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Propagation of phase nonanalytical points in fast- and slow-light media
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We performed a series of experiments to examine the arrival of phase nonanalytical points in fast- and slow-light
media, using a Gaussian-shaped temporal pulse and encoding phase nonanalytical points at various positions
within the pulse envelope. For the phase nonanalytical points, the amplitude of the slowly varying pulse envelope,
as well as any order of the derivatives, is continuous, but the phase of the carrier wave is discontinuous. The
phase nonanalytical points were neither advanced nor delayed, but appeared at the same instance as they entered
the fast- and slow-light media, in good accordance with the idea that the information velocity was equal to the
velocity of light in a vacuum, c, or in the background medium.
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I. INTRODUCTION

Electromagnetic waves, including radio waves, mi-
crowaves, and light, may be the most popular medium for
the conveyance of information. Several methods are employed
for encoding signals using electromagnetic waves. Amplitude
modulation (AM) is a method where the amplitude of the
carrier wave is modulated by the signal, while the phase of
the carrier wave is kept constant. In the frequency modulation
(FM) scheme, the amplitude is kept constant and the signal
is transmitted through varying the carrier frequency, which is
dependent on the phase of the carrier waves. Different methods
have both advantages and disadvantages. For example, FM is
less prone to interference, and as such less susceptible to noise
as amplitude fluctuations during the interference process can
be compensated for. In addition, FM has much better sound
quality due to the wider bandwidth. In contrast, AM occupies
a narrow bandwidth, and therefore more communication
channels are available within the same frequency region.

The problem of information that can be encoded on
electromagnetic waves has long been debated, especially in
a fast-light system. In an anomalous dispersive region, the
smooth peak of a Gaussian-shaped pulse travels at a speed pre-
dicted by the conventional definition of group velocity, even in
superluminal propagation, provided the propagation distance
is sufficiently short [1–6]. Although the superluminal pulse
velocity seemingly contradicts Einstein’s special relativity, it
is well understood that the arrival of the pulse peak or even the
main body of the smooth superluminal pulse can be predicted
using a Taylor expansion of the leading part of the pulse;
thus the superluminal pulse peak has no new information. It
is proposed that the true information is not contained in the
pulse peak, but instead is carried by the nonanalytical points
or singularities along the wave packets [7–12]. The pulse
front edge is one of the nonanalytical points. Sommerfeld
and Brillouin analyzed the propagation of square-modulated
pulses through a broad-bandwidth Lorentz medium under far
off-resonance conditions [1]. They determined that the front
of the precursor always travels at the velocity of light, c.

Many discussions have been developed around practical
nonanalytical points because there are crucial gaps between
ideal (or mathematical) nonanalytical points and practical
(or physical) nonanalytical points. One of the significant
differences is the effect of fluctuations and noise [13–15].

The velocity of detectable information in superluminal media
has been investigated using the bit error rate as a basis.
The effect on the relative strength of the detector noise with
respect to the medium noise and the effect of the propagation
distance were studied. To increase the signal-to-noise ratio at
the output position, more signal is required to arrive, resulting
in retardation of the signal. Another issue may be the effect of
the bandwidth [16,17]. An ideal nonanalytical point localizes
at an infinitesimal time point and thus it requires an infinite
spectral bandwidth and energy. In contrast, the bandwidth of
any practical nonanalytical point is restricted to finite values;
therefore, the practical nonanalytical point acquires analyticity
and delocalizes, spreading across a region of time.

Our interest here lies in another question, that is, whether
a phase nonanalytical point could have the nature of the
true signal as with an amplitude nonanalytical point, and
how the nonanalytical point could propagate through a fast
medium. For phase nonanalytical points, the amplitude, as
well as any order of the derivatives, is continuous, but the
phase of the carrier wave is discontinuous. The propagation
of a nonanalytic step-phase-modulated light pulse has been
studied in stacking optical precursors [18]. So far, most
experiments on nonanalytical points have, however, been
performed using amplitude- or intensity-modulated pulses,
including the front edge of a Gaussian pulse [7–17,19–22].
We performed a series of experiments to examine the arrival
of phase nonanalytical points in fast- and slow-light media,
using a Gaussian-shaped temporal pulse as the input pulse
and encoding phase nonanalytical points at various positions
within the pulse envelope. Experimental results showed good
agreement with the idea that a phase nonanalytical point
behaves as information and that the propagation velocity is
equal to the velocity of light in a vacuum or in the background
medium, independent of the group velocity and, thus, the
phase nonanalytical points can also be interpreted as the
signal. We examined the propagation of phase nonanalytical
points because information velocity is an important concept in
physics, and preserves fundamental relativistic causality.

