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Stimulated Raman adiabatic passage in sodium vapor with picosecond laser pulses

Jim L. Hicks
Department of Chemistry and Physics, Northeastern State University, Talequah, Oklahoma 74464, USA

Chakree Tanjaroon
Department of Earth Sciences, The University of Hong Kong, Hong Kong

Susan D. Allen
Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114, USA

Matt Tilley*

Department of Earth & Space Sciences, University of Washington, Seattle, Washington 98195, USA

Steven Hoke and J. Bruce Johnson
Department of Chemistry and Physics, Arkansas State University, State University, Arkansas 72467, USA

(Received 24 February 2017; published 1 August 2017)

Experimental measurements and calculations of stimulated Raman adiabatic passage transfer efficiencies were
made on a sodium gas starting from the 3 2S1/2 electronic ground state, passing through the 3 2P 1/2 and/or the
3 2P 3/2 to the 5 2S1/2 state. The lasers used in the experiments had a pulse width of several picoseconds and were
close to the Fourier transform limit. Although the linewidth of the laser was much smaller than the spin orbit
splitting between the 3 2P 1/2 and 3 2P 3/2 states, Experiments and calculations reveal that both 3p states play a role
in the transfer efficiency when the lasers are tuned to resonance through the 3 2P 1/2 state, revealing evidence of
quantum interference between the competing pathways.
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I. INTRODUCTION

Stimulated Raman adiabatic passage (STIRAP) and its
variations are established techniques for efficient manipulation
of population among states of atoms or molecules. STIRAP
has been implemented with continuous-wave [1] and pulsed
[2] lasers for a variety of purposes such as the preparation
of molecules in specific rovibrational states for chemical
reactions [3], preparation of molecules for dissociative at-
tachment of electrons [4,5], excitation of targeted magnetic
sublevels [6] and superpositions of levels [7,8], selective
momentum transfer for isotopic separation [9], Rydberg-state
excitation [10,11], excitation between dipole-forbidden states
through a continuum of states [12], coherent preparation of
atoms to optimize [13] or measure [14] coherent anti-Stokes
Raman scattering, excitation of individual Ca2+ ions and their
potential for information storage [15], coherent optical transfer
of Feshbach molecules to a lower vibrational state [16],
photoassociation of bialkali [17,18], and other molecules [19],
creation of a population inversion in dopants of a solid [20]
including tripod STIRAP in a doped Pr3+, Y2SiO5 [21], storage
of information [22], and performance of logic operations [23]
in doped solids.

The majority of work employing STIRAP has been done in
atomic or molecular beams or ultracold gases. As a departure
from the norm, Rice proposed the possibility of performing
STIRAP in fluids where collisional dephasing could occur
[24–26]. Since collisions in fluids occur on short time scales,
short-pulse lasers are required. The work presented here
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establishes that STIRAP can be performed on a gas with laser
pulses several picoseconds in length, a step toward exploring
the possibility of performing STIRAP in a fluid. In a paper
to follow, we will share our results in performing STIRAP
on a gas at atmospheric pressure where collisional dephasing
occurs.

To date, only Kuhn et al. have studied STIRAP on a
gas at or above room temperature [27]. In their pioneering
work they demonstrated that for a lambda energy-level
configuration, if the initial and final states are somewhat close
in energy, STIRAP substantially diminishes the reduction in
transfer efficiency due to Doppler broadening (partial Doppler
compensation) relative to stimulated emission pumping (SEP).
In fact they demonstrated an impressive 18% STIRAP transfer
efficiency (15× greater than that of SEP), which was mainly
limited by the narrow linewidth of the nanosecond lasers used.

The work presented here employs picosecond lasers whose
shorter pulse width and correspondingly broader bandwidth
eliminate the reduction in STIRAP efficiency due to Doppler
broadening. In addition, we demonstrate STIRAP on a ladder
ordering of energy levels in atomic sodium vapor for which
partial Doppler compensation on a gas at or above room
temperature is not possible with nanosecond lasers.

