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Strong light-matter coupling in the presence of lasing
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The regime of strong light-matter coupling is typically associated with weak excitation. With current
realizations of cavity-QED systems, strong coupling may persevere even at elevated excitation levels sufficient
to cross the threshold to lasing. In the presence of stimulated emission, the vacuum-Rabi doublet in the emission
spectrum is modified and the established criterion for strong coupling no longer applies. We provide a generalized
criterion for strong coupling and the corresponding emission spectrum, which includes the influence of higher
Jaynes-Cummings states. The applicability is demonstrated in a theory-experiment comparison of a few-emitter
quantum-dot–micropillar laser as a particular realization of the driven dissipative Jaynes-Cummings model.
Furthermore, we address the question if and for which parameters true single-emitter lasing can be achieved and
provide evidence for the coexistence of strong coupling and lasing in our system in the presence of background
emitter contributions.
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I. INTRODUCTION

Strong coupling (SC) and lasing are usually observed in
disjunct operational regimes: SC in the quantum regime for
weak excitation of a single emitter [1], and lasing using strong
excitation of many emitters, such as an ensemble of atoms, or
a semiconductor gain material, in the weak-coupling regime
[2]. The regime where both effects intermingle is widely
unexplored, but has stirred interest since it was first reported
in a semiconductor nanolaser [3]. SC is generally identified by
the occurrence of two well-separated peaks in the emission
spectrum, as defined by analytic expressions known from
textbooks (e.g., Ref. [4]), in which the spectrum is written
as modulus square of the difference between two poles,

S(ω) ∼
∣∣∣∣ 1

ω − ω1
− 1

ω − ω2

∣∣∣∣2

. (1)

For a discrete emitter, this is the so-called vacuum-Rabi
doublet—the spectral representation of vacuum-Rabi oscil-
lations that arises from the coherent energy exchange between
light and matter [1,4]. In the presence of dephasing, which
originates from cavity losses, spontaneous emission, and
carrier relaxation processes following excitation, it is known
that strong coupling persists as long as 4g > |� − κ|, where
g is the light-matter coupling strength, κ is the cavity loss
rate, and � gives the total exciton dephasing, before the Rabi
doublet merges into a single line marking the transition to
weak coupling [4].

In this paper, we show that this well-established criterion
and the emission spectrum (1) with poles defined as in
Refs. [4,5] fail to describe the system close to the lasing
threshold due to the onset of stimulated emission. At stronger
excitation, contributions from higher excited states begin
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to matter and their influence also affects the vacuum-Rabi
doublet. This effect is in addition to previous analytic con-
siderations of emission spectra in driven dissipative systems
[6–9]. By extending the Hilbert space beyond commonly
used approximations, we provide a correction term to the
strong-coupling criterion that shifts the strong-to-weak cou-
pling transition to significantly lower excitation powers, in
agreement with a full nonperturbative solution of the driven
dissipative Jaynes-Cummings model.

Our work relates to the quantum regime of SC, which
is between discrete states of the quantized light field and
an electronic transition [1], such as realized in atoms [10],
superconducting circuits [11,12], and semiconductor quantum
dots (QDs) [5,13] coupled to micro- or nanocavities. Their
small mode volume facilitates single-mode lasing with only
a few discrete emitters, allowing one to push the concept of
lasing into the domain of quantum optics. In particular, we
study the ultimate limit of a single-QD laser [14] that has
been pursued [15–17] in analogy to the single-atom laser [18].
In these systems, important questions remain, such as to the
influence of nonresonant background emitters [19–22]. By
combining spectroscopy and autocorrelation measurements
with density matrix calculations, in our joint experimental
and theoretical work we address the following questions: Can
a single quantum emitter provide sufficient gain to achieve
lasing? Which signatures can be used to uniquely identify the
transition from strong to weak coupling? Can SC and lasing
coexist? Answering these questions will strongly advance our
knowledge at the quantum level of light-matter interaction
with an important interdisciplinary impact in quantum optics,
nanophotonics, and the development of ultimate nanolasers.

This paper is structured as follows: In the next section II, we
derive the analytic spectrum for different approximations and
define strong-coupling conditions. In Sec. III, the conditions
for single-QD lasing and strong coupling are discussed. Sec-
tion IV presents the experimental setup and the measurements
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and compares the theoretical findings to the experimental
results. Section V concludes this work.

II. SC CONDITION AND EMISSION SPECTRUM

The underlying quantum mechanical problem is defined
by the model of a two-level emitter coupled to a cavity
photon mode through the Jaynes-Cummings (JC) interaction
as described by the Hamiltonian (in h̄ = 1 units)

H = H0 + HJC = ωc c†c + ω0 b†b + g (b†v†c + b c†v). (2)

The operators b and b† refer to cavity-mode photons and we use
QD notations for the two-level emitter: c,c† are the fermionic
annihilation and creation operators for carriers occupying the
upper (conduction-band) level and v,v† for the lower (valence-
band) one, whose energy is taken as zero.

To describe a driven, dissipative laser system, the Hamil-
tonian dynamics is augmented by dissipative processes and
pumping via various Lindblad terms acting on the density
operator ρ as LX[ρ] = 1

2�X{2 X ρ X† − X†X ρ − ρ X†X},
with �X the corresponding rate. The time evolution of the
density operator is given by the von Neumann–Lindblad (vNL)
equation

∂

∂t
ρ = −i[H,ρ] +

∑
X

LX[ρ], (3)

and the incoherent processes considered in the summation
above are (i) cavity losses, defined by X = b with rate �b

denoted as κ , (ii) exciton decay with X = v†c and rate �v†c =
γ , (iii) pumping, represented by an up-scattering process
with X = c†v, �c†v = P , and (iv) pure dephasing leading to
homogeneous line broadening, defined by X = c†c with the
rate �c†c = γh.

