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Bifurcation structure of cavity soliton dynamics in a vertical-cavity surface-emitting laser
with a saturable absorber and time-delayed feedback
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We consider a wide-aperture surface-emitting laser with a saturable absorber section subjected to time-delayed
feedback. We adopt the mean-field approach assuming a single longitudinal mode operation of the solitary
vertical-cavity surface-emitting laser (VCSEL). We investigate cavity soliton dynamics under the effect of
time-delayed feedback in a self-imaging configuration where diffraction in the external cavity is negligible.
Using bifurcation analysis, direct numerical simulations, and numerical path-continuation methods, we identify
the possible bifurcations and map them in a plane of feedback parameters. We show that for both the homogeneous
and localized stationary lasing solutions in one spatial dimension, the time-delayed feedback induces complex
spatiotemporal dynamics, in particular a period doubling route to chaos, quasiperiodic oscillations, and
multistability of the stationary solutions.
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I. INTRODUCTION

Cavity solitons (CSs) are spatially localized light structures
in the transverse plane of a nonlinear resonator that result
from the balance of nonlinearity and diffraction (for reviews,
see [1–11]). CSs belong to the class of dissipative structures
found far from equilibrium; the losses in the system have
to be balanced by external energy input. CSs normally
require a region in the parameter space where a spatially
periodic pattern and a stable homogeneous steady state coexist
[12–14], so that in such a “pinning region,” one or more peaks
of the patterned state are surrounded by the homogeneous
steady state. Recently, vertical-cavity surface-emitting lasers
(VCSELs) have attracted considerable interest for CS studies
and applications because they are inherently made with
a short (single longitudinal mode) cavity, which can be
transversely quite large [15]. In the first demonstrations of
the existence of CSs in broad-area VCSELs, external coherent
light with an appropriate frequency is injected to create
the required pinning region and CSs have been found both
below [16,17] and above [18] the lasing threshold. Utilizing
the specific polarization properties of VCSELs [19], spatially
localized structures have also been created in 40-μm-diameter
VCSELs [20], as well as in 80-μm-diameter VCSELs lasing
on a high transverse-order flower mode [21,22]. For practical
CS applications, the need for an external optical injection
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is a hindrance and a very attractive way to avoid it is
the implementation of a saturable absorber in the VCSEL
structure [23]. Hence, CS properties and dynamics in VCSELs
with saturable absorbers have been extensively studied both
theoretically [23,24] and experimentally [25,26].

The impact of time-delayed feedback on CS dynamics
has been theoretically investigated for the cases of a driven
nonlinear optical resonator [27,28] and broad-area VCSELs
[29–31]. Delayed optical feedback is known to strongly modify
the dynamical behavior of semiconductor lasers leading to
external cavity mode hopping, periodic or aperiodic dynamics,
and even coherence collapse [32,33]. Optical feedback impacts
the VCSEL’s modal properties and dynamics in quite the
same way as those of traditional edge-emitting semiconductor
lasers [34,35] with the additional peculiarity of introducing
polarization switching and two-polarization mode dynam-
ics [36–38]. Recently, first studies of CS behavior in optically
injected broad-area VCSELs subjected to time-delayed optical
feedback have appeared [29–31,39]. These studies elucidated
the role of the strength and the phase of the time-delayed
feedback for the creation of a drift bifurcation that causes
the CSs to spontaneously move. For a saturable absorber
VCSEL, a period-doubling route to temporal chaos of a
single CS has been theoretically predicted for certain feedback
parameters [40]. More recently, it has been shown that delayed
feedback can induce pinning and depinning of cavity solitons
when the resonator is illuminated by an inhomogeneous spatial
Gaussian pumping beam [41]. It has to be noted that time-
delayed feedback in spatially extended complex systems has a
broader relevance than just laser physics and nonlinear optics.
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It concerns all fields of natural science [42], for instance,
chemical reaction-diffusion systems [43–46].