II. BACKGROUND

A. Sodium

A diagram of the energy levels used in our excitation
of sodium is shown in Fig. 1. The pump laser couples the
3s (3 2S1/2) state to either (or both) of the two 3p levels
(3 2P 1/2 and 3 2P 3/2). The Stokes laser couples either (or both)
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FIG. 1. Sodium energy levels of the 3s, 3 2P 1/2, 3 2P 3/2, and 5s
states. Laser detunings for the pump, �p, and Stokes, �s, pulses are
shown here for resonance with the 3 2P 1/2 state.

of the 3p levels to the 5s (5 2S1/2) state. In the work presented
here, linearly polarized light is used, with the polarizations of
the pump and Stokes pulses parallel. In this configuration, se-
lection rules dictate that �mJ = 0 and �J = 0,±1. It follows
that the transitions in sodium separate into two independent
sets of states (one each for mJ = ±1/2) that do not interconvert
during the excitation process. The Hamiltonian for each of
these sets of states is given by

H4 = − h̄

2

⎡
⎢⎢⎢⎣

−2�p �12 �13 0

�21 0 0 �24

�31 0 −2�SO �34

0 �42 �43 2�s

⎤
⎥⎥⎥⎦, (1)

where �SO is the fine-structure splitting, �p and �s are
the respective pump and Stokes laser detunings away from
resonance, and �i,j is the Rabi frequency between level i

and level j . The four levels in Eq. (1) are the four levels in
Fig. 1 in ascending order: |1〉 is the 3s state, |2〉 is the 3p 2P 1/2

state, |3〉 is the 3p 2P 3/2 state, and |4〉 is the 5s state. The matrix
forms of the Hamiltonians for the mJ = ±1/2 sets of states are
identical, although the signs of some of the Rabi frequencies
differ according to the signs of the transition moments.

The hyperfine levels within the 3 2S1/2, 3 2P 1/2, 3 2P 3/2, and
5 2S1/2 states are treated in Appendix A. All hyperfine splittings
are much smaller than the linewidth of the laser (60 GHz). (The
largest hyperfine splitting is 1.77 GHz, between the F = 1
and the F = 2 states of the 3 2S1/2 level. All other splittings
are smaller by at least an order of magnitude.) In order to
ensure that it is permissible to neglect hyperfine states in the
work presented here, calculations are performed with the 4×4
Hamiltonian above [Eq. (1)] and compared with calculations
from the two 9×9 and four 5×5 Hamiltonians [see Eqs. (A1),
(A2), (A3), and (A4) in Appendix A] required for hyperfine
calculations. In all computations, the calculations that included
the hyperfine levels differed from the calculations without by
less than 1%.
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FIG. 2. STIRAP population calculations through one and both
3p states. Relative to the transition moments through 3 2P 1/2, the
integrated Rabi frequencies for the pump and Stokes pulses are 20 rad
for in the top panel and 100 rad in the bottom panel. In both panels,
the initial ground-state population is represented by the dashed red
(calculations with 3 P1/2 only) and dash-dot-dotted blue (calculations
with both 3p states) lines, the intermediate-state population is
represented by the solid black (3 P1/2 only) and dot-dot-spaced brown
(both 3p states) lines, and the final-state population is shown by the
dotted green (3 P1/2 only) and solid orange (both 3p states) lines.

B. STIRAP in sodium

1. Resonance with the 3 2P1/2 state

With the lasers tuned to resonance with the 3 2P 1/2 state,
STIRAP calculations were performed that alternately included
and neglected the 3 2P 3/2 state. When neglected, the 4×4
Hamiltonian given in Eq. (1) reduces to a 3×3 matrix. A
comparison of the solutions is shown in Fig. 2. In the top panel,
calculations were done with an integrated Rabi frequency of
20 rad. In the bottom panel the integrated Rabi frequency was
100 rad.

In ordinary three-state STIRAP when the pump and Stokes
Rabi frequencies are equal, the transfer efficiency to the final
state remains near 100% for integrated Rabi frequencies above
a threshold of about 10 rad. Both panels in Fig. 2 are consistent
with this result when the 3 2P 3/2 state is excluded from the
calculations. By contrast, Fig. 2 (top panel) displays that when
the 3 2P 3/2 is included in the calculation the efficiency drops
to 88%. Moreover, Fig. 2 (bottom panel) shows that when the
integrated Rabi frequency increases from 20 to 100 rad, the
STIRAP transfer efficiency drops to 65%.