II. EXPERIMENTS

Our experimental setup is illustrated schematically in Fig. 1.
We used fiber ring resonators, which offer highly controllable
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FIG. 1. Schematic illustration of the experimental setup; (a)
for the purely phase-modulated beam propagation, and (b) for the
Gaussian-shaped pulse propagation with the phase nonanalytical
point. LN1 and LN2: LiNbO3 modulators; D: detector; FG: function
generator; OS: oscilloscope; Ref: reference beam. The green circle
represents the ring resonator. (c) The transmission spectra as a
function of detuning frequency. The blue and red lines (denoted lines 1
and 2, respectively) are for the undercoupling and overcoupling ring
resonators, respectively. For the measurements of the transmission
spectra, LN modulators were used in open mode.

dispersions via the cavity loss, x, and coupling strength, y,
between the fiber and the ring resonator. Our interest here lies
in the propagation of phase nonanalytical points and not in the
dispersion characteristics of the ring resonators, which have
already been studied in detail [23,24]. The stationary input-
output characteristics of the resonator can be analyzed using
directional coupling theory. The output light intensity, T (ν), as
a function of incident laser frequency, ν, shows a periodic dip
structure due to the resonance. The dispersion relationship de-
pends on the loss and coupling strength. For the undercoupling
condition (x < y), the transmission phase θ (ν) shows anoma-
lous dispersion at the center of the resonances. The group delay
is expected to be negative, τg = ∂θ/∂ω < 0, corresponding to
superluminal pulse propagation, namely, fast light. In contrast,
for the overcoupling condition (x > y), the transmission phase
shows normal dispersion, and one would expect slow light.

In the current study, 90:10 and 80:20 couplers were
used to achieve undercoupling and overcoupling conditions,
respectively. We inserted additional loss elements within the
ring resonator to control the loss parameter. The physical
length of the ring, LR , was 2.0 m. Figure 1(c) shows examples

of a transmission spectra as a function of detuning frequency.
The blue and red lines represent the resonance spectra
of the ring resonator in undercoupling and overcoupling
conditions, respectively. The resonance widths, δνR , were 3.4
and 4.5 MHz, respectively. An Er-fiber laser was used as
the incident light source. The spectral width was 1 kHz, and
the laser frequency was tuned by piezoelectric control of the
cavity length. Figure 1(a) shows the setup for the experiments
on the propagation of purely phase-modulated beams using a
phase-sensitive homodyne detection method. The light beam
from the Er-fiber laser was split into two beams. One beam
passed through a LiNbO3 modulator (LN1), which modulated
the phase, and then propagated through the ring resonator. The
other beam from the Er-fiber laser was used as a reference.
The signal beam that passed through the ring resonator was
coupled to the reference beam. The intensity was detected
by an InGaAs photodetector and reordered using a 600-MHz
digital oscilloscope. Figure 1(b) shows a different setup for
the experiments on the propagation of a Gaussian-shaped
pulse with a phase nonanalytical point. The incident beam
passed two serially configured modulators. The modulator
LN2 modulated the intensity profile and LN1 modulated the
phase independently. The transmitted pulses were detected
using intensity without using a reference beam.