Previously, oscillatory dynamics of CSs have been observed
in systems without optical feedback: in the Lugiato-Lefever
model [47] of a driven optical nonlinear cavity [48–50] and
in a model of a VCSEL with a saturable absorber extended
beyond the mean-field approximation [51]. Furthermore, a
period-doubling route to chaos has been predicted for localized
structures in the Lugiato-Lefever equation [52,53] in a forced
and damped van der Pol model [54]. Spatiotemporal chaos
has also been reported for the Lugiato-Lefever equation [55].
Experimentally, such oscillatory dynamics of localized struc-
tures have been observed in an optically pumped VCSEL
with a saturable absorber [56]. More recently, two-dimensional
dissipative optical rogue waves have been predicted to occur
in VCSELs with [57] or without [58] delayed feedback.

In this paper, we carry out a detailed investigation of
the bifurcation structure of time-delayed feedback-induced
complex dynamics in a VCSEL with a saturable absorber.
Using bifurcation analysis, direct numerical simulations,
and numerical path-continuation methods, we show that the
feedback impacts the homogeneous lasing solution and the
localized CS solutions in a similar way, causing oscillatory
dynamics with either a period-doubling or quasiperiodic route
to chaos, as well as multistability of the stationary solutions.
The paper is organized as follows: In Sec. II we introduce
the mean-field model of a broad-area VCSEL with a saturable
absorber and time-delayed feedback. In Sec. III we discuss
its stationary spatially homogeneous and localized solutions
with an emphasis on the impact of the feedback parameters
on the branches of stationary solutions. In Sec. IV we reveal
the underlying bifurcation structure and in Sec. VI we carry
out direct numerical simulations to see the dynamical behavior
under time-delayed feedback. In Sec. VI we perform numerical
path-continuation calculations and map the bifurcation struc-
ture of the system in a plane of feedback parameters. Finally,
we conclude in Sec. VII.

II. MODEL SYSTEM

We investigate a model system for a wide-aperture semi-
conductor laser, specifically a vertical-cavity surface-emitting
laser (VCSEL) that consists of a gain section and a saturable
absorber section sandwiched between two distributed Bragg
reflectors (DBRs) that form the optical cavity. It is subjected
to time-delayed optical feedback by forming an external
cavity using a distant mirror to reflect the field. We adopt
the Rosanov [59] and Lang-Kobayashi [60] approximation
to model the delayed feedback. In this approximation, the
feedback field is sufficiently attenuated and it can be modeled
by a single delay term with a spatially homogeneous coef-
ficient. In addition, we assume that the laser operates in a
single-longitudinal mode. The system of dimensionless model
equations reads [29–31,40]

∂tE = [(1 − i α) N + (1 − i β) n − 1 + i ∇2
⊥] E

+ η ei ϕ E(t − τ ), (1)

∂tN = b1[μ − N (1 + |E|2)], (2)

∂tn = b2[−γ − n (1 + s |E|2)], (3)

where E = E(r,t), r = (x,y) is the slowly varying electro-
magnetic field envelope, and N = N (r,t) (n = n(r,t)) mea-
sures the state inversion of the carriers in the gain (absorber)
section. Time is scaled to the photon lifetime and space is
scaled to the diffraction length. Here, b1 (b2) is the ratio of
the gain (absorber) carrier lifetime to the photon lifetime, μ is
the gain current, and γ is the absorber voltage. Furthermore, α
(β) is the linewidth enhancement factor of the gain (absorber)
section and s is the ratio of the saturation intensities of the
gain and absorber. Finally, η is the relative strength of the time
delayed feedback, τ = 2Lext/c is the delay time with c the
speed of light and Lext the external cavity length, and ϕ is a
delay phase parameter that describes a phase shift on the time
scale of the fundamental lasing frequency, due to, e.g., moving
the mirror for a distance shorter than the wavelength.

Equations (1)–(3) have two types of homogeneous steady-
state solutions. The trivial off solution reads [24]

E = 0, N = μ, n = −γ. (4)

It becomes unstable at the lasing threshold μth = 1 + γ . From
this point, a nontrivial branch of spatially homogeneous lasing
solutions [so-called continuous waves (cw) solutions] emerges

E = |E|eiωt , N = μ

1 + |E|2 , n = −γ

1 + s|E|2 , (5)

where ω is the frequency shift of the slowly varying field
envelope in units of the photon lifetime.