023803-2



STIMULATED RAMAN ADIABATIC PASSAGE IN SODIUM . . . PHYSICAL REVIEW A 96, 023803 (2017)

 0  100  200  300  400
Stokes Ωint (rad)

 0

 100

 200

 300

 400

Pu
m

p 
Ω

in
t (

ra
d)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0  100  200  300  400
Stokes Ωint (rad)

 0

 100

 200

 300

 400

Pu
m

p 
Ω

in
t (

ra
d)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

FIG. 3. STIRAP transfer efficiency as a function of the integrated
Rabi frequencies of the pump and Stokes pulses. Top panel: Lasers
are tuned to resonance through the 3 2P 1/2 state. Bottom panel: The
same computation is made with the lasers tuned to resonance through
the 3 2P 3/2 state.

These calculations show that the additional intermediate
state (3 2P 3/2) provides an alternate pathway to the final state,
setting up the possibility of quantum interference between the
pathways. STIRAP calculations were also performed using
Eq. (1) in which �SO was varied. For fixed integrated Rabi
frequencies of 20 rad, as �SO increased, the STIRAP effi-
ciency increased and asymptotically approached 100%. This
result demonstrates that as �SO becomes large, the 3 2P 3/2

state decouples from the other states and the laser pulses that
excite them, effectively reducing Eq. (1) to a 3×3 Hamiltonian.

It is interesting to note that although the fine-structure
splitting of the 3p levels is large (516 GHz) compared with the
linewidth of the laser (60 GHz), the Rabi frequencies of the
laser pulses were high enough that both 3p levels affected our
results. In particular, the bottom panel in Fig. 2, with a higher
integrated Rabi frequency than in the top panel, demonstrates
that the higher Rabi frequency more effectively couples to

FIG. 4. A diagram of our experimental arrangement. ND—
neutral density filter (1.0–1.5 OD); L1, L2, L3, L4, L5, and L6—
lenses of focal lengths 1000, 750, 1000, 450, 203, and 203 mm,
respectively; M1, M2, M3, M4, and M5—mirrors; PH1 and PH2—
ceramic pinholes of diameter 400 μm; DM—dichroic mirror.

both 3p intermediate states, yielding a larger effect (decrease
in STIRAP efficiency).

A two-dimensional computational study of the transfer
efficiency with respect to variations of the pump and Stokes
integrated Rabi frequencies �ip and �is using Eq. (1) was
used in order to more fully explore the drop in efficiency with
increasing integrated Rabi frequency. The results are shown in
Fig. 3 (top panel). A significant valley, or dip, in the transfer
efficiency at integrated Rabi frequencies beyond that of the
initial ridge of a high transfer efficiency is apparent.

2. Resonance with the 3 2P3/2 state

With the lasers tuned to resonance with the 3 2P 3/2 state,
calculations that alternately included and neglected the 3 2P 1/2

state were performed. The calculated results through both
3p states are shown in Fig. 3 (bottom panel). The transfer
efficiency remains near unity once the plateau is reached. In
this case there is no dip in the transfer efficiency as was evident
in Fig. 3 (top panel). Additional effects of the interfering
pathways are evident in the results reported later.

III. EXPERIMENTAL SETUP

Figure 4 is a diagram of the experimental arrangement.
Pump and Stokes laser pulses were generated by two syn-
chronously pumped OPO-OPA units [28] at a repetition rate
of 10 Hz. A streak camera [29] was used to determine the pulse
widths (see Table I) and relative timing of the pump and Stokes
laser pulses. The wavelengths (in air) of the resonant pump and
Stokes pulses were 589.59 and 615.42 nm, respectively, for the
D1 channel and 588.99 and 616.07 nm, respectively, for the
D2 channel as measured with a HighFinesse WS5 wavelength
meter [30]. The linewidths of the pump and Stokes lasers
were measured with a Fabry-Pérot interferometer [31] and
time-bandwidth products were calculated. (See Table I.) The
beams were focused onto ceramic pinholes for spatial filtering;
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TABLE I. Measured pulse parameters for the pump and Stokes
beams.

Pulse parameter Pump Stokes

Radius, W a (mm) 0.79(2) 0.70(5)
Pulse widthb (ps) 7.3(4) 8.6(23)
�τ c (ps) 6.2(3) 7.3(19)
Linewidthd (GHz) 70(21) 67(12)
TBPe 1.1(3) 1.3(2)

aRadius at which the irradiance drops to 1/e2 of its value at the beam
center.
bFull width at half maximum (FWHM). The pulse broadening from
the streak camera was corrected.
cTime when the irradiance drops to 1/e2 of the maximum.
dFWHM.
eTime-bandwidth product. Values are given as a multiple of 0.4413,
the TBP for Fourier-transform-limited Gaussian pulses.

the collimated spatial pulse profile was then determined by
projecting the pulse onto a flat surface and measuring the
intensity with a CCD camera. The intensity profiles of the
beams displayed several rings of an Airy pattern and the central
peaks were fit with Gaussians. The beam radii of the pump and
Stokes pulses are listed in Table I.