Before proceeding with experiments on the nonanalytical
points, we first examined the propagation of a purely phase-
modulated continuous beam through the ring resonator. For
this purpose, we prepared input light beams as

Ein(t) = A exp {−i[ωt + ϕ(t)]},
where

ϕ(t) = ϕph exp

[
−

(
t

tph

)2]
. (1)

ϕph represents the depth of phase modulation, tph is the
temporal width of the Gaussian phase modulation, and A is a
constant. Figure 2(a) shows the input light intensity observed
without the reference beam. As the amplitude of the input beam
represented by Eq. (1) was constant, the intensity appeared
completely flat as a function of time. Figures 2(b)–2(d) show
the transmitted light intensity through the undercoupling ring
resonator, that is, the fast-light medium. When the temporal
width of the modulation was short compared with the inverse
of the resonance width, tph < δνR

−1, the output beam intensity
showed waving patterns. These structures could be attributed
to the higher-order dispersion effects, ∂2θ/∂ω2 in the ring
resonator. As tph was increased, the waving patterns became
weak and the transmitted temporal profile became a flat line,
indicating that the phase-modulated output light beam could
not be detected on an intensity basis.

For the detection of the phase-modulated output pulse, we
introduced a reference beam as

Eref(t) = B exp[−i(ωt + ϕref)], (2)

where B is a constant. The output pulses were observed in the
homodyne detection method using the setup shown in Fig. 1(a).
Figure 3 shows the output beam in fast-light medium observed
using the same input beam that was used in Fig. 2. The top and
second rows are input and output (on-resonance condition;
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FIG. 2. (a) The black line represents experimental observation
of input light of a purely phase-modulated continuous beam in the
intensity basis. (b)–(d) represent experimental observations of output
light of the purely phase-modulated beam in the intensity basis. The
temporal durations were tp = (b) 170, (c) 270, and (d) 420 ns. (e)
Red (denoted line 1), blue (line 2), and green (line 3) lines represent
the Gaussian-shaped phase modulation used in experiments shown in
(b)–(d), respectively.

blue lines) temporal profiles, respectively. The reference
phases, ϕref , were (a) 0.9π , (b) 0.4π , and (c) −0.6π rad. The
Gaussian-shaped profiles appeared in the homodyne detection
method and the pulse peak was advanced, with τph = −41 ns
(ϕref = 0.9π rad), which showed good agreement with the
calculated group delay of τg = −39 ns. Although the ratio
of signal height to the baseline was dependent on ϕref , the
advancement of the Gaussian peak was almost consistent be-
tween the cases. The lower two rows are calculated curves for
the input and output pulse profiles, respectively, corresponding
to the experiments in Figs. 3(a)–3(c). The calculation shows
good agreement with the experiments.

We repeated similar experiments in a slow-light medium
using the overcoupling ring resonator. Figure 4 shows similar
experimental results. The top and second rows are input
(black lines) and output (red lines) temporal pulse profiles,
respectively, for three reference phases. The Gaussian pulse
peak was delayed by τph = 84 ns (ϕref = −0.6π rad), which
shows good agreement with the calculated group delay. So far,
most experiments on fast and slow light have been performed
using intensity-modulated pulses. The results shown in Figs. 3
and 4 confirmed experimentally that the Gaussian-shaped
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FIG. 3. The black lines in the top row [(a1), (b1), and (c1)]
and the blue lines in the second row [(a2), (b2), and (c2)] are
experimental observations of input and output temporal profiles,
respectively, detected by the phase-sensitive homodyne method in
the fast-light system. The input beam was a continuous light beam
with the Gaussian-shaped phase modulation based on Eq. (1). The
reference phases were ϕref = (a) 0.9π , (b) 0.4π , and (c) −0.6π . The
third row [(a3), (b3), and (c3)] and the bottom row [(a4), (b4), and
(c4)] are calculated curves for the input (black lines) and output (blue
lines) temporal profiles corresponding to the experiments in the top
and second rows in the same columns, respectively. The heights of
input and output pulses were normalized. The vertical dashed black
lines represent the peak time of the input pulses (t = 0) and the
vertical solid blue lines represent the peak time of the output pulses.

phase modulation propagates with the relevant group velocity
in the fast- and slow-light media.