An analytic expression for the emission spectrum, such as
Eq. (1), and the criterion for SC can only be obtained by using
approximations that limit the Hilbert space to a low-excitation
subspace. We compare the following two approximations:
(i) the three-state approximation (3SA), which reproduces the
well-known expression (1) with poles differing from Ref. [4]
by taking into account pure and excitation-induced dephasing
[7,9]. This approximation considers only states not exceeding
a total excitation of Nex = c†c + b†b = 1. Explicitly, these are
the ground state |v,0〉 and the states with one excitation |c,0〉
and |v,1〉. (ii) The four-state approximation (4SA) is derived
by including the additional state |c,1〉 with Nex = 2 in the
derivation, providing corrections that improve the description
of systems driven close to the laser threshold.

The cavity emission spectrum is calculated using the
first-order autocorrelation function of the photon opera-
tors, g

(1)
b (t) = limt ′→∞ 〈b†(t ′) b(t + t ′)〉, using the quantum-

regression theorem. The emission spectrum is then given
by the Fourier transform Sb(ω) = 2 Re

∫ ∞
0 g

(1)
b (t) eiωtdt =

2 Re g
(1)
b (ω). The peaks of Sb(ω) are located at the poles of

g
(1)
b (ω). As for the conventional 3SA, the existence of poles

at different energies is used in the following to identify SC.
The calculations given in the Appendix lead to the closed
expression for g(1)(ω) and thereby the emission spectrum

(ω measured from the cavity frequency),

g
(1)
b (ω) = [−D2(ω) + ϕ] D′(ω) − 2 g2D′

2(ω)K

D(ω)D′(ω) + 2 g2PD′
2(ω)

, (4)

where D(ω) = D1(ω) D2(ω) + g2 = (iω − κ
2 )(iω′ − P̃

2 ) +
g2, D′(ω) = D′

1(ω) D′
2(ω) + g2 with D′

1(ω) = iω − (P +
γ + κ/2), and D′

2(ω) = iω′ − (P̃ /2 + κ), and ω′ = ω − 	.
P̃ = P + γ + γh collects all the rates contributing to the
exciton dephasing and � = P̃ + κ includes the cavity losses.
Here, 	 = ωc − ω0 is the detuning. The quantities ϕ and K

are defined as

ϕ = κ

2

(
1 − 2 i

	

�

)
and K = P

P + γ + κ
. (5)

The second D′
2(ω)-dependent term both in the numerator

and denominator of Eq. (4) makes the difference between
the three- and four-state approximation. Discarding them, the
3SA result is obtained, with its second-degree denominator
determining the 3SA spectral poles. For convenience, we
provide an analytic, second-degree expression whose roots
approximate the 4SA spectral poles. It is obtained by adding
a correction term C to the 3SA denominator (derivation in the
Appendix),

χ (ω) =
(

iω − κ

2

)(
iω − P̃

2

)
+ g2 − C, (6)

with C = 2g2P (P̃ /2+κ−�/4)
(P+γ+κ/2−�/4)(P̃ /2+κ−�/4)+g2 . The 4SA spectrum has

again the structure of Eq. (1), but with the poles in corrected
positions at the roots of Eq. (6).

III. CONDITION FOR SINGLE-QD LASING AND SC

It has been widely discussed that a determination of the laser
transition in high-β lasers is difficult from the input-output
curve alone [23], and the photon autocorrelation function
g(2)(0) is generally used to identify thermal, coherent, or
single-photon emission in terms of g(2)(0) = 2,1 and <0.5,
respectively. In Fig. 1(a), we show the input-output curve
and g(2)(0) (black curves) for a single-QD microcavity system
with g/κ ≈ 0.5, which corresponds to our experiment and is a
value also realized in other studies on QD-microcavity systems
[3,24,25]. As can be seen, the emission saturates before lasing
is reached due to the limited gain that the single emitter can
provide. To attain g(2)(0) ≈ 1 and 〈nph〉 = 1 requires at least
g/κ > 2 for the single emitter (green curves). While such high
values may be realized via further technological improvements
in terms of ultrahigh-cavity Q factors and significantly larger
light-matter coupling constants [26], this agrees with previous
predictions that with dielectric cavity designs, a single QD
contributes significantly to lasing but additional background
gain is required to reach and overcome the laser threshold
[16,27].

The cavity emission spectra corresponding to the black
curves in Fig. 1(a) are shown in Fig. 1(b) and reveal a transition
from a doublet to a single-peak structure. The merging of the
peaks in the full numerical solution of Eq. (3) (shaded) is well
reproduced by the 4SA given by Eq. (4) (dashed lines), while
the 3SA (solid lines) fails to correctly predict this behavior
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FIG. 1. (a) Input-output curve and (b) calculated cavity emission
spectra for a single-QD microlaser with the parameters of the
experiment (black: 	 = 0, κ = 0.136, g = 0.076, γ = 0, γh = 0 in
ps−1) for the pump rates indicated by the vertical lines in (a) and
(c). The approximate analytical three-state approximation (3SA)
(solid line) and 4SA (dashed line) results discussed in the text
are compared to the numerical spectra (shaded area) obtained by
solving Eq. (3). All shown spectra are normalized to the unity area.
(c) Real parts of the main roots of g

(1)
b (ω) indicating the transition

from strong to weak coupling. SC persists for all in (b) shown
spectra according to the 4SA condition. In (a), additional results for
a single-QD laser that overcomes the threshold are shown in green
(κ = 0.05, g = 0.1, γ = 0, γh = 0 in ps−1).

within the investigated excitation range. From Eq. (4), we can
directly determine the transition from strong to weak coupling.
The real part of the poles of g

(1)
b (ω) is shown in Fig. 1(c).

The 4SA (dashed curve) predicts the transition to take place
at a pump rate that is nearly one order of magnitude lower
compared to the conventional 3SA criterion 4g > |P̃ − κ|,
with P̃ the total exciton dephasing in our case (solid curve).

