correlations: g(n)(0) with
n > 2. Quantum cascaded systems show a behavior differing from the idealized cases of individual coherent or
incoherent driving and allow one to produce qualitatively different quantum statistics. Furthermore, the quantum
cascaded driving exhibits an interesting mixture of quantum coherent and incoherent excitation dynamics. We
develop a measure where the two regimes intermix and quantify these differences via experimentally accessible
higher-order photon correlations.
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I. INTRODUCTION

Quantum light sources are realized for many different mate-
rial platforms in semiconductor, atom, and molecular systems
[1–5] and offer an exciting testbed for nonlinear quantum
dynamics [6], including quantum ghost imaging, two-photon
spectroscopy [7–9], and quantum light spectroscopy [10–12].
Prototypical single-photon emitters based on semiconductor
nanostructures are produced [13–15] and used in quantum
cryptography protocols [16–18] and quantum sensing [19].
Recently, practical realizations of intense and tunable thermal
sources have become accessible [20–23] and are applied
experimentally for photon-statistics excitation spectroscopy
[21,24] and to read-out quantum beating of hyperfine levels
via a modulation with pulse separation [20]. Polarization-
entangled photon sources [25], another class of quantum light
sources, are electrically driven and triggered on demand [26].
For highly efficient and indistinguishable twin photon sources
[27] this is possible as well in the context of N -photon bundle
emitters [3] and on-demand time-ordered photon pairs [28].

The rich variety of quantum light is accompanied by excit-
ing proposals. Single photon excitation purifies nonclassical
states and suppresses fluctuations [29] and allows for Hilbert-
state addressing [30]. Entangled photon pairs are proposed for
ultrafast double-quantum-coherence spectroscopy of excitons
with entangled photons [31] or quantum gates based on
entanglement swapping protocols [32]. The Schmidt decom-
position allows one to analyze the material response function
to obtain information about otherwise inaccessible resonances
of a complex system [33]. This connects to the context of
quantum optical spectroscopy [11,34] and nonlinearity sensing
via photon-statistics excitation spectroscopy [1,22,35,36].

A very convenient method to simulate quantum excitation
experiments is the quantum cascade setup developed at the
same time by Gardiner [37] and Carmichael [38]. In this
context it was shown that certain photon statistics may alter
the response of the target system in a cascaded setup [39].
In these previous studies, the focus was on simple sources.
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Recently, the impacts of the cascaded setup in correlations
up to third order were considered for the case where the
output of a two-level system is used to drive a cavity [30] and
another two-level system [40]. There, it was also suggested
to use higher-order correlation functions to better characterize
the target light field. In the following, we will consider the
Jaynes-Cummings model as a prototype for laser-like sources
and quantum light sources. The main target of interest in our
study is a Tavis-Cummings model with two emitters in order
to observe the impact of a larger nonlinearity in the context of
cascaded coupling.

The quantum cascade approach allows a self-consistent
mapping of the quantum excitation onto a second system, via
the quantum Langevin [37] or quantum stochastic Schrödinger
equations [41,42]. The coupling mechanism of the cascaded
system is a dissipatively mediated excitation process where
the output (measurement) of the source system is the input
(excitation) of the target system. This excitation strategy differs
strongly from a bath input (thermal equilibrium) or laser
excitation, which adds coherence to the system. In contrast,
the quantum cascaded driving allows a photon-statistical fine
tuning in between these regimes and renders a transient regime
accessible, where thermal statistics and quantum coherences
coexist and intertwine via quantum emitters. The cascaded
coupling does not consider back-action and ignores time delays
between the source and target systems. Systems incorporating
these effects are more difficult to model from a theoretical
perspective; however, the new degrees of freedom are an
alternative way to control the photon statistical output of a
system [43].