We next examined the propagation of phase nonanalytical
points using the setup shown in Fig. 1(b). For this purpose, we
prepared a Gaussian-shaped intensity profile and encoded a
phase nonanalytical point at various positions within the pulse
envelope as

Ein(t) = C exp

{
−

(
t

ta

)2

− i[ωt + ϕ(t)]

}
,

with

ϕ(t) = ϕNA
(tNA) =
{

0 t < tNA

ϕNA t � tNA
, (3)

where 
(t) is a Heaviside function and C is a constant. In
experiments, the intensity of the incident laser beam was mod-
ulated to have a Gaussian-shaped pulse profile with a temporal
duration of ta using LN2. Then, the phase nonanalytical point
was encoded at a time of tNA using LN1. The transmitted pulses
were detected in an intensity basis without the reference beam.
Figure 5 shows the output pulse intensity through the fast-light
medium, that is, the undercoupling ring resonator. The encod-
ing time, tNA, was 30 ns. In Fig. 5(a), the modulation depth,
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FIG. 4. Plots similar to Fig. 3 in the slow-light system. The black
lines in the top row [(a1), (b1), and (c1)] and the red lines in the second
row [(a2), (b2), and (c2)] are experimental observations of the input
and output temporal profiles, respectively, detected by the homodyne
method. The reference phase was ϕref = (a) −1.1π , (b) −1.2π , and
(c) −0.6π rad. The third row [(a3), (b3), and (c3)] and bottom
row [(a4), (b4), and (c4)] are calculated curves for the input (black
lines) and output (red lines) temporal pulse profiles corresponding
to the experiments in the top and second rows in the same columns,
respectively. The vertical dashed black lines represent the peak time
of the input pulses (t = 0) and the vertical solid red lines represent
the peak time of the output pulses.

ϕNA, was 0 rad; hence the input pulse was a smooth Gaussian
pulse without the nonanalytical point. The output pulse peak
was advanced by τam = −41 ns, which shows good agreement
with the observed value in the phase-modulated beam of
τph = −41 ns. In Fig. 5(b), the modulation depth increased
as ϕNA = 0.3π rad. When the phase nonanalytical point was
introduced, a sharp spike appeared at tK = 30 ns. This spike
could be attributed to the resonance precursor [19–22].

A nonanalytical point can be represented by a relatively
broad feature in the frequency domain, to which the medium
cannot respond. Therefore, nonanalytical points are always
associated with optical precursors. Sommerfeld and Brillouin
first analyzed the propagation of an amplitude-modulated
step pulse, assuming broadband and off-resonance conditions.
Under these conditions, precursors are negligible; however,
the amplitude of the precursor may be large under resonant
conditions [19–22]. In the present case, the large observed
transient spike could be described by superposition of a
postcursor generated by the trailing edge of the pulse section
prior to tNA, with a precursor generated by the leading edge
of the pulse section following tNA. The phase of the former
and latter sections of the pulse are related to the phases ϕ = 0
and ϕ = ϕNA, respectively. Further, as the postcursor predom-
inantly consists of the electric field components that circulate
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FIG. 5. The black lines represent input pulses with the Gaussian-
shaped intensity profile on which the phase nonanalytical point
was encoded, based on Eq. (3), for different modulation depths.
The colored lines are output temporal profiles through the fast-light
medium. The modulation depth was ϕNA = (a) 0, (b) 0.3π , (c) 0.4π ,
(d) 0.7π , and (e) 0.8π rad. The encoding time was tNA = 30 ns
and is indicated with the upward black arrows. The pulse heights
were normalized by the height of the input pulse. The left and right
columns are experimental observations and numerical calculations,
respectively. Note that the vertical scales in (d,e) are reduced.

within the ring resonator, whereas the precursor consists of
direct components that bypass the ring, the postcursor is phase
shifted by π radians relative to the precursor [24].

Taking these facts into account, we examined the effect
of the modulation depth ϕNA on the height of the transient
spike. Figures 5(c)–5(e) show the intensity of the output pulse
for larger modulation depths ϕNA at encoding time tNA =
30 ns. When ϕNA = 0, the postcursor and precursor summed
destructively, hence no spike was observed. This corresponds
to a situation whereby the pulse has no nonanalytical point
[see Fig. 5(a)]. As ϕNA increased, the height of the spike
increased. This is because the postcursor and precursor
interfere constructively. The height exhibited a maximum
around ϕNA = π rad as ϕNA canceled the π phase shift between
the postcursor and precursor. Figure 6 summarizes the height
of the spike at the kick position in the output pulse as a function
of modulation depth ϕNA.