More insight is obtained from a parameter-space map
that shows the three criteria discussed above in terms of
the key system parameter g/κ that determines the existence
and perseverance of strong light-matter coupling, and exci-
tation strength P that enters into � as excitation-induced
dephasing.

The line that separates the strong- and weak-coupling
regime as defined by the merging of the two main spectral poles
of Eq. (4) is represented in Fig. 2 by a dotted line. The red line
marking the pump rate at which 〈n〉 = 1 and the g(2)(0) values
are superimposed as a color map. As a criterion for lasing,
here we use a 3% margin around g(2)(0) = 1 as indicated by
the contour line. Four regimes can be distinguished in which
either SC lasing, neither, or both is realized. Lasing with only
a single QD is possible for g/κ � 2.5. At these large coupling
strengths, lasing generally takes place in the presence of SC,
and lasing in the weak-coupling regime is only realized if the
excitation power is increased further than the threshold value.
For g/κ � 2.5, SC of a single emitter and lasing can coexist
if the missing gain is provided by additional background
emitters, as we now discuss in the context of experimental
results.

FIG. 2. Parameter-space diagram relating the conditions for SC
(dotted line) and lasing (red: 〈nph〉 = 1, g(2)(0) as color map) to the
dimensionless light-matter coupling and excitation strength.

IV. THEORY-EXPERIMENT COMPARISON

A. Sample fabrication and experimental setup

We complement our results by spectroscopical investiga-
tions of a Q = 15 000 micropillar cavity with a single layer of
self-assembled InGaAs QDs in the center of a GaAs λ cavity
[inset of Fig. 3(a)]. We have chosen laterally extended QDs
with an indium content of about 40% and an area density
of 1010 cm−2 to foster pronounced cavity-QED effects in
the single-QD regime. The QD microlaser was studied at
cryogenic temperatures using microphotoluminescence (μPL)
spectroscopy. We refer to the Appendix for details on the fab-
rication and on the experimental setup. Temperature tuning of
the QD micropillar at low excitation energies reveals a clear an-
ticrossing of a single-QD exciton (X) and the fundamental cav-
ity mode (C) with a vacuum-Rabi splitting of about 60 μeV at
the resonance temperature of 24.6 K (see Appendix for details).
See Ref. [28] for state-of-the-art processing on micropillars.

B. Excitation-power dependence of the
QD-micropillar emission

The excitation-power-dependent evolution of the emis-
sion spectra in Fig. 3(a) demonstrates the disappearance
of the vacuum-Rabi doublet into a single-emission peak
with increasing excitation power, suggesting a transition into
the weak-coupling regime. In addition to the Rabi doublet,
emission from three nonresonant QDs can be seen at negative
detuning (at around −0.5 meV). It is commonly agreed that the
dephasing associated with the scattering grows with increasing
carrier density [29] and is the origin of the line broadening that
ultimately causes the transition to weak coupling [4,30,31]. By
fitting the experimental emission spectra using Eq. (4) for a
fixed set of parameters, taking only into account the respective
excitation power, we can directly evaluate the SC criterion
given by Eq. (6). The real part of the roots of χ (ω) is shown
as the inset of Fig. 3(c) and reveals that the transition to weak
coupling takes place at about 2 μW.

In the following, we identify the lasing characteristics of our
device by a combined experimental and theoretical analysis
of the emission intensity, autocorrelation function, and
coherence time as a function of pumping. In Figs. 3(b)–3(d),
experimental data are shown. From the autocorrelation
measurements, we identify the regime where the single-QD
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FIG. 3. (a) Excitation-power series of μPL spectra recorded at
resonance. Scanning electron micrograph of a micropillar with a
diameter of 2 μm shown as inset. (b)–(g) Laser characteristics
obtained from experiment (left) and theory (right). From top to
bottom, input-output curve, coherence time, and second-order photon
correlation function are shown, respectively, in their combination
providing evidence that the microlaser crosses the transition to
lasing. Experimental coherence times have been obtained by using
Eq. (4) to model the measured spectra, followed by Fourier transform
and integration, τcoh = ∫

dτ |g(1)(τ )|2. Inset: Position of the roots of
Eq. (6) calculated for the corresponding fit parameters.

gain contribution clearly dominates the emission, indicated
by g(2)(τ = 0) < 0.5 (P < 1 μW). On the other hand, at high
excitation powers, a continuous increase of the output intensity
is observed in Fig. 3(b), which is a signature of background
contributions instead of that of a single, saturable emitter.
We explain this transition by additional emitters present in
the cavity. At low excitation, their excitonic transitions are
detuned from the cavity mode. At intermediate excitation
levels around 1 μW, multiexciton transitions become realized
and spectrally overlap with the cavity mode [22], providing
cavity feeding that first leads to not yet fully coherent emission
with photon bunching [g(2)(0) > 1] before the threshold is
crossed and emission becomes fully coherent [g(2)(0) ≈ 1].
An observed increase in coherence time [Fig. 3(c)] is also
indicative for the onset of lasing [23]. The coherence time
is obtained by using Eq. (4) to fit the emission spectra for
a single set of parameters (only P is variable) followed by
Fourier transformation. This parameter set is then used in the
theoretical calculation. More details are given in the Appendix.