The timing of the Stokes pulse relative to the pump pulse
was adjusted using an optical delay line driven by a Newport
LTA-HS (0.035-μm resolution) and measured with a streak
camera. The error in the temporal overlap is estimated to be
within ±2.0 ps. Since the light that pumps the OPO/OPA units
originates from the same pulse from a mode-locked Nd:YVO4

oscillator, the timing jitter between the pulses is negligible.
Additional details about the laser system have been described
previously [32].

Population transfer was detected by monitoring the fluo-
rescence doublet from the 5s state to the 3p states (616.07
and 615.42 nm). The fluorescence signal was collected
perpendicular to the laser propagation direction and imaged
onto the entrance slit of a spectrograph [33] with f/4 optics.
The entrance slit of the spectrograph was set at 28 μm.
Fluorescence was detected with an ICCD camera [34]. To
suppress Rayleigh scattering from the laser, the gate of the
ICCD camera was adjusted to begin collecting light a few
nanoseconds after the Rayleigh scattered light had disappeared
and integrated the fluorescence for 1.0 μs. In the results that
follow, 100 laser shots were averaged for each data point.
Measurements of the pulse-to-pulse energy stability for the
pump and Stokes pulses yielded a standard deviation of 15%
(±5%).

Sodium vapor was produced from pure metallic sodium
inside a heated vapor cell. Both glass and stainless-steel
vapor cells were used. In the details that follow, the elevated
cell temperatures were solely for the purpose of increasing
the vapor pressure of sodium. The glass cell was purchased
from Precision Glassblowing (Centennial, CO). The glass
cell is T shaped (7.62×2.54×5.08 cm) with three fused-silica
windows, two in-line for the laser entrance and exit and one
perpendicular to collect the fluorescence. The vapor pressure
of the sodium was controlled by heating the cell inside an
oven. The glass cell was heated to 120 ◦C, yielding a sodium

vapor pressure of 10−6 torr. This was the highest temperature to
which we could elevate the cell without the sodium turning the
glass cell brown. The stainless steel vapor cell was constructed
from a 304L stainless-steel cube [35] with ConFlat seals.
The cell had two fused-silica windows on opposite sides for
laser transmission and a sapphire window for fluorescence
collection. The stainless-steel cell was housed in an oven
with two windows to allow the laser light to pass through
and a window perpendicular to the laser propagation direction
for collection of fluorescence. The cell had an extended side
arm and gate valve that protruded outside the oven and
were wrapped with heating tape. The gate valve led to a
turbomolecular pump allowing for high vacuum evacuation.
The temperature of the side arm was held in the range of
175 ◦C–205 ◦C, which was approximately 30 ◦C cooler than
the cube (205 ◦C–235 ◦C). The cooler side arm prevented
sodium from accumulating on the windows of the cube. The
temperature of the cube was limited by the windows: higher
temperatures caused the windows to lose their vacuum seal.

IV. CALIBRATION

A. Beam parameters

Stimulated emission pumping can be used as a STIRAP
calibration method. SEP is implemented with a pulse ordering
opposite that of STIRAP; the Stokes pulse follows the pump
pulse. The pump pulse transfers sodium from the 3s ground
state to one of the 3p intermediate states; the Stokes pulse
transfers the sodium from the 3p state to the 5s final state. Un-
like STIRAP, SEP can be achieved with coherent or incoherent
light. When it is coherent (as is the case with the lasers used
in this experiment), Rabi oscillations occur in which the pump
pulse completely transfers the sodium population back and
forth between the initial and the intermediate states. Since the
energy of the pulse varies with the position within the beam, the
population of the intermediate state of sodium also varies. For
high integrated Rabi frequencies, many oscillations occur at
the center of the pulse, with correspondingly fewer oscillations
radially outward. The population of the intermediate state
thus oscillates multiple times between 0 and 100% in moving
radially outward from the center of the pulse, with the average
tending toward 50%. The Stokes pulse does the same with the
population in the intermediate state transferring an average
of 50% of the 50% in the intermediate state to the final
state, yielding 25% in the 5s state. The STIRAP efficiency
can therefore be checked by comparison with the SEP
efficiency.