Notice that for a stable lasing solution, the intensity must be
large enough to overcome the saturable absorber which causes
the cw branch to initially be unstable and lean towards lower
gain. It then folds in a saddle-node bifurcation at

μfold =
(√

s − 1 + √
γ
)2

s
. (6)

This gives rise to a regime below the lasing threshold where
stable lasing solutions coexist with a stable off solution. Note
that the time-delayed feedback can shift both bifurcation
points.

The chosen parameter values for this article reflect an
experimental setup of a VCSEL with a typical power output of
the order of 1 mW at a pumping current of the order of 1 mA
and a photon lifetime around 1 ps. Unless specified otherwise,
they are

α = 2, β = 0, b1 = 0.04, b2 = 0.02, s = 10,

μ = 1.42, γ = 0.5, τ = 100.

III. STATIONARY SOLUTIONS

First we analyze the stationary solutions of the system
(1)–(3) by purely analytical means and standard path-
continuation techniques. Here, stationary means the field
profile is constant in time while it rotates uniformly in the
complex phase.

A. Continuous waves

The stationary cw solutions take the form

E = |E| ei(kx−ωt), ∂t |E| = 0, (7)
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with the wave number k and the frequency shift ω and the
corresponding carrier densities

N = μ

1 + I
, n = −γ

1 + sI
, (8)

with the field intensity I = |E|2. For a stationary field
amplitude, the delayed field is merely shifted in phase,
E(t − τ ) = eiωτE(t). The model equations (1)–(3) then sim-
plify to

0 = μ (1 − i α)

1 + I
− γ (1 − i β)

1 + s I
− 1

+ i(ω − k2) + η ei(ωτ+ϕ). (9)

Separating the real and imaginary parts, we have

k2 = ω − αμ

1 + I
+ βγ

1 + sI
+ η sin(ωτ + ϕ), (10a)

0 = μ

1 + I
− γ

1 + sI
− 1 + η cos(ωτ + ϕ). (10b)

With this, the solutions can be found graphically; see Fig. 1.
The second equation yields all possible intensities I as a
function of ω (cf. Fig. 1, upper line in blue). With I , we can
calculate the right-hand side (rhs) of the first equation (inclined
line in green). Exact solutions (black dots) are found wherever
this line intersects with the lower flat line in red at the value of
k2. For increasing values of η, additional solutions appear in a
series of saddle-node bifurcations.

Note that linear stability analysis of the cw solutions
show modulation instability for all wave numbers k for the
investigated domain size.
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FIG. 1. A graphical scheme to determine cw solutions of
Eqs. (1)–(3). The intensity I as a function of the frequency shift
ω is shown as the upper line in blue from solving Eq. (10b). The rhs
of Eq. (10a) as a function of ω is shown as the inclined line in green
and the lhs in red which is equal to zero in this example. Where these
lines intersect, a solution exists, indicated with black dots. Increasing
delay causes stronger oscillations in the rhs curve, inducing a series
of saddle-node bifurcations as the lhs is crossed at additional points.
The corresponding intensities can be read from the intensity curve.
Here, ϕ = 0.

B. Cavity solitons

To find a branch of one-dimensional cavity solitons (CSs),
we assume a stationary complex profile A(x) of the field
envelope that rotates with a constant frequency shift ω like
the cw solutions [23],

E(x,t) = A(x) e−iωt . (11)

This profile consists of an amplitude profile a(x) and a phase
profile ϕ(x),

A(x) = a(x)eiϕ(x), (12a)

q = ∂xϕ, (12b)

k = 1

a
∂xa, (12c)

f (|A|2) = (1 − iα)μ

1 + |A2| − (1 − iβ)γ

1 + s|A2| − 1. (12d)

Because the whole system is phase invariant, only the deriva-
tive of the phase profile is important, reducing the number of
necessary variables to three. With this, we can write the system
in the form

∂xa = ak, (13a)

∂xq = −2qk + Re[f (a2)] + η cos(ωτ + ϕ), (13b)

∂xk = −ω + q2 − k2 − Im[f (a2)]

− η sin(ωτ + ϕ), (13c)

following [61]. We can now treat it as a boundary value
problem and apply standard path-continuation packages such
as, e.g., AUTO-07P [62,63], to obtain a branch of stationary
solutions.