In this work, we theoretically discuss this intermixing
and transition dynamics by employing a quantum cascaded
system. This kind of quantum cascaded setup may be realized
experimentally by implementing the microcavity containing
the emitters inside a waveguide. To ensure the unidirectionality
of the coupling mechanism, topological photonics structures
can be exploited [44], where light is only able to propagates
into one direction. In Sec. II, we derive the basic quantum cas-
caded coupling in the master equation formalism, equivalent
to the method of Langevin operators [30,45] and the quan-
tum stochastic Schrödinger equation [38,46]. We apply this
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FIG. 1. Schematic depiction of the studied setup. The source
cavity, which contains a TLS, is pumped incoherently with rate �P

s .
The emission of the source cavity is fed into the one or two emitters
contained in the target cavity.

quantum cascaded coupling in Sec. III to a specific example:
an incoherently pumped single quantum emitter in a cavity
as the source and as the target one or two identical quantum
emitters coupled to a cavity. The intensity-intensity correlation
g(2)(0) of the target system follows the intensity-intensity
correlation in a degraded fashion, which is expected for
cascaded cavities with nonlinearities [47]. In Sec. IV, however,
we show that the response of the target system follows not
universally the output of the source system: Higher-order
intensity correlations g(n)(0) exhibit a completely different
picture. Via these higher-order correlations, we finally discuss
the qualitatively different behavior of the cascaded setup in
comparison to the typical excitation scenarios of coherent and
incoherent pumping in Sec. V. In Sec VI, we conclude and
summarize the findings.

II. QUANTUM CASCADE MODEL

To investigate the dynamics of a quantum cascaded system,
we derive a master equation in the Born-Markov limit using
a thermal bath [30,45,48]. Employing these approximations
allows us to trace out the bath degrees of freedom and derive

a master equation for this system, which still is numerically
expensive, but tractable. To allow for more complex bath states,
more expensive models would be needed [49–51], which take
into account the bath itself, e.g., [52]. In the model employed
here with a second-order Born and Markov approximation,
more complicated types of reservoirs cannot be treated.

The assumption of a thermal bath will lead to a coupling
mechanism, which imprints the intrinsic incoherence of the
bath partially onto the target while still preserving some of the
properties of the source statistics.

We will consider systems as depicted in Fig. 1, i.e., a source
quantum system with Hamiltonian Hs coupled via a thermal
bath Hc to target quantum system Ht . The full Hamiltonian
reads H = H0 + Hs + Hc + Ht , with H0 including the free
evolution dynamics of all quantities in the total system. At
this point, we do not define Hs and Ht , but focus on the
coupling Hamiltonian Hc, which is given in a rotating frame
in correspondence to H0 and reads in the rotating wave
approximation

Hc

h̄
=

∫
dω b(ω)

[
Ks

ωJ †
s (t) + Kt

ωJ †(t,τ )
] + H.c., (1)

where τ describes the finite time delay between the target
and source system and Js,Jt describe a single operator or a
superposition in the source and target system, respectively.
The coupling of the source/target system to the connecting
reservoir is K

s/t
ω , which we set independently of the frequency

in the narrow bandwidth limit K
s/t
ω ≡ K

s/t

0 .
To derive the quantum cascaded coupling, we employ

the canonical derivation of the master equation in the Born-
Markov limit with χtot(t) = ρ(t)ρB(0), assuming the coupling
reservoir is in equilibrium and in a thermal state [53,54]:

dρ

dt

∣∣∣∣
c

= − 1

h̄2

∫ t

0
ds TrB{[Hc(t),[Hc(s),ρ(t)ρB]]}. (2)

We assume the thermal bath to be in the vacuum state and
consider only contributions proportional to 〈b(ω)b†(ω)〉 and
assume the commutator relations [b(ω),b†(ω′)] = δ(ω − ω′).
Given these conditions, the double commutator can be eval-
uated, and we get the following master equation after tracing
out the bath degrees of freedom:

dρ

dt

∣∣∣∣
c

= − 2π
∑
i=s,t

(Ki
0)2

∫ t

0
ds δ(s − t)[J †

i (t)Ji (s)ρ(s) − Ji (t)ρ(s)J †
i (s) − Ji (s)ρ(s)J †

i (s) + ρ(s)J †
i (s)Ji (t)]

− 2πKs
0K

t
0

∫ t

0
ds δ(s − (t − τ ))[J †

t (t)Js (s)ρ(s) − Jt (t)ρ(s)J †
s (s) − Js (s)ρ(s)J †

t (t) + ρ(s)J †
s (s)Jt (t)]

− 2πKs
0K

t
0

∫ t

0
ds δ(s − (t + τ ))[J †

s (t)Jt (s)ρ(s) − Js (t)ρ(s)J †
t (s) − Jt (s)ρ(s)J †

s (s) + ρ(s)J †
t (s)Js (t)]. (3)