With 100% STIRAP efficiency, the STIRAP fluorescence
signal may be expected to be 4× larger than the SEP
fluorescence. However, quantum interference reduces the
maximum expected efficiency below 100% (Sec. II B). In
addition, since the spectrograph that collects the fluorescence
signal collects light from the intense center of the beam as well
as from the edges of the beam (where the SEP efficiency is
low and the STIRAP efficiency is even lower), the measured
STIRAP efficiency is reduced further. (As can be seen in the
analysis in Appendix B, the reduction in efficiency due to the
spectrograph occurs even with an infinitesimal entrance slit
width.)
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The reduction in efficiency described above was determined
using the measured values of the pulse energy U (E0) (with
±10%–15% fluctuation), pulse width �τ , and beam radius W

to calculate the Rabi frequencies as a function of the position
within the beam. These Rabi frequencies were used to calculate
system Hamiltonians which were solved to find the transfer
efficiencies of STIRAP and SEP processes as a function of
the position within the beam. The STIRAP/SEP ratio was then
calculated and compared to the measured data. Details of the
calculation are provided in Appendix B.

In Fig. 5, the top panel shows a calculation of the quantity of
light that enters the spectrograph as a function of the integrated
Rabi frequency for the Stokes pulse [calculated with Eq. (B4)].
The calculation was performed at a Stokes-to-pump integrated
Rabi frequency ratio that matches the experimental conditions
in Sec. V A (see Figs. 7 and 8), i.e., 13.7 rad (pump) and
33.1 rad (Stokes) for the transition through the 3 2P 1/2 state
and 19.4 rad (pump) and 34.3 rad (Stokes) for the transition
through the 3 2P 3/2 state. Figure 5 (top panel) displays STIRAP
transitions through 3 2P 1/2 and 3 2P 3/2 (dashed red and solid
black lines, respectively) and the corresponding quantities for
SEP transitions through 3 2P 1/2 and 3 2P 3/2 (dotted blue and
dash-dotted green lines, respectively).

The bottom panel in Fig. 5 shows the STIRAP/SEP ratio of
the data shown in the top panel, again relative to the integrated
Rabi frequency of the Stokes pulse. Transitions tuned through
the 3 2P 1/2 and 3 2P 3/2 states are represented by the dashed red
and solid black lines, respectively. The data shown in the two
bottom panels in Fig. 8 indicate a STIRAP-to-SEP ratio of 1.6
for the transition through 3 2P 1/2 (bottom left panel) and 2.3 for
the transition through 3 2P 3/2 (bottom right panel). This is in
good agreement with predicted values from the bottom panel
in Fig. 5 of 1.6 through the 3 2P 1/2 state and 2.13 through
the 3 2P 3/2 state at a Stokes integrated Rabi frequency of
34 rad.

While these efficiencies appear low, the analysis here
together with Appendix B demonstrate that they reflect the
maximum expected STIRAP efficiency of 80% at the center
of the beam (reduced from 100% due to quantum interference
between excitation pathways through the 3 2P 1/2 and 3 2P 3/2

states).

B. Autler-Townes effect

The Autler-Townes (AT) effect can be used to calibrate
the parameters of the lasers used in this experiment. The
AT splitting for the sodium D2 resonance was measured
(5s ← 3 2P 3/2 ← 3s) and then compared to the expected value
of the splittings calculated by the system’s Hamiltonian. The
splitting was measured for both Stokes (5s ↔ 3 2P 3/2) and
pump (3 2P 3/2 ↔ 3s) splittings, probed by the relatively weak
pump and Stokes pulses, respectively.