Figure 7 shows the output pulse through the fast-light
medium for Gaussian-shaped pulses encoded with a phase
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FIG. 6. The height of the transient spike at the kick position tK
in the output pulse as a function of the modulation depth ϕNA. The
colored solid circles indicated by a–e correspond to the experimental
results shown in Figs. 5(a)–5(e), respectively. The black solid circles
(unlabeled) represent other results not shown in Fig. 5. The solid line
represents the corresponding simulations.

nonanalytical point at different encoding times, tNA. The
modulation depth was constant, ϕNA = 0.6π rad. Figure 8
summarizes the peak position, τam, and kick positions, tK ,
observed in the output pulse as a function of the encoding time,
tNA. Although the pulse peak was advanced and independent
of the encoding time, the kick positions of the transient spike,
tK , followed the encoding time tNA. The nonanalytical points
were neither advanced nor delayed, but appeared at the same
instance as they entered the ring resonator.

We performed similar experiments in the slow-light system
using the overcoupling ring resonator. Figure 9 shows exper-
imental results of the output pulse profiles. In Fig. 9(a), the
modulation depth was ϕNA = 0 rad, and hence the input pulse
was a smooth Gaussian pulse without the nonanalytical point.
The output pulse peak was delayed by 83 ns, which shows good
agreement with the observed value in the phase-modulated
beam. In Figs. 9(b)–9(d) ϕNA = 0.6π rad and tNA was changed.
Although the pulse peak position was delayed, the arrivals
of the phase nonanalytical points indicated by the transient
spike were neither advanced nor delayed, but appeared at the
same instance as they entered the medium. The kick positions
of the transient spike, tK , followed the encoding time, tNA.
These experimental results in slow-light media are also in
good accordance with the idea that the phase nonanalytical
point acts as a signal and the relevant information velocity is
equal to the velocity of light in a vacuum or the background
medium even in the slow-light media.

III. DISCUSSION

A. Lorentz medium

The phase nonanalytical points were neither advanced
nor delayed; rather, they appeared at the same instance as
they entered the ring resonators. This behaviour may be
a universal characteristic in causal dispersive systems. To
investigate this universality, we calculated the propagation of
phase nonanalytical points through a Lorentz medium. The
spectral form was assumed to be g(ν) = β/[(ν0 − ν) − iγ ],
where ν0 is the resonant frequency and β is a constant
describing the light-matter interaction. Anomalous disper-
sion was observed at the resonance frequency ν = ν0.
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FIG. 7. The black lines represent input pulses with Gaussian-

shaped intensity profile on which the phase nonanalytical point was
encoded based on Eq. (3), at different encoding times. The colored
lines are output temporal pulse profiles through the fast-light medium.
The encoding times were tNA = (a) 50, (b) 30, (c) 10, (d) −10, (e) −30,
(f) −50, and (g) −70 ns, which are indicated with the upward black
arrows. The modulation depth was ϕNA = 0.6π rad. The left and right
columns are experimental observations and numerical calculations,
respectively.

Figure 10 shows input and output pulse profiles. The input
pulse was a Gaussian intensity profile with a phase nonan-
alytical point at tNA = 50 ns. As with an undercoupling ring
resonator, although the pulse peak advanced, reflecting the
anomalous dispersion at the center of the Lorentz line, the
arrival time of the phase nonanalytical points indicated by the
transient spike was neither advanced nor delayed, appearing
at the same instance as they entered the Lorentz medium.
These simulated data suggest that propagation of the phase
nonanalytical point is an intrinsic feature of causal dispersive
systems.
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shaped intensity profile, on which the phase nonanalytical point was
encoded based on Eq. (3). The red lines represent output pulses
through the overcoupling ring resonator. (a) The modulation depth
was ϕNA = 0 rad; hence the input pulse was a smooth Gaussian
pulse without the nonanalytical point. (b)–(d) ϕNA = 0.6π rad and
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FIG. 10. The black lines show the input pulse with a Gaussian
intensity profile, on which the phase nonanalytical point was encoded
based on Eq. (3). The modulation depth was (a) ϕNA = (a) 0 and (b)
0.2π rad. The blue lines show calculated output pulse profiles through
a Lorentzian absorption medium with ν0 = 2.0 × 1014 Hz, β =
5.0 × 102 Hz, and γ = 3.0 × 106 Hz, over a propagation distance
z = 0.005 m.