We take into account that
∫ t

0 ds δ(t − s)h(s) = h(t)/2 and that s � t . By definition Ki
0 = √

γi/(2π ), where γi are the decay
rates of the subsystems that couple source and target. Then, one coupling contribution between target and source vanishes. The
full master equation in the Born-Markov limit reads

dρ

dt
= 1

ih̄
[Hs + Ht,ρ] +

∑
i=s,t

γi

2
(2Ji (t)ρ(t)J †

i (t) − {J †
i (t)Ji (t),ρ(t)})

− √
γsγt (J

†
t (t)Js (tD)ρ(tD) − Jt (t)ρ(tD)J †

s (tD)) − √
γsγt (ρ(tD)J †

s (tD)Jt (t) − Js (tD)ρ(tD)J †
t (t)), (4)
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with tD = t − τ . In our setup, the delay τ is small and can
be set to zero safely within our Markovian approximation.
Transforming back from the rotating frame, the full master
equation reads

dρ

dt
= 1

ih̄
[H0 + Hs + Ht,ρ]

+
∑
i=s,t

γi

2
(2Ji ρJ

†
i − {J †

i Ji ,ρ})

− √
γsγt ([J

†
t ,Js ρ] + [ρJ †

s ,Jt ]). (5)

Given this result, we can investigate different kinds of systems
and study the particular features of a quantum cascaded
driving. To characterize the cascaded driving, we choose
first a specific system and then propose the photon-photon
correlation functions as a measure for coherence in the system.
We will see that the cascaded system exhibits different regimes
of excitation depending on the source excitation; however,
the source state is not straightforwardly mapped to the target
system. Remarkably, it still shows traits of a coherent driving
setup, although the cascaded driving is of purely dissipative
nature.

III. EXAMPLE: COUPLED CQED SYSTEMS

As a platform to investigate quantum excitation in com-
parison to coherent and incoherent driving, we focus on a
coupled cavity quantum electrodynamics (CQED) system,
Fig. 1. As a source system, we consider a single emitter
coupled to a single cavity mode, which is the prototypical
Jaynes-Cummings Hamiltonian:

Hs = h̄gs(a
†
s σ

−
s + σ+

s as), (6)

where gs = 0.1 ps−1 denotes the coupling element between
the cavity field with creation (annihilation) operators a(†) and
the fermionic degrees of freedom described via the spin Pauli
matrices σ

(+/−)
s . The coupling operator from the source to

the cavity is chosen to be Js := as . To control the source
system, we assume an incoherent pumping mechanism. For
far-off resonant driving, this pump mechanism can safely be
described via [55]

D
[√

�P
s σ+

s

]
ρ := �P

s (2σ+
s ρσ−

s − {σ−
s σ+

s ,ρ}), (7)

assuming the transfer of excitation from the ground state to
the excited state of the fermionic system, and the definition
D[J ]ρ := 2JρJ † − {J †J,ρ}. In the following, we will fix
all parameters (cf. Table I) but �P

s , which is controllable
via the intensity of the applied external pumping field, or
even electrically steerable in semiconductor nanotechnology
platforms [1,56–58].

The source is an incoherently pumped single emitter
coupled to a single cavity mode. Depending on the pumping
strength, the statistics of the output field can be tuned over a
wide regime; starting with weak pumping in the single-photon,
or antibunching regime g(2)(0) = 〈(a†

s )2(as )2〉/〈a†
s as 〉2

< 1,
the idealized two-level system (TLS) may be brought to
the thermal state for a pumping parameter �P

s � gs . This
may not be true for more complex quantum systems such as
semiconductor quantum dots, where energetically higher lying

TABLE I. Parameters used for the cascaded setup throughout the
paper.

Parameter Value (ps−1)

gs 0.1
gt 0.1
γs 0.02
γt 0.5
κs 0.1
κt 0.005

multiexciton states may be excited. This is beyond the scope of
this work, but may be interesting for future studies as realistic
quantum dots imprint distinctive signatures on the output of a
possibly more realistic light source [23].

To complete the picture, we assume a radiative decay for
the source via

D[
√

γsσ
−
s ]ρ := �s

r (2σ−
s ρσ+

s − {σ+
s σ−

s ,ρ}). (8)

The radiative decay amounts to �s
r = 0.02 ps−1. So, we do

not assume perfect β = 1 laser dynamics for the single emitter
laser, as radiative decay is not fully absorbed by the cavity
mode [59].