The top left panel in Fig. 6 shows an example of two
measured AT splittings of the 3 2P 3/2 level for strong pump
and relatively weak Stokes pulses. The lines (solid and dashed)
in both top panels are fits to two Lorentzian peaks calculated
by a Levenberg-Marquardt algorithm. The red symbols with
corresponding dashed curve represent a pump beam energy
of 0.46 μJ, corresponding to an integrated Rabi frequency
of 21.4 rad, which splits the 3 2P 3/2 level by 0.065 THz
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FIG. 5. Top: Calculations of the quantity of light collected by
the spectrograph (ε described in Appendix B), as a function of
the integrated Rabi frequency of the Stokes pulse, for D1 STIRAP
(dashed red line), D2 STIRAP (solid black line), D1 SEP (dotted
blue line), and D2 SEP (dash-dotted green line) transitions. Bottom:
Calculated STIRAP-to-SEP ratios, as a function of the integrated
Rabi frequency of the Stokes pulse, for the D1 (dashed red line) and
D2 (solid black line) transitions.

(determined by the positions of the peaks in the fit), and
black symbols with corresponding solid curve represent an
energy of 1.0 μJ (31.5 rad), which splits the 3 2P 3/2 level by
0.109 THz. The top right panel is a similar plot of the AT
splittings of the 3 2P 3/2 level for strong Stokes and relatively
weak pump pulses. The red symbols with corresponding
dashed curve represent a Stokes energy of 18 μJ (22.2 rad),
which splits the 3 2P 3/2 level by 0.109 THz. The black
symbols with corresponding solid curve represent a Stokes
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FIG. 6. Top left: Data and Lorentzian fits for Autler-Townes (AT) splitting with strong pump (3 2P 3/2 ↔ 3s transition) and weak Stokes
pulses for two pump energies, 0.46 and 1.0 μJ (fluence, 0.047 and 0.10 mJ/cm2; integrated Rabi frequency, 21.4 and 31.5 rad), are shown by
the dashed red and solid black curves, respectively. Top right: Data and Lorentzian fits for AT splitting with strong Stokes (5s ↔ 3 2P 3/2) and
weak pump pulses for three Stokes energies, 18, 30, and 44 μJ (fluence—2.3, 3.9, and 5.7 mJ/cm2; integrated Rabi frequency—22.2, 28.7,
and 34.7 rad), are represented by the dashed red, solid black and dotted blue curves, respectively. Bottom left: Transfer efficiencies calculated
to show AT splitting for strong pump energies (�AT-SP): 0.5, 1.0, 1.5, and 2.0 μJ (fluence—0.051. 0.10, 0.15, and 0.20 mJ/cm2; integrated
Rabi frequency—22.3, 31.5, 38.6, and 44.5 rad), from bottom to top. Curves are offset vertically for better visibility. Bottom center: Transfer
efficiencies calculated to show Autler-Townes splitting for strong Stokes energies (�AT-SS): 20, 30, 45, and 60 μJ (fluence—2.6, 3.9, 5.8, and
7.8 mJ/cm2; integrated Rabi frequency—23.4, 28.7, 35.1, and 40.5 rad), from bottom to top. Bottom right: AT splitting for theory and data.
The dashed red line and filled circles represent theory and data for the strong pump–weak Stokes case, and the solid black line and open circles
represent theory and data for the strong Stokes–weak pump case.

energy of 30 μJ (28.7 rad), which splits the 3 2P 3/2 level
by 0.142 THz. The blue symbols with corresponding dotted
curve represent a Stokes energy of 44 μJ (34.7 rad), which
splits the 3 2P 3/2 level by 0.183 THz. The significantly smaller
error bars for the 44-μJ pulses (blue squares) are attributed
to having approximately an order of magnitude more counts
for the integrated fluorescence compared to the 18- and 30-μJ
data.

In the bottom left panel in Fig. 6, the strong pump splitting,
�AT-SP, is calculated from the Hamiltonian for four pump pulse
energies (0.5, 1.0, 1.5, and 2.0 μJ, from bottom to top). In
the bottom center panel in Fig. 6, the strong Stokes splitting
�AT-SS is calculated from the Hamiltonian for four Stokes

energies (20, 30, 45, and 60 μJ, from bottom to top). In
these calculations, we take into account the spatial Gaussian
nature of the pump and Stokes pulses and average the AT
splitting over the entire envelope of the pulse as described in
Appendix B.