The above discussion on the interplay of single-QD and
background contributions is the foundation for our theoretical
modeling of the few-emitter nanolaser. Most published works
including Ref. [3] use a phenomenological photon-generation
term by means of inverse cavity losses to account for back-
ground effects, which has the difficulty that photons are purely
thermal [27,32]. Instead, we treat background emitters on a mi-
croscopic footing by solving Eq. (3) directly for a few-emitter
system and input parameters taken from the experiment. Due
to the complexity of the calculation, we treat the single-QD
and background-dominated excitation regimes separately: In
the low-excitation regime (P < 0.01/ps), Eq. (3) is solved
for a single emitter, whereas a single QD plus up to seven
transitions of background emitters are explicitly included at
higher excitation (P > 0.02/ps), when higher multiexciton
states acting as gain centers become realized with sufficient
likelihood. The transition depends on the exact mechanism of
the nonresonant coupling, for which we use a fit as it is not
a focus of this work. By including all contributing emitters in
Eq. (3), we are able to correctly account for the properties of
the gain material and, thereby, obtain realistic linewidth and
g(2) values in the presence of background effects. Details of
the modeling are given in the Appendix.

Theoretical results are shown in Figs. 3(e)–3(g). The
calculated input-output curve first shows a linear increase,
which arises from the exciton transition of the single QD
(contribution marked in green). When the exciton of the single
QD saturates, multiexciton states of the background emitters
begin to add to the photon emission into the mode (their
contribution is marked in red). The kink in the input-output
curve is, therefore, not related to the β factor (for the strongly
coupled QD, we assume β ≈ 1), but arises from the transition
from single-QD to background-dominated emission. Lasing
with g(2)(0) ≈ 1 and a mean photon number 〈nph〉 > 1 is
achieved at P ≈ 0.03/ps. In agreement with the data obtained
from experiment, the coherence time reveals a slight increase
at the onset of lasing. For a laser with gain provided by a
QD ensemble, coherence times of about 1 ns are characteristic
[33]. The much shorter coherence times observed here nicely
reflect the small amount of stimulated emission provided by
the combined single-emitter gain and few-emitter background
gain, and the sizable impact of spontaneous emission on the
above-threshold emission characteristics. We point out that the
very good qualitative agreement between microscopic theory
and experiment is obtained by extracting the crucial system
parameters on the basis of Eq. (4) and consistently using
these in the microscopic model. Finally, we note that the laser
threshold is crossed before the poles merge (indicated by the
vertical lines in panels (b)–(g) of Fig. 3), suggesting that SC
is maintained in the presence of lasing in our device.

V. CONCLUSION

In conclusion, our analytical model for the strong-coupling
spectrum allows for a realistic evaluation and characterization
of experiments close to or at the laser threshold. In this regime,
it strongly deviates from textbook equations that fail due to
the onset of stimulated emission. While for a single emitter
lasing in the presence of SC requires g/κ ratios exceeding 2,
for QD-microcavity systems, SC can prevail also if lasing is

023806-4



STRONG LIGHT-MATTER COUPLING IN THE PRESENCE . . . PHYSICAL REVIEW A 96, 023806 (2017)

driven by cavity feeding of background emitters, as we have
demonstrated for a QD-micropillar laser. At the same time, our
results may initiate studies in systems that allow for a larger
light-matter coupling, such as in superconducting-circuit
QED [11].
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APPENDIX

1. Derivation of the expression for the analytic spectrum

In a rotating-frame picture defined by H̃0 = ωb(c†c + b†b)
and explicitly writing the Lindblad contribution of the incoher-
ent processes defined before, the equation of motion (EOM)
for the expectation value of an arbitrary operator A reads

∂

∂t
〈A〉 = − i〈[A,	c†c + g (b†v†c + b c†v)]〉

+ κ

2
〈[b†,A] b + b†[A, b]〉

+ γ

2
〈[c†v,A] v†c + c†v[A, v†c]〉

+ P

2
〈[v†c,A] c†v + v†c[A, c†v]〉

+ γh

2
〈[c†c,A] c†c + c†c[A, c†c]〉. (A1)

Note that the last term can be written in several equivalent
ways, for instance with all the c operators replaced by v

operators, or as γh/4〈σzAσz − A〉; see, e.g., [34].
The cavity emission spectrum is calculated using the first-

order autocorrelation function of the photon operators,

g
(1)
b (t) = lim

t ′→∞
〈b†(t ′) b(t + t ′)〉. (A2)

The long-time limit implies that the expectation values are
calculated using the steady-state (SS) density operator ρSS,
and the correlation function is formally the expectation value
of b(t) using an auxiliary “density operator” ρb,

g
(1)
b (t) = 〈b(t)〉b = Tr{ρb b(t)}, ρb = ρss b†. (A3)

The emission spectrum is then given by the expression

Sb(ω) = 2 Re
∫ ∞

0
g

(1)
b (t) eiωtdt = 2 Re g

(1)
b (ω). (A4)

The EOM for the evolution of the correlation function 〈b(t)〉b
is obtained from the same Eq. (A1), as for any operator expec-
tation value (quantum regression theorem) [35], irrespective of
the density operator involved in the averages. It is by the initial

conditions alone that the solution depends on the particular
density operator considered. In the present case, the initial
conditions are expressed as expectation values on the steady-
state density operator, 〈A(0)〉b = Tr{ρssb

†A} = 〈b†A〉ss.

Low-excitation approximations

The EOM for the quantity of interest, 〈b(t)〉b, generates a
hierarchy of equations for higher operator averages [36,37]. As
mentioned above, the form of these equations is independent
of the density operator, and therefore we drop in the following
the subindex b. Also, for simplicity, the time argument is left
out. One obtains, successively,

∂

∂t
〈b〉 = −ig〈v†c〉 − κ

2
〈b〉, (A5a)

∂

∂t
〈v†c〉 = −

(
P̃

2
+ i	

)
〈v†c〉 + ig〈b(c†c − v†v)〉,

(A5b)

∂

∂t
〈b c†c〉 = −ig〈b b c†v〉 + ig〈b†b v†c〉

−
(
γ + κ

2

)
〈b c†c〉 + P 〈b v†v〉, (A5c)

∂

∂t
〈b†b v†c〉 = −

(
P̃ + 2κ

2
+ i	

)
〈b†b v†c〉

+ ig〈b†b b(c†c − v†v)〉 + ig〈b c†c〉, (A5d)

where by P̃ we denoted P + γ + γh. One can eliminate
averages containing the v†v operator in favor of c†c using
v†v = 1 − c†c.