B. Phase nonanalytical point in slowly varying envelope

An ideal nonanalytical point localizes at an infinitesimal
time point and thus requires infinite spectral bandwidth. In
contrast, the bandwidth of any practical nonanalytical point is
restricted to a finite value; therefore, the nonanalytical point
delocalizes and acquires analyticity. It was discussed that the
practical nonanalytical point neither disconnects nor connects
completely to the neighboring regions in the pulse and that the
expansion of the leading part of the pulse can predict the forth-
coming pulse shape beyond practical nonanalytical points [16].

From the point of view of a phase nonanalytical point,
a true phase nonanalytical point should change the phase
within one optical cycle, namely, in a femtosecond time
scale. For the discussion of the present nonanalytical points,
it is convenient to introduce the slowly varying envelope as
Ein(t) = Ẽin(t)e−iωt and Ẽin(t) = |Ẽin(t)|e−iϕ̃in . In addition,
for the phase nonanalytical points,

lim
ε→0

|Ẽin(tNA − ε)| = lim
ε→0

|Ẽin(tNA + ε)|,
(4)

lim
ε→0

ϕ̃in(tNA − ε) �= lim
ε→0

ϕ̃in(tNA + ε).

In our experiments, the bandwidth of the incident beam
with the phase nonanalytical point was 400 MHz. In contrast,
the bandwidth of the resonance of the present ring resonator
was 3.4 MHz. Therefore, phase structures that have higher
Fourier components than 3.4 MHz could be recognized
as nonanalytical for the present ring resonator. For pulse
propagation in dispersive media, a convenient analytic form
to represent the outgoing pulses within the group-velocity
approximation is given by Ref. [25] as

E(t,z) = 1

2π
ei(kz−ωt) exp

[
z

(
1

c
− 1

vg

)
∂

∂t

]
Ẽin

(
t − z

c

)
.

(5)
Equation (5) states that the electric field that propagated

with superluminal vg > c over a distance z corresponds
to an analytic continuation over time, z/c − z/vg > 0, of
Ẽin(t − z/c). We consider a pulse that propagates a distance z

through a dispersive medium, and consider the electric fields
in the pulse at times just before and after t = z/c + tNA,
i.e., E(tNA + z/c − ε,z) and E(tNA + z/c + ε,z). Note that
t = z/c + tNA is the time when the nonanalytical point would
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arrive if that pulse were to propagate in a vacuum for distance
z. Using Eq. (5), these two electric fields are connected to
Ẽin(tNA − ε) and Ẽin(tNA + ε), respectively. From Eq. (4), for
phase nonanalytical points we may conclude that

lim
ε→0

E(tNA + z/c − ε,z) �= lim
ε→0

E(tNA + z/c + ε,z). (6)

Hence, the nonanalytical phase points propagate with
velocity c rather than vg .

IV. SUMMARY

In summary, we performed a series of experiments to exam-
ine the arrival of phase nonanalytical points in fast- and slow-

light media, using a Gaussian-shaped temporal wave packet
as the input pulse and encoding phase nonanalytical points at
various positions. The phase nonanalytical points were neither
advanced nor delayed, but appeared at the same instance as
they entered the system. Similar behavior was observed for
Lorentzian absorption lines. This indicates that the phase non-
analytical point may be the “true signal” in causal dispersive
media, and that the information velocity is equal to the velocity
of light in a vacuum (or the background media), in accordance
with the causal principles observed in fast-light systems.
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