The bottom right panel in Fig. 6 displays theoretical
calculations (dashed red line) and data (filled red circles) for
strong pump and weak Stokes AT splittings and theoretical
calculations (solid black line) and data (open black circles)
for weak pump and strong Stokes AT splittings. The data
in this panel are shown in the top left and right panels
in the figure. Theoretical calculations and data are in good
agreement. The uncertainty in beam energies (horizontal
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FIG. 7. Strong pump fluorescence from the 5s state to the 3p states as a function of the timing delay between the pump and the Stokes
pulses for the D1 (left) and D2 (right) channels with the pump pulse stronger than the Stokes pulse. Top (computation): Theoretical transfer
efficiencies calculated for both the D1 and the D2 channels, where the solid black line represents the predicted population transfer for beam
energies averaged around a Gaussian model for the beam jitter with a width of ±15%, the dotted green line represents a calculation with beam
energies from the panels directly below, and the dashed red and dot-dashed blue lines represent calculations with energies 15% above and
below those for the dotted green line. Bottom (data): The pump and Stokes pulse energies for the D1 channel are Epump = 15(1) μJ (fluence,
1.5 mJ/cm2; integrated Rabi frequency, 86.3 rad) and EStokes = 17(2) μJ (fluence, 2.23 mJ/cm2; integrated Rabi frequency, 21.6 rad). For the
D2 channel Epump = 6.6(3) μJ (fluence, 0.67 mJ/cm2; integrated Rabi frequency, 81.0 rad) and EStokes = 4.4(3) μJ (fluence, 0.57 mJ/cm2;
integrated Rabi frequency, 11.0 rad). In the two bottom panels, different symbols are used to display multiple data sets. A negative Stokes time
delay indicates STIRAP pulse order.

error bars) is produced by the energy jitter reported in
Sec. IV A.

V. STIRAP EXPERIMENTS AND SIMULATIONS

A. STIRAP vs timing delay

Typical plots of the transfer efficiency from the 3s to the 5s
state as a function of the timing delay between the pump and
the Stokes pulses are shown in Figs. 7 and 8. Figure 7 displays
theory and data when the pump pulse is stronger than the
Stokes pulse; Fig. 8 displays theory and data when the Stokes

pulse is stronger than the pump pulse. In each of these figures,
the top two panels are solutions to Eq. (1) with pump and
Stokes energies and temporal pulse profiles that correspond to
the data in the panels immediately below. In both Figs. 7 and 8
the two left-hand panels display theory and data for excitation
through the D1 channel, and the two right-hand panels for
excitation through the D2 channel.

In Figs. 7 and 8 there is generally good agreement between
theory and data. All computations and data display prominent
STIRAP peaks for negative Stokes time delays. It is interesting
to note that in Fig. 7 theory predicts and data confirm the
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FIG. 8. Strong Stokes fluorescence from the 5s state to the 3p states as a function of the timing delay between the pump and the Stokes
pulses for the D1 (left) and D2 (right) channels with the Stokes pulse stronger than the pump pulse. Top (computation): See caption to
Fig. 7. Bottom (data): The energies for the pump and Stokes pulses for the D1 channel are Epump = 0.38(6) μJ (fluence, 0.039 mJ/cm2;
integrated Rabi frequency, 13.7 rad) and EStokes = 40(6) μJ (fluence, 5.2 mJ/cm2; integrated Rabi frequency, 33.1 rad). For the D2 channel
Epump = 0.38(6) μJ (fluence, 0.039 mJ/cm2; integrated Rabi frequency, 19.4 rad) and EStokes = 43(5) μJ (fluence, 5.6 mJ/cm2; integrated Rabi
frequency, 34.3 rad). Fluorescence from the 5s to the two 3p states was measured independently. Fluorescence from 5s → 3 2P 3/2 is 2× larger
than that from 5s → 3 2P 1/2.

existence of a persistent dip in the transfer efficiency when
the Stokes and pump pulses are coincident (zero Stokes
time delay). This dip is reminiscent of electromagnetically
induced transparency, albeit with the pump pulse serving as
the coupling field between level |1〉 and level |2〉, opposite the
more common electromagnetically induced transparency case
with strong coupling between |2〉 and |3〉. In contrast, for Fig. 8
the theoretical calculations at three energies near the energy
of the data display large oscillations in the signal that tend to
average out for zero and positive Stokes time delays (SEP).
For both Figs. 7 and 8 the fact that some peaks persist in the
theoretically calculated average suggests that it is likely that
for these data, laser energy fluctuations were larger than listed
in Sec. III, which caused SEP peaks to disappear in the data.

The location of the STIRAP peaks in Figs. 7 and 8 are
located at negative Stokes time delays, however, the STIRAP
peak location for the data in the bottom panels are generally
not as negative as predicted by theory in the top panels. The
cause of the discrepancy is not clear, although it may be due to
the lasers operating near, but not at the Fourier transform limit.