The chain of EOM is infinite, involving growing products
of operators. In order to obtain a finite, closed set of equations,
some approximations are needed. If the system is not strongly
pumped, it is natural to limit the Hilbert space of the problem
to the low-excited states. This can be done in several ways, as
seen in what follows.

(a) The three-state approximation (3SA). The ground state
of the system consisting of the emitter plus cavity mode, as
described by H0 of Eq. (2), is the state |v,0〉 with the emitter
in its lower state and no photon in the cavity. No excitation
is present in the system. The states with one excitation are
|c,0〉 and |v,1〉, and the vacuum-Rabi oscillation is the energy
exchange between these two. Limiting the Hilbert space to
these three states, i.e., to the states with no more than one
excitation, is the approximation considered here (3SA).

In this case, it is easy to see that 〈b c†c〉 can be discarded,
as it requires more than one excitation. Thus, in Eq. (A5b),
one has 〈b (c†c − v†v)〉 = −〈b〉, and Eqs. (A5a) and (A5b)
become a closed set of two equations for 〈b〉, and 〈v†c〉. The
two-dimensional evolution problem has the form

∂

∂t
|�〉 = M|�〉, |�〉 =

∣∣∣∣ 〈b〉
−ig〈v†c〉

〉
, (A6)

and the Fourier transform of the time evolution, required by
Eq. (A4), amounts to a matrix inversion problem,∫ ∞

0
|�(t)〉eiωtdt =

∫ ∞

0
e (iω+M)t |�(0)〉dt

= −(iω + M)−1|�(0)〉. (A7)
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In our case, the matrix to be inverted is⎛⎝iω − κ/2 1

−g2 iω′ − P̃ /2

⎞⎠ =
⎛⎝D1(ω) 1

− g2 D2(ω)

⎞⎠,

(A8)

where ω′ = ω − 	 and P̃ = P + γ + γh.
The inverse is given by

(iω + M)−1 = 1

det(iω + M)

⎛⎝D2(ω) − 1

g2 D1(ω)

⎞⎠,

(A9)

where the determinant of iω + M is

D(ω) = D1(ω) D2(ω) + g2 =
(

iω − κ

2

)(
iω′ − P̃

2

)
+ g2.

(A10)

The matrix of Eq. (A9) should be applied to the vector of initial
conditions and the result projected on the first component,
corresponding to 〈b〉,

g(1)(ω) = −〈1 ,0|(iω + M)−1

∣∣∣∣ 〈b†b〉
−ig〈b†v†c〉

〉
ss

. (A11)

The last step is the calculation of the steady-state expectation
values defining the initial conditions. To this end, one has to
examine the chain of EOM associated with the photon number,

∂

∂t
〈b†b〉 = 2 Re{−ig〈b†v†c〉} − κ 〈b†b〉, (A12a)

∂

∂t
〈c†c〉 = −2 Re{−ig〈b†v†c〉} − γ 〈c†c〉 + P 〈v†v〉,

(A12b)

∂

∂t
〈b†v†c〉 = −(�/2 + i	)〈b†v†c〉

+ ig〈b†b(c†c − v†v)〉 + ig〈c†c〉, (A12c)

where � = P̃ + κ = P + γ + γh + κ sums up all the dephas-
ing processes. Here again the chain is broken by limiting the
Hilbert space to the subspace with no more than one excitation.
Indeed, in this case, 〈b†b c†c〉 = 0 and therefore 〈b†b v†v〉 =
〈b†b〉, and one is left with only three unknowns: the photon
number N = 〈b†b〉, the exciton population n = 〈c†c〉, and the
photon-assisted polarization ϕ = −ig〈b†v†c〉. Moreover, in
the steady state, the time derivatives are zero and one is left
with a system of three algebraic equations for these unknowns.
One obtains, for the steady-state values,

ϕ = 2 g2

� + 2 i	
(n − N ). (A13)

With R having the familiar expression for the spontaneous
emission rate R = 4g2�/(�2 + 4	2), eventually one finds

N = R P

R(P + γ + κ) + κ(P + γ )
,

ϕ = 2 g2

� + 2 i	

κ

R
N = κ

2

(
1 − 2 i

	

�

)
N. (A14)

Collecting all these results, one obtains

g(1)(ω) = −D2(ω)N + ϕ

D(ω)
= �/2 − iω′ − i	 κ/�

D(ω)
N.

(A15)

The factor N is frequency independent and thus is not
influencing the shape of the spectrum. Its presence is related
to our choice of the normalization of the correlation function
g(1)(ω). Therefore, one can simplify both Eq. (A15) and
the definition of ϕ in Eq. (A14) by setting N = 1 without
influencing the spectral line shape.

The important feature here is the position of the poles
of g(1)(ω), i.e., the zeros of D(ω). These are easily found
analytically as the roots of a second-degree polynomial. The
peaks of S(ω), measured from the cavity frequency ωb, are
located at the real parts of these roots.

As an example, we consider the resonant case 	 = 0, in
which the roots ω1,2 of D(ω) are given by

ω1,2 = −i
�

4
±

√
g2 −

(
P̃ − κ

4

)2

= i
�

4
± g′. (A16)

Obviously, the existence of two distinct peaks at ω = ±g′ is
conditioned by g′ being real or

4 g > |P̃ − κ|. (A17)

According to Eq. (A4), the spectrum is given, up to a
normalization factor, by

S(ω) = (�/2 − iω)D∗(ω) + (�/2 + iω)D(ω)

D(ω)D∗(ω)
. (A18)

With D(ω) = −ω2 − iω �/2 + g2 + P̃ κ/4, it is immediate
that the numerator of Eq. (A18) does not depend on ω and
therefore the shape of the spectrum is given by

S(ω) ∼
∣∣∣∣ 1

D(ω)

∣∣∣∣2

∼
∣∣∣∣ 1

ω − ω1
− 1

ω − ω2

∣∣∣∣2

. (A19)

This expression for the spectral shape is similar to the one
derived in Refs. [4,38], which is also obtained using only the
three lowest-excited states. Our result is slightly more general,
as it includes the presence of pumping.