As a target system, we choose the Tavis-Cummings Hamil-
tonian with two emitters:

Ht = h̄
∑
j=1,2

gj,t (a
†
t σ

−
j,t + σ+

j,t at ), (9)

where the emitter of the target system σ
−/+
j,t couples to the

single mode cavity with the strength gj,t = gt = 0.1 ps−1 and
the emitters are identical. Here, the coupling operator from
the target system is chosen to be Ji,t := σ−

i,t (i = 1,2); i.e., the
coupling to the source is individual and not in superposition.
We assume an additional cavity loss for the target system via

D[
√

κtat ]ρ := κt (2at ρa
†
t − {a†

t at ,ρ}) (10)

and setting the photon lifetime κt = 0.005 ps−1.
The free evolution is governed by H0 and given as

H0 = h̄ω0

∑
i=s,t

a
†
i ai + h̄ωe

(
σ+

s σ−
s +

∑
i=1,2

σ+
t,iσ

−
t,i

)
, (11)

We assume a resonant dynamics between the cavity and the
emitter ωe = ω0 and also in between the source and target.
Therefore, the full master equation reads

dρ

dt
= 1

ih̄
[H0 + Hs + Ht,ρ]

+ D
[√

�P
s σ+

s

]
ρ + D[

√
γsσ

−
s ]ρ + D[

√
κsas ]ρ

+ D[
√

κtat ]ρ +
∑
i=1,2

D[
√

γtσ
−
t,i]ρ

− √
κsγt

∑
i=1,2

([σ+
t,i ,as ρ] + [ρa†

s ,σt,i]). (12)

This master equation is numerically evaluated with a
fourth-order Runge-Kutta algorithm for different values of
�P

s . We keep throughout the discussion all other values

023816-3



AZIZABADI, NAUMANN, KATZER, KNORR, AND CARMELE PHYSICAL REVIEW A 96, 023816 (2017)

FIG. 2. Second-order correlation functions g(2)(0) of source (red,
solid) and one (blue, dashed dotted) and two (green, dashed) tLSs
in the target cavity. For low pump rates the target, in contrast to the
source, shows rather a bunching behavior. When increasing the pump
strength, for both source and target, a transition to the thermal regime
occurs.

fixed and cast the master equation (12) into the basis
〈es,ps,et ,pt |ρ|e′

s ,p
′
s ,e

′
t ,p

′
t 〉 with ei emitter states and pi

photon manifolds of source and target i = s,t . We compute
the observables for different photon manifold cutoffs pi <

Ni until convergence is reached; i.e., the corresponding
and discussed observable do not change by increasing the
cutoff further. We restrict our discussion in the following to
observables of photon manifolds pi � 10.

We discuss the response of the target system with respect
to the photonnstatistics of the output field. The output is
included via the cavity loss of the target, and can be measured
in Hanbury Brown and Twiss setups via the second-order
correlation function, defined in the steady state limit as [60]

g
(2)
stat(τ ) = lim

t→∞
〈a†

i (t)a†
i (t + τ )ai (t + τ )ai (t)〉

〈a†
i (t)ai (t)〉2

, (13)

where for the source i = s and for the target cavity i = t .
We consider here only the coincidence rates for zero delay
τ = 0, as in this limit quantum effects in the correlation are
prominent.

In Fig. 2, we numerically evaluate g(2)(0) for the source (red,
solid) and target with one (blue, dashed dotted) and two (green,
dashed) TLSs for different incoherent pumping strengths �P

s .
The source can be driven into the antibunching regime

g(2) < 1 for driving strengths of �P
s < gs , where single pho-

tons are emitted. The cavity coupling is not strong enough to
produce more than one cavity photon, before the cavity loss and
dissipation forces the photon to leave the resonator. The source
dynamics stays antibunched for a wide range of parameters
and, for even larger pumping �P

s > gs , the pumping induced
dephasing adiabatically eliminates the emitter dynamics and
the output field equilibrates into a thermal state for the chosen
electronic system [55, 61,62].

Focusing now on the target dynamics, we observe that the
dissipative coupling via the reservoir leads to a more classical
response for one (blue, dashed dotted) as well as two TLSs
(green, dashed). In comparison to the source statistics, even
in the case of two quantum emitters, i.e., with a stronger
quantum nonlinearity, the photon statistics in target cavity is
less nonclassical. We can explain this due to the dissipative
transfer mechanism between the cavities, leading to thermal
mixture and loss of coherence from the source to the target.
We observe furthermore that, in the regime �P

s > gs , the
response follows the source dynamics, and we conclude that a
quantum cascaded coupling does not qualitatively change the
second-order photon correlation function of the target.