B. STIRAP ridge

In ordinary three-state STIRAP a two-dimensional plot
versus the frequency detuning of the pump and Stokes beams
reveals a ridge along which the transfer efficiency remains
high. In ladder STIRAP the efficiency remains high where
there is a two-photon resonance; the sum of the energies of the
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FIG. 9. Top panel: Fluorescence (arbitrary units) from the 5s
to the 3p states as a function of the frequencies of the pump and
Stokes beams. Zero detuning corresponds to excitation through the
D1 channel. The temporal overlap between pump and Stokes pulses
was fixed in the STIRAP orientation, with the Stokes preceding the
pump by 5.0 ps. The measured pulse duration for the pump and
Stokes pulses was 8(1) ps. Bottom panel: Computational prediction
of STIRAP efficiency for the same setup as in the top panel, for a
pump pulse of 6 μJ (fluence, 0.61 mJ/cm2; integrated Rabi frequency,
56.8 and 77.3 rad for D1 and D2 transitions, respectively) and a Stokes
pulse of 220 μJ (fluence, 28.6 mJ/cm2; integrated Rabi frequency,
83.1 and 77.7 rad for D1 and D2 transitions, respectively).

pump and Stokes photons is equal to the difference in energy
between the initial and the final states.

The result of a two-dimensional frequency scan (of pump
and Stokes beams) in the STIRAP order for sodium vapor
is shown in Fig. 9. Unlike the ridge seen in three-state
STIRAP, in this plot there are two distinct STIRAP islands. The
transfer efficiency is greatest when the pump and Stokes lasers
are tuned to resonance through the 3 2P 3/2 channel (top left
island). The smaller island near the center of the plot occurs

when the lasers are tuned to resonance through the 3 2P 1/2

state. The dip between the two islands displays evidence for
destructive interference between the pathways through the two
3p states.

VI. CONCLUSION

We have demonstrated STIRAP in a gas of sodium atoms
above room temperature using picosecond lasers. We show that
both 3p states contribute to the transfer efficiency, revealing
evidence of quantum interference between alternate pathways.
The Autler-Townes data presented display shifts that are in
agreement with theoretical predictions. The efficiency of the
STIRAP transfer process is near 100% at the center of the
beams. A two-dimensional scan of the pump and Stokes
wavelengths displays a STIRAP ridge with a valley between
the resonances through the 3 2P 1/2 and 3 2P 3/2 islands of high
efficiency.

Future work could explore the rich interference region
between the two islands displayed in Fig. 9. Preliminary
computations reveal the existence of a series of ridges of high
and low transfer efficiency with increasing integrated Rabi
frequencies that have yet to be explored experimentally.
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APPENDIX A: HYPERFINE LEVELS

Hyperfine levels within the 3 2S1/2, 3 2P 1/2, 3 2P 3/2, and
5 2S1/2 states are shown in Fig. 10. Since linearly polarized
light is used, selection rules dictate that �mF = 0 and
�F = 0, ± 1. Additionally, when mF = 0, then �F �= 0.
It follows that the transitions in sodium separate into six
independent sets of states (one each for mF = ±2, ± 1 and two
independent processes for mF = 0) that do not interconvert

FIG. 10. Hyperfine energy levels of the 3s, 3p 2P 1/2, 3p 2P 3/2,
and 5s states. Magnetic hyperfine sublevels are shown separated for
illustration only. No external magnetic field was applied.
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during the excitation process. The six groupings of levels are
shown in Fig. 10.

The Hamiltonians for the six sets of states presented
here were calculated using the rotating-wave approximation.
The Hamiltonians for the mF = ±2 are shown in Eq. (A1),
where the five states are labeled in ascending energy order
(|1〉 = |3〉s, F = 2, mF = ±2; |2〉 = |3p〉 2P 1/2, 2, ±2; |3〉 =
|3p〉 2P 3/2, 2, ±2; |4〉 = |3p〉 2P 3/2, 3, ±2; and |5〉 = |5s〉, 2,
±2), �p and �s are the detuning of the pump and Stokes
lasers from resonance, �SO = 516.2080 GHz, �ij is the
Rabi frequency between state i and state j , and �A, �B,
�C, �D, �E, and �F are