(b) The four-state approximation (4SA). Instead of limiting
the Hilbert space to states with up to one excitation, one can
consider the subspace with up to one photon, which means
taking into account a fourth state, namely, |c,1〉. This improves
the approximation without including a higher rung of the
JC ladder, so that it still deals only with the vacuum-Rabi
oscillations.

Now the expectation value 〈bc†c〉 is not discarded from
the picture and additional EOM have to be considered. It
is the terms containing b b in Eqs. (A5c) and (A5d) which
vanish since they require two photons to be annihilated. As a
consequence, the whole set of Eqs. (A5) is now a closed system
for four unknowns. We choose them as 〈b〉, − ig〈v†c〉, 〈b c†c〉,
and −ig〈b†b v†c〉 and denote the four-dimensional vector
having these components by |�〉. Its time evolution is
generated by a four-dimensional matrix M . As before, we
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need the inverse of a matrix, which now has the form

iω + M =

⎛⎜⎝
D1(ω) 1 0 0
−g2 D2(ω) 2 g2 0
P 0 D′

1(ω) −1
0 0 g2 D′

2(ω)

⎞⎟⎠,

(A20)

with D′
1(ω) = iω − (P + γ + κ/2), D′

2(ω) = iω′ − (P̃ /2 +
κ), and D1(ω),D2(ω) as previously defined. Considering the
matrix as split into 2 × 2 blocks; the upper-left one is the
same as discussed above in 3SA. The lower-right block
is quite similar, with the determinant given by D′(ω) =
D′

1(ω)D′
2(ω) + g2. The simple, block-diagonal picture is

perturbed by the presence of the off-diagonal blocks. The
latter are sparse, so that the total determinant can be easily
calculated:

det(iω + M) = D(ω)D′(ω) + 2 g2PD′
2(ω). (A21)

The expression of g(1)(ω) is a four-dimensional analog of
Eq. (A11),

g(1)(ω) = −〈1, 0 ,0 ,0|(iω + M)−1|�(0)〉. (A22)

This time the components of |�(0)〉 are the steady-state
values of N = 〈b†b〉, ϕ = −ig〈b†v†c〉, K = 〈b†b c†c〉, and
λ = −ig〈b†b† b v†c〉, calculated in the 4SA. It is immediate
that the last component λ is zero in this approximation, so that
the calculation of g(1)(ω) involves only three matrix elements
of the cofactor of iω + M . One obtains

g(1)(ω) = [−D2(ω)N + ϕ] D′(ω) − 2 g2D′
2(ω)K

D(ω)D′(ω) + 2 g2PD′
2(ω)

. (A23)

It is obvious that the last terms in both the numerator and
denominator of Eq. (A23) make the difference between 4SA
and 3SA. Without them, one recovers the result of Eq. (A15).

Having included the fourth state |c,1〉, the system of
Eqs. (A12) is no longer closed and has to be supplemented.
Indeed, now K = 〈b†b c†c〉 cannot be discarded and its EOM
has to be added,

∂

∂t
〈b†b c†c〉 = 2 Re{ig 〈b†b†b v†c〉}

− (γ + κ)〈b†b c†c〉 + P 〈b†b v†v〉. (A24)

Here the first term is negligible since it contains two photonic
creation operators and the system becomes closed. Its solution
in the steady state now reads

N = R P

R (P + γ + κ) + κ (P + γ ) − 2 R P (P + γ )/(P + γ + κ)
, ϕ = κ

2

(
1 − 2 i

	

�

)
N, K = P

P + γ + κ
N. (A25)

The photon number N is modified with respect to its 3SA value
by the last term in the denominator. It should be noted that the
above expression for N coincides with the lowest truncation
of its continued fraction expansion, r1 = 0, in Eq. (A6) of
[39]. As in the 3SA case, N plays the role of a normalization
constant and can be taken equal to 1 both in Eq. (A23) and in the
expressions for ϕ and K in Eq. (A25). This is the normalization
convention used in Eqs. (4) and (5).

The positions of the spectral peaks are given by the roots
of the denominator of Eq. (A23), which is now a four-degree
polynomial. In the limit P → 0, two of the four zeros are
the roots of D(ω) as in 3SA, while the other two are new
and correspond to the zeroes of D′(ω). Since they evolve
continuously with increasing P , one can trace back which
of them started as roots of D(ω) and which stem from the
new roots. We call the former the “main” roots since it turns
out that the spectrum is essentially determined by them. The
other, “secondary” roots give rise to small corrections. Their
contribution is not even systematically positive, so there is no
bona fide spectrum associated with them. It should be noted
that in the resonant case, the denominator of Eq. (A23) is
a polynomial with real coefficients in the argument z = iω,
and therefore the roots z are either real or pairwise complex
conjugated. In the latter case, in the ω plane, the roots have
the real parts equal and of opposite sign, and the imaginary
parts coincide. This is seen in Fig. 4 for low pump values and
corresponds to the strong-coupling regime. Later, the real parts
merge in zero and the imaginary parts start taking different
values (weak coupling).

It is seen that new dephasing terms, contained in D′
1(ω) and

D′
2(ω), are bigger than those in D1(ω) and D2(ω) because a

larger product of operators in the expectation values comes
with stronger dephasing. As a consequence, the pumping
interval of strong coupling is expected to be overestimated
by the 3SA. This is confirmed in Fig. 4.