C. Effective phase

To get an alternative view of the influence of the time-
delayed feedback on the solution structure, we introduce an
effective phase parameter ϑ [64],

ϑ = (ω τ + ϕ) mod 2π. (14)

This yields the branches of localized solutions that have the
same angle of interference with the delayed field. They form
a tube-shaped manifold of all possible solutions of the system
for a given delay strength. This view is not directly accessible
experimentally. For any combination of τ and ϕ, one can
also get the actual branches by solving Eq. (14) implicitly.
In particular, it can be shown that the number of multistable
solutions grows linearly with τ [64].

D. Solution structure

Figure 2 shows the obtained solution structures of cw
solutions (cyan and blue with lower intensity) and CSs
(magenta and red with higher intensity) for η = 0.5% and
ϕ = 0 with μ as the control parameter. The left (right) panel
shows the intensities (frequency shifts) of the corresponding
solutions. For CSs, the intensity in the center is shown. Note
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FIG. 2. Solution structure of the stationary solutions of
Eqs. (1)–(3) for a feedback strength of η = 0.5% . Left (right) panel
shows the intensities |E|2 (frequency shifts ω) as a function of the
gain μ. Actual solutions for a fixed delay time τ = 100 and delay
phase ϕ = 0 are drawn in blue (red) for cw solutions (CSs) with the
lower (higher) intensities. Both exhibit a similar snaking shape in
both |E|2 and ω due to a series of saddle-node bifurcations induced
by time-delayed feedback. For reference, the central C-shaped curves
in cyan (magenta) for cw solutions (CSs) show the solutions without
delay. Changing ϕ moves the snaking curve periodically along the
tube-shaped manifold of solutions, represented with dashed lines.

that both the cw solutions and CSs have a very similar solution
structure.

The C-shaped curves represent the solution manifolds.
Any point between the outer dashed C-shaped curves is a
solution for appropriate delay parameters. The left (right)
curves represent fully constructive (destructive) interference,
i.e., ϑ = 0 (ϑ = π ). The central solid curves represent the
solution branch without delay. In the presence of delay, this
curve effectively gets shifted in μ as the feedback either helps
or hinders the field in the cavity. Aside from the shift, the
changes to the curves are minimal.

The snaking curves show the actual solution branches
for τ = 100 and ϕ = 0. They form through a series of
saddle-node bifurcations induced by the delayed feedback.
Along the branches, the stability of the stationary solutions
alternates. For the intensities, the positive (negative) slopes
are stable (unstable), and vice versa for the corresponding
frequency shifts. Note that a similar multistability effect
was experimentally observed in a broad-area VCSEL with
frequency-selective feedback [65].

An animation of Fig. 2 showing the effect of the feedback
parameters on the solution structure is available in the
Supplemental Material [66].

IV. PHASE BIFURCATION AND MULTISTABILITY

Due to translational and phase-shift symmetries of
Eqs. (1)–(3), the point spectrum of the corresponding one-
dimensional linear eigenvalue problem has two zero eigen-
values corresponding to the even phase-shift neutral mode
and the odd translational neutral mode. Note that in the limit
of instantaneous medium response and for η = 0, the linear
operator describing the stability of a CS solution of Eqs. (1)–(3)
possesses an additional zero eigenvalue that corresponds to the
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FIG. 3. A bifurcation diagram for the folds with the delay strength
η and effective phase ϑ as control parameters. The solid blue line
shows a branch of solutions that fulfill the condition (17) for a
phase bifurcation. The dashed green (dotted red) line shows the
fold continuation in AUTO-07P (DDE-BIFTOOL). The two continuations
yield equivalent results. The folds can be attributed to a phase
instability induced by the time-delayed feedback.