However, we will see that this is not the case for higher-
order photon correlation functions, which we discuss in the
next section.

IV. BEYOND THE SECOND ORDER
PHOTON CORRELATION

Experimentally, higher-order photon correlations have be-
come accessible [63]. They allow one to characterize the
quantum light field in photon detection experiments more
precisely. For example, a g(2)(0) ≈ 1 is often taken to be a
sign for a coherent light field (in the Glauber state), or a Fock
state with a large photon number: g

(2)
Fock(0) = 1 − 1/N → 1

for N = 〈a†a〉 � 1. However, only considering higher-order
correlations allows for a definite characterization of the light
field. These are defined for τ = 0 and in the steady state as

g
(n)
stat(0) = 〈a†n

i a
n

i 〉
〈a†

i ai 〉n
, (14)

where i = s for the source and i = t for the target cavity.
Measuring such higher-order correlations allows one to dis-
criminate output fields even in case, when the g(2)(0) function
value is equal. For example, the Fock state higher-order
correlation functions read g

(n)
Fock(0) = N !/[Nn(N − n)!] for

n < N = 〈a†a〉 and therefore g
(n)
Fock(0) > g

(n+1)
Fock (0) in contrast

to a coherent distribution, which holds g
(n)
coh(0) = g

(n+1)
coh (0) =

1. For a thermal light field with n̄ mean photon number, the un-
normalized higher-order correlation functions read 〈a†nan〉 =
n!(n̄)n and are calculated from pn = (n̄)n/(1 + n̄)n+1. For the
correlation function it holds then that g

(n)
therm(0) < g

(n+1)
therm (0) =

(n + 1)!. We take these three limiting cases to visualize our
quantum cascade driving setup.

In Fig. 3, we plot the higher-order correlation functions
for the source cavity (red, solid) and the target cavity with
one (blue, dashed dotted) and two (green, dashed) TLSs. To
illustrate regimes, we shaded the areas that distinguish between
superthermal and subthermal fields, and super- and sub-Fock
states. The Fock state limits are taken so that the number
of Fock photons equals the order of the correlation function
N = n. The correlations of the source g(n)

s (0) and target system
g

(n)
t (0) are shown for �P

s = 0.1 ps−1 = g. The output field of
the source shows a monotonic behavior, i.e., g(n)

s > g(m) for
all n < m < 10. That is, comparing to the shaded area, very
characteristic for a nonclassical output field. For one TLS in the
target cavity, we also see a monotonic behavior, but this time
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FIG. 3. Correlation functions in the steady state, when the pump
strength is equal to the cavity coupling (�P

s = g) for source (red,
solid) and target with two TLSs (green, dashed) and a single TLS
(blue, dashed dotted). The solid, dashed, and dash-dotted gray lines
represent thermal, coherent, and pure quantum light (for example, the
two photon Fock state). The source is antibunched and in the sub-
Poissonian regime for all orders in the correlation function. The target
with a single TLS exhibits thermal light. However, the target cavity
when containing two TLSs shows a transitional behavior, where it
starts out in the subthermal regime but goes to the sub-Poissonian
regime for higher orders.

with g(n)
s < g(m) for all n < m < 10. In contrast, the output

field of the target with two TLSs does not exhibit this kind
of monotonic behavior; e.g., g

(2)
t (0) < g

(3)
t but g

(2)
t (0) > g

(6)
t .

Given this difference, it is clear that the target dynamics is
not a simple image of the source; the differences cannot only
be traced back to dissipative degradation from the source-
target transfer. In the following, we will focus on the case
of two TLSs because we find interesting photon probability
distributions for this case, and also because the target system
with one emitter does not show nonmonotonic behavior in the
parameter regime in which we are interested. The quantum
cascade coupling introduces its own remarkable behavior and
prevents a straightforward imprinting of the source statistics
on the target quantum statistics, i.e., the g

(n)
t (0) distribution.