Focusing now on the main poles, it would be desirable to
obtain them at least approximately as the roots of a second-
degree polynomial. This would not only simplify the search for
their positions, but would also allow a more direct comparison

FIG. 4. The (a) real and (b) imaginary parts of the two main roots
(solid red line) obtained by 4SA. For comparison, the 3SA roots are
also shown (dashed blue line). It is seen that the merging of the peaks
occurs earlier in 4SA than in 3SA. The parameters used are 	 = 0,
κ = 0.136, g = 0.076, γ = 0.1, and γh = 0, all in ps−1 units.

023806-7



C. GIES et al. PHYSICAL REVIEW A 96, 023806 (2017)

FIG. 5. (a) The real and (b) imaginary parts of the two main roots
(solid red line) obtained by 4SA, in comparison with the roots of
Eq. (A28). The parameters are the same as in Fig. 4 (dashed blue line).

with the 3SA result and point out the correction terms. We
describe below a scheme for reaching this aim, in the case of
resonance.

To this end, we rearrange the equation

D(ω)D′(ω) + 2 g2PD′
2(ω) = 0, (A26)

in a way that separates it into the 3SA denominator D(ω) plus
a “correction,”

D(ω) + 2 g2PD′
2(ω)

D′(ω)
= 0. (A27)

This suggests a self-consistent scheme, in which the argument
ω in the correction term is a constant updated at each iteration.
As the starting point, one may choose for this constant the value
of the average ω̄ = −i�/4 of the 3SA roots. The resulting
second-degree polynomial is

D(ω) + 2 g2PD′
2(ω̄)

D′(ω̄)

=
[(

iω − κ

2

)(
iω − P̃

2

)
+ g2

]
− 2g2P

P̃ /2 + κ − �/4

(P + γ + κ/2 − �/4)(P̃ /2 + κ − �/4) + g2
,

(A28)

and its roots already provide a good approximation for the
main roots of 4SA, as seen in Fig. 5. Therefore, there is no
need for additional iterations. Of course, the accuracy of the
approximation might depend on the parameters and a careful
examination of the various cases should be performed. The
correction introduced in Eq. (A28) goes in the direction of
replacing g2 by a smaller quantity, and thus it reduces the
domain of strong coupling.

2. Sample fabrication and experimental setup

The QD-micropillar laser is based on a planar microcavity
structure grown by molecular beam epitaxy. The central layer

is composed of a single layer of In0.4Ga0.6As quantum dots
located in the center of a one-λ-thick GaAs cavity layer. On top
(bottom) of the GaAs cavity, 26 (30) pairs of AlAs/GaAs layers
act as highly reflective distributed Bragg-reflecting mirrors.
The investigated micropillar with a diameter of 1.8 μm
was realized by high-resolution electron-beam lithography
and plasma etching [40]. Optical studies were performed at
cryogenic temperatures using a helium flow cryostat with
a standard high-resolution confocal microphotoluminescence
(μPL) setup. The measured signal was collected by an
objective with a numerical aperture of 0.4 and dispersed by
a spectrometer with a resolution of 25 μeV and a fiber-based
Hanbury-Brown and Twiss (HBT) configuration with a total
temporal resolution of about 500 ps. A frequency-doubled
Nd:YAG laser at 532 nm in continuous-wave (cw) mode was
used for optical excitation.

3. Fits to the experimental spectra

We used a least-squares optimization to fit the model of
the 4SA to the data to estimate the coupling constant g. To
convert the measured power to a pump rate, we assumed a
linear dependence: P1/ps = αpowerPW . The parameter αpower

can only be fitted to the data when we fit all the spectra of
the power-dependent measurement at once. That means that
the fit parameters for g, γh, γ, κ, αpower were kept the same
for all spectra. Only a scaling factor for the intensity and an
offset for the central position of the peak were varied from
spectra to spectra. We introduced the individual scaling factor
for the intensity to take the off-resonantly coupled QDs into
account because the 4SA was derived for only a single QD in
resonance with the cavity mode. To limit the number of free
parameters even further, we estimated κ from the linewidth
of the cavity separately at high-excitation power with no
particular QD tuned in resonance. The value for γh was taken
from [41] as a typical value for QD-emitter pure dephasing at
25 K.

A selection of fits to the measured spectra throughout the
whole excitation range is shown in Fig. 6.

4. Temperature tuning of the emission from
the QD-micropillar system

In Fig. 7, we show results under temperature tuning of the
QD micropillar at low-excitation energies. A clear anticrossing
of a single-QD exciton (X) and the fundamental cavity mode
(C) with a vacuum-Rabi splitting of about 60 μeV is revealed
at the resonance temperature of 24.6 K. The experimental
results from Sec. IV have been obtained at the resonance
temperature. To compensate for laser-induced heating and
to maintain the resonance condition, the temperature of the
sample was slightly readjusted during the measurement series.

5. Autocorrelation measurements

HBT autocorrelation measurements are limited by the total
temporal resolution of the setup, which must be sufficient
to resolve the autocorrelation function with respect to the
delay time τ between two emission events. In the regime of
antibunching, the τ dynamics takes place on the time scale
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FIG. 6. Selection of the measured spectra shown in Fig. 1(b),
together with the fits as obtained from the 4SA.

of the emitter’s cavity-enhanced emission lifetime, whereas in
the thermal regime, it is determined by the coherence time, as
shown in Figs. 3(b) and 3(f).

The measured signal (g(2)
meas) consists of the ideal signal

(g(2)
ideal) that is convoluted with a Gaussian function with the area

normalized to one and a width (full width at half maximum) of
the total temporal resolution. To determine the g(2)(τ = 0), we
have to fix the lifetime or coherence time. Hence we estimate
the range of the expected lifetimes and coherence times.
The spontaneous lifetime (τl) of a QD exciton into a cavity
mode can be calculated by [36]

τl = κ + �

2g2
.