Galilean transformation symmetry,

E(x, t) → E(x − vt, t)eivx/2−iv2t/4. (15)

However, the latter is typically broken for a nonvanishing
delayed feedback term, leading to a shift of the corresponding
real eigenvalue from the origin into the complex plane [61,64].
As a result, a stationary solution may lose its stability with
respect to a drift bifurcation, giving rise to a CS moving
with a constant velocity v. Drift or phase bifurcations can
occur when the eigenvalue of the corresponding neutral mode
ψ0 becomes doubly degenerate with geometrical multiplicity
one. There, the critical real eigenvalue passes through zero
at the bifurcation point, so that the corresponding critical
eigenfunction at this point is proportional to the neutral mode.
This critical eigenvalue can either be a delay-induced branch
of zero eigenvalue or correspond to a Galilean mode. In [64], a
general expression for the onset of drift and phase bifurcations
was derived,

ητ = − < ψ
†
0|ψ0 >

< ψ
†
0|B|ψ0 >

, (16)

where ψ0 is a neutral eigenfunction, ψ
†
0 is the corresponding

adjoint eigenfunction, and B is the rotation matrix describing
the phase shift due to the delay. Note that both drift- and
phase-bifurcation thresholds tend to zero in the limit of large
delays. While in the case of the drift bifurcation a pitchfork
bifurcation takes place, the phase bifurcation corresponds to a
saddle-node bifurcation where a pair of solutions merge and
disappear. Note that this fold condition follows directly from
Eq. (14) and can be written as

dω

dϑ
= 1

τ
. (17)

Figure 3 shows the branch of stationary localized solutions
satisfying the fold condition (17) (solid blue line) along
with results from a fold continuation performed in AUTO-07P

(dashed green line) and in DDE-BIFTOOL (dotted red line).
One can see that all three calculations yield the same result.
This demonstrates the equivalence of the continuations and
identifies a phase bifurcation as the cause of the delay-induced
multistability.
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FIG. 4. Space-time plots of one-dimensional simulations of
Eqs. (1)–(3) calculated for a delay time τ = 100, delay phase ϕ = 0,
and various delay strengths η. Without delay, the system equilibrates
quickly to a stationary lasing localized structure. With increasing η, it
becomes Hopf unstable and oscillates in intensity. Further increasing
η causes the periodic orbit to undergo a series of period-doubling
bifurcations that leads into chaos. The rightmost panel shows the
chaotic behavior that is characterized by strong intensity spikes.

V. DIRECT NUMERICAL SIMULATIONS

In addition to the drift bifurcation leading to traveling
CSs [23,64,67] and the phase bifurcation giving rise to the
multistability of CSs’ solutions, time-delayed feedback can
also induce Andronov-Hopf bifurcations. Indeed, in [40] it
has been shown that the inclusion of the feedback term leads
to the formation of breathing CSs with a period-doubling route
to chaos. In order to analyze transitions between different
oscillating solutions of a single CS, one-dimensional direct
numerical simulations of the system have been performed
using the classical Runge-Kutta method on an equidistant mesh
combined with a pseudospectral method for spatial derivatives.
Note that interpolation of the delay term to reach the same order
of convergence as the time stepping scheme is not needed in
this case because the delay strength is small. Figure 4 shows
exemplary space-time plots of the field intensity for different
values of η at ϕ = 0.5 π . Without delayed feedback, the system
forms localized lasing structures with a steady intensity profile.
Increasing the feedback causes an Andronov-Hopf bifurcation
and the intensity continuously oscillates. These oscillations
undergo a period-doubling bifurcation leading to chaos, as
demonstrated in [40]. In the right panel, one can see irregular
oscillations with strong spikes of intensity that are otherwise
never achieved in this system. This identifies the behavior as
chaotic in distinction to quasiperiodic oscillations that would
have a clearly limited interval of intensity. Indeed, for certain
delay parameters, there is also a torus bifurcation which,
however, is not explicitly represented in this figure.

To characterize the different kinds of temporal behavior,
we trace the extrema of the intensity field in time. For
CSs, the intensity value in the center was traced. Plotting
these extrema after the system has reached a final state
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FIG. 5. Bifurcation diagram with the delay strength η as the
control parameter calculated for (a) ϕ = 0 and (b) ϕ = 1.48π . In
direct numerical simulations, a time series is analyzed after the
system has had sufficient time to settle. The intensity extrema of
the time series are shown as red (blue) dots for the case of the
spatially (non)extended system. For increasing η, we see either a
period-doubling or quasiperiodic route to chaos. The bifurcation
points move with changing delay phase ϕ. In a range of ϕ, there
exist two separate windows with a route to chaos. These are actually
connected through ϕ, i.e., the window appears below the first
saddle-node bifurcation on the lower branch and later moves off to
the right for increasing ϕ. Due to the periodicity of ϕ, a new window
appears before the other one vanishes.

of operation yields a bifurcation diagram with η as the
control parameter. Figure 5(a) shows an exemplary bifurcation
diagram for ϕ = 0. Note that several windows of stationary
behavior and chaotic dynamics can be observed. The location
of these windows moves with the feedback phase ϕ and
can be associated with the aforementioned delay-induced
multistability of the stationary CS solution. In particular, at
ϕ ≈ π the period-doubling route of the lower branch starts to
appear in coexistence with the upper branch. For increasing
ϕ, the bifurcation points move towards lower η. At the
saddle-node bifurcation at ϕ ≈ 1.5 π , they change direction
and continue towards higher η—now as the upper branch.
Here, the overlap of the two period-doubling routes is most
pronounced [see Fig. 5(b), where an exemplary bifurcation
diagram for ϕ = 1.48 π is presented]. An animation showing
the dynamics of the bifurcation diagram as one changes the
feedback phase is available in the Supplemental Material [66].
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FIG. 6. The left panel shows a bifurcation diagram obtained in DDE-BIFTOOL with the delay phase ϕ as the control parameter. Stationary
solutions are drawn as thin lines in solid black for stable, dotted red for the unstable connection between the folds, and dashed blue for
Andronov-Hopf instability. The periodic orbits connecting the Andronov-Hopf bifurcations are represented as thick lines in solid black for
stable, dashed blue for period doubling, dotted red for cyclic fold and dash-dotted magenta for torus bifurcation. Corresponding data from direct
numerical simulations is plotted as small cyan dots for comparison. The simulations are in agreement with the continuation. The right panels
show the Floquet multipliers corresponding to the unstable periodic orbits. Values outside the unit circle indicate the respective instabilities,
i.e., real and larger than one means cyclic fold, real and smaller than minus one means period doubling, and a complex pair with an absolute
value larger than one means torus bifurcation.

Since the cw solutions are unstable to spatial modulation,
they are not attainable in the same simulations as the CSs. We
can, however, obtain their intensity in a spatially nonextended
model, i.e., omitting the diffraction in the transverse plane.
The resulting bifurcation diagram for the homogeneous lasing
solution resembles the diagram for CSs in appearance. In
particular, Andronov-Hopf bifurcations as well as saddle-node
bifurcations of CSs and of the homogeneous lasing solutions
occur at similar values of η. Therefore, the dynamical behavior
of the homogeneous lasing solutions can be first studied
in detail using, e.g., standard path-continuation tools for
delay differential equations [68] as this analysis is much
simpler than the complete analysis of the spatially distributed
problem.