In Fig. 4, we investigate the higher-order correlation
functions of the source g(n)

s (0) and target systems g
(n)
t (0) for

different incoherent pumping strengths of the source system

�P
s . Interestingly, the response of the target differs strongly

from the source quantum statistics. The source system shows
a monotonic behavior for all pumping strengths: g(n)

s (0) >

g(m)
s (0) for all n < m � 10. Furthermore, the quantum statis-

tics approaches lower values and reaches small values for
high orders. This behavior is expected, since the incoherent
driving and the cooperativity [64] Cs = g2

s /(�Rκs) limits the
achievable photon manifold; i.e., there is always a cutoff nc

with pnc
= 0 and therefore the importance of higher-order

correlations decreases: g(n)
s (0) → 0 for (n − nc) → 0.

In contrast, the target system reaches first a maximum for
a certain m with g

(m)
t (0) � g

(n)
t (0) for all n. This maximum

shifts, as expected, for higher pumping strength towards larger
m, since the maximum number of photons also shifts to larger
values. After the maximum, the g

(n)
t (0) distribution follows

the trend of the source system towards lower values. This
behavior is stable for a wide range of pumping strengths. Due
to the presence of a cutoff in the source photon manifold nc, the
target quantum distributions will also, eventually, tend towards
zero. However, the target system follows only for large n the
source quantum statistics, always after passing a maximum.
This maximum, however, can shift to very high orders in the
correlations.

Furthermore, Fig. 4 shows a qualitative transition of the
target system in the correlation functions. For low incoherent
pump strengths, the curve is turning downwards. Then there is
a transition towards the regime, where the curve turns upwards.
We quantify this by the second-order central difference defined
as

g(n)′′ = g(n+1) − 2g(n) + g(n−1)

(n + 1 − n)[n − (n − 1)]
. (15)

During the transition from coherent to thermal behavior, the
nthorder correlation function will flip successively up. Here,
we characterize this transition by the second-order difference
at the g(2) function, which will first show the flip, so that the
curve points here upwards. This is shown in Fig. 5, where we
observe that the target system goes from a downwards to an
upwards turning point. At the same time the source system
shows a transition from an upwards to a downwards turning
point. The curves cross at the coupling strength g = 0.1 ps−1.
Thus, even though it is not straightforwardly obvious how the
source influences the target, we can illustrate the transition in
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FIG. 4. Higher-order correlation functions of the source g(n)
s (0) and target system with two emitters g

(n)
t (0) for different incoherent pumping

strengths of the source system �P
s . Remarkably, the target system exhibits a different behavior than the source system.
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FIG. 5. The transition observed in the system illustrated by the
second-order finite difference at the g(2) function. While the source
correlations cross from an upwards to a downwards turning point, the
target correlations exhibit the opposing behavior. The curves cross
at the coupling strength g = 0.1 ps−1 common to source and target
(with two emitters).

the target system by a corresponding transition in the source
system

To explain the origin of our results, in the next section,
we compare the quantum statistics of the target system with a
coherent and incoherent drive. We will see that this maximum
in the photon correlation is not readily produced with either
coherent or incoherent driving. Thus, the cascaded setup allows
one to create photon statistics not achievable with a reduced
formulation.

V. PROPERTIES OF CASCADED DRIVING

To characterize the quantum cascade, we compare the
resulting higher-order correlation with a system that is co-
herently or incoherently driven. To model this situation, we
switch the coupling between the source and target systems
off by setting κs = 0. The driving of the target system is
now included for the coherent driving by displacing the
target’s photon operator according to a

†
t → a

†
t + �P

t /gt , and
for the incoherent driving case we switch the operators of the
incoherent pumping from D[

√
�P

s σ+
s ]ρ → D[

√
�P

t σ+
t ]ρ.

In Fig. 6, we compare the higher-order correlation functions
for the case of coherent pumping (left panel) and incoherent
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g

FIG. 6. Higher-order correlation functions of the target system
with two emitters and without quantum source pumping κt = �P

s = 0.
Instead the target is directly pumped incoherently (left) and coherently
(right) with �P

t = √
γtκs . Note the logarithmic scale for incoherent

pumping, and the monotonic increase in contrast to the coherent
driving induced maximum in the g(n)(0) distribution. The incoherent
driving exhibits thermal statistics, while the coherent driving is close
to coherent statistics for a wide range of pump parameters.

pumping (right panel) of the target system. All parameter
values are kept to allow comparison with the quantum cascaded
case. Comparing the behavior of the correlation functions in
the cascaded setup (cf. Fig. 4), with the incoherently and
the coherently pump cases, we see a qualitatively different
behavior. While the cascaded setup exhibits a maximum
in the correlation functions, the incoherently driven one
exhibits thermal behavior, increasing monotonically, and the
coherently driven system exhibits close-to-coherent statistics.
The form of the photon statistics for the cascaded system
is distinctly different than for the other excitation scenarios
studied in this manuscript. This is consistent with the findings
in Ref. [30], where it is shown that, in principle, the target of
a stationary cascaded system may access parts of the Hilbert
space that would not be accessible by other means. Here, we
illustrate this finding by showing a physical system realizing
this possibility.