For the parameters discussed above, we estimate a lifetime
of τl ≈ 10 ps. Measurements performed on cavity structures
featuring comparable values for the Q factor and g show a
lifetime of about τl ≈ 20 ps [42] for a QD exciton in the strong-
coupling regime. In the case of a QD spectrally detuned from
the cavity mode, the lifetime increases with respect to the
resonant case. The maximum coherence time was measured to
be of the order of 35 ps [Fig. 3(b)]. We expect the lifetime and

FIG. 7. Temperature dependence of low-excitation μPL spectra
showing the tuning of the single-QD exciton through resonance of
the micropillar cavity, performed at 0.04 μW excitation power.

coherence time of our strongly coupled QD to be in the range
of 10 to 35 ps.

6. Details of the model with background emitters

To account for exciton and higher multiexciton states
commonly found in solid-state QD emitters, we typically
model each QD by considering several confined single-particle
states for electrons and holes [27]. For such a system, the
increasing size of the Hilbert space with emitter number limits
calculations to ≈4 QDs [32]. To be able to evaluate the
equations for more emitters, we use an effective model where
we consider only the resonant transitions with the cavity mode
of each emitter, where each transition is then described in
terms of a two-level system. For QD 1, of which the exciton
transition is strongly coupled to the mode, the two-level system
accounts for the exciton to the ground-state transition that is
driven by the pump rate P1 = P .

From the constant antibunching observed in the experiment
at low excitation, we conclude that background effects appear
only at elevated pumping. While detuned emitters are excited
by the incoherent pumping, their exciton transition is too far
detuned from the cavity mode to be coupled. As shown in
Refs. [19,22], large detunings to the mode are easily bridged
by the appearance of dense-lying multiexciton states. In our
model, we account out of a multitude of possible transitions
for one that is resonant with the mode. We consider up to seven
additional background emitters. For these QDs 2–8, the two
levels then account for the transition between this multiexciton
state and a state from the manifold of multiexciton states
with one excitation less. At high excitation, these multiexciton
transitions are mainly responsible for the emission properties
and properly treated in our formalism.

To describe the switch-on behavior of the detuned emitters
in the regime of intermediate excitation powers, we use
a simple phenomenological model that accounts for (1)
the higher-order pump dependence typical for multiexciton
transitions at least ∝ P 2 and (2) the presence of multiexciton
states if the emitter is driven beyond the saturation of the
exciton transition P X

sat. Above, we use P2−8 = αP 2 with α < 1.
Below, carrier occupations in the background emitters are too
low for multiexciton states to form and their effect is negligible.
We point out that the exact way in which background emitters
begin to contribute in this transition region is not our topic of
investigation, and neither in the low- nor in the high-excitation
regime are the numerical results influenced by this procedure.

We point out that our model is based on explicit assump-
tions on the experimental situation, which due to limited
computational resources are impossible to model on a fully
microscopic level. Nevertheless, it captures the main elements
of a single-QD microcavity system in the strong-coupling
regime and in the presence of detuned background emitters that
provide additional gain required to reach lasing, and it does so
under full consideration of the light-matter interaction required
to model the coherent strong-coupling regime. Thereby, we
can offer an interpretation of the physics underlying the
experiment that is in excellent qualitative agreement with
several observables at the same time.

The spontaneous-emission spectra that are obtained from
the numerical solution of the von Neumann equation for the
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FIG. 8. Spontaneous-emission spectra obtained from a solution
of Eq. (3) for a resonant single QD and six detuned background
emitters (solid lines), together with the analytic expressions used in
Fig. 2(c). Parameters as in Fig. 2(c) with an additional homogeneous
dephasing of γh = 30 μeV. All of the shown spectra are normalized
to unity area.

single QD plus 6 background emitters are shown in Fig. 8.
A homogeneous dephasing of 30 μeV has been added [41]
to match the situation in the experiment, which is performed
at 25 K. The coherence time shown in Fig. 3(f) has been
obtained from these spectra. The increase in coherence time
due to the onset of lasing is reflected in a linewidth narrowing
at the highest pump rate, which is absent in the single-QD case
shown in Fig. 1(b).

7. Comparison of spectra in the different approximations

Spectra in the strong-coupling regime are often described
in terms of a superposition of two Lorentzian lines. Both for
assessing the relevance of the strong-coupling regime in a
given situation and in order to correctly fit experimental data, it
is important to use a model that captures the essential physics
in that regime. The approximation of two separate Lorentz

(a
rb

. u
ni

ts
)

FIG. 9. Comparison of different fits to the numerically calculated
cavity emission spectrum at (a) low and (b) high excitation.

peaks is only applicable under weak excitation and in an
environment where the light-matter coupling strength greatly
exceeds the strength of any dissipative channels. Therefore,
it is generally not suited for driven QD-microcavity systems,
where excitation-induced dephasing alone can be significant.

To illustrate the difference between various models in use,
we compare in Fig. 9 the numerical spectrum for a single
QD and the parameters used in Fig. 1(b) to different analytical
expressions for the two cases of weak and strong excitation. At
low excitation, the full numerical solution of the von Neumann
equation (3) (black) is well described by the commonly used
3SA (red). Considering an additional state in the 4SA (dashed)
only leads to a minor correction. The situation is very different
at high excitation, where the 3SA and 4SA differ completely
in their prediction about strong coupling and peak splitting.
In using the commonly used 3SA in such a regime as a fit to
experimental data, one would obtain parameters that do not
correctly relate to the experiment. Interestingly, this deviation
between the 3SA and 4SA is not related to pump-induced
dephasing, which is accounted for in both cases, but arises
from the truncation of the Hilbert space.

A fit using two Lorentzian lines (green) is inaccurate even
at low excitation due to the presence of dissipation in the
QD-microcavity system.
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