VI. DELAY CONTINUATION

We use DDE-BIFTOOL with the extensions for periodic orbits
and rotational symmetry to analyze the dynamic solutions of
the system. DDE-BIFTOOL [68] is a path-continuation toolbox
for delay differential equations (DDEs) in MATLAB. Since DDE-
BIFTOOL is designed to continuate delay differential equations,
Eqs. (1)–(3) can be approximated by a set of coupled delay
differential equations. However, the underlying algorithms’
execution times scale badly with the system dimension. In
particular, calculations for a single equation in space have
shown an effective limit to spatial resolution of 64 mesh points
on contemporary desktop hardware [41]. For the 4d system
of interest, we estimate a limit of only 16 mesh points in
space, which is hardly sufficient. We therefore look only at
the cw case since CSs are expected to behave similarly as was
demonstrated before.

Figure 6 shows the results of the analysis with DDE-BIFTOOL

for η = 1% on the full interval of ϕ in the left panel. The
stationary solution is stable (thin solid black line) only for
a small interval of ϕ, while most of it is Hopf unstable
(thin dashed blue line). Between the two folds, the branch
is unstable (thin dotted red line). The periodic orbits are
represented by thick lines (solid black when stable) through
the extrema of their intensity profiles in time. They connect the
Andronov-Hopf bifurcations. On two separate intervals, they
are unstable due to period doubling (dashed blue line) and
a torus bifurcation (dash-dotted magenta line), respectively.
There is also a cyclic fold before the torus bifurcation, with
the unstable part shown as a dotted red line. For comparison,
the results from direct numerical simulations are shown as
cyan dots. Both the continuation and the simulations are in
good agreement.

The right panels of Fig. 6 show the respective Floquet
multipliers of representative unstable periodic orbits. In the
upper panel, the torus bifurcation is identified by a complex
pair of Floquet multipliers outside the unit circle. In the middle
panel, the cyclic fold is identified by a real Floquet multiplier
larger than one. In the lower panel, the period doubling is
identified by a real Floquet multiplier smaller than minus
one.

Finally, Fig. 7 shows the full bifurcation diagram for cw
stationary solutions and their periodic orbits in the (ϕ,η) plane.
For the stationary solutions, the Andronov-Hopf bifurcation
is shown as a thin dashed red line and the saddle-node
bifurcation as a thin solid green line. For the periodic orbits,
the period-doubling bifurcation is shown as a thick dashed blue
line, the cyclic folds as a thick solid cyan line, and the torus
bifurcation as a thick dotted black line. The torus bifurcation
branch connects the cyclic fold with the crossing point of the
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FIG. 7. Bifurcation diagram for cw solutions obtained with DDE-
BIFTOOL with the feedback strength η and feedback phase ϕ as control
parameters. The folds (Hopf thresholds) of the stationary solutions
are drawn as a thin solid green line (dashed red line). The cyclic
folds of the periodic orbits are shown as a thick solid cyan line
and the period-doubling (torus) thresholds as a thick dashed blue
(dotted black) line. Areas are colored corresponding to the various
instabilities present with the torus region being hatched.

stationary fold with the Andronov-Hopf bifurcation. The
colored areas represent the respective combination of delay-
induced instabilities with the torus region being hatched. One
can see that increasing η leads to complex spatiotemporal
behavior of the homogeneous lasing solution, including
multistability and coexistence of stationary states with periodic
and aperiodic dynamics.

VII. CONCLUSION

To conclude, we carried out a detailed investigation of
the bifurcation structure of time-delayed feedback-induced
complex dynamics in a broad-area VCSEL with a saturable
absorber. Using bifurcation analysis and direct numerical
simulations, we have shown that the feedback impacts the
homogeneous lasing solution and the localized CS solutions in
a similar way, causing multistability of the stationary solutions
as well as oscillatory dynamics with either a period-doubling
or quasiperiodic route to chaos. We have demonstrated that
this multistability is caused by a feedback-induced phase bi-
furcation of the stationary solution. The threshold of the phase
bifurcation was obtained by a combination of analytical and
numerical path-continuation methods. The similarity between
the bifurcation scenarios of the lasing homogeneous solutions
and the CS solutions allows us to perform a complete map-
ping of the saddle-node, Andronov-Hopf, period-doubling,
secondary Hopf (torus), and cyclic fold of periodic orbits’
bifurcations in a plane of the feedback parameters, namely,
the phase and strength of the feedback.
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