If we inspect the coupling terms, we can give some
physical intuition for the observed result. The coherent driving
creates excitation inside the emitters without destroying the
coherences. Incoherent driving creates excitation, but, at the
same time, destroys the coherence inside the system. With this
is mind, we take a closer look at the derivation of the cascaded
coupling.

The cascaded coupling is derived using an intermediate bath
and thus constitutes a dissipative coupling and the coupling
preserves some properties of the source statistics in certain
regimes. This becomes clear from the master equation (12). If
one exchanges

√
γtκs → −√

γtκs , the system dynamics and
results remain unchanged, as it is the same with Ht/s → −Ht/s .
This explains the part of the dynamics that preserves the source
photon statistics for low pump strengths. This is the case
since for low pumping strengths this behavior is not expected
from a dissipative coupling, as the standard Lindblad form is
independent of a change in the sign. The term coupling the
source and target system transfers excitations from the source
cavity to the target emitters. For this, the source cavity needs
a finite emission into the mediating bath.

However, the target emitters also need to have a finite
decay in order to receive input from the source. With this,
it also is subject to loss of excitation and destruction of
coherence. This distinguishes the cascaded coupling from
coherent and incoherent driving, as a loss of excitation is
mandatory. For two TLSs the nonmonotonic behavior becomes
more pronounced as the correlation is lowered more due to the
stronger nonlinearity of the target with two TLSs [cf. Fig. 2].
Thus, the transitional behavior is visible more clearly for two
TLSs and we use this case for illustration.

For weak incoherent pumping, quantum coherences can be
built up and those quantum processes are mediated via a

†
s to

the coherences of the target system σ+
t . In this limit, for high

pumping strengths, the system becomes thermal. However, the
intermediate coupling regime shows the transition, allowing
for peculiar distributions by only partially imprinting the
source photon statistics on the target in the high-order
correlation functions. The Fock distribution corresponding to
the statistics in Fig. 3 is shown in Fig. 7. Here, we observe
a very flat distribution exhibiting a similar probability for
the first few photon number states (solid,blue). This deviates
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FIG. 7. Occupation probability of the Fock states for the target
system with two emitters at �P

s = 0.1 ps−1 corresponding to the
photon statistics shown in Fig. 3 (solid, blue). Due to the cascaded
coupling the photon number distribution is exceptionally flat. This
illustrates the photon statistics that deviate from the prototypical
cases. For reference (dashed, orange), the coherent distribution is
shown.

from the coherent distribution (dashed,orange), which exhibits
a maximum, and the thermal distribution, which decreases
monotonically. With this, we can explain the accessibility
of new photon statistics by the mixture of Hamiltonian and
decoherent coupling processes, mediated by the cascaded
setup.

VI. CONCLUSION AND OUTLOOK

We investigated a quantum cascaded system, in which an
incoherently pumped source system drives a target system
with its quantum output field. As observables, we focused

on higher-order photon correlations g(n)(0). We find that the
response of the target system differs strongly for different
values of the incoherent pump parameter. For low values in
comparison to the coupling constant of the target system �P

s <

gt , the quantum statistics of the source system are imprinted
on the target system. For larger values the target system’s
output field resembles an incoherently driven quantum system.
However, in an intermediate regime, a mixture of coherent and
incoherent processes due to the coupling mechanism occurs,
leading to quantum statistics differing from the prototypical
coherent and thermal shapes and giving rise to the possibility
of producing flat photon distributions. For future work two
promising directions for further study were already discussed
before in the paper. On the one hand, expanding the systems
to describe the emitter more realistically, e.g., by using a
semiconductor model to describe quantum dots, is a way to
establish the effect of more complex emitters on the output
statistics [1]. On the other hand, considering a different type
of bath may give some insights into how the transfer of
photon statistics between systems may be facilitated. For most
realizations, this requires a more careful consideration of the
bath degrees of freedom. However, some special cases, such as
a squeezed bath [65], may already be treated in the formalism
presented in this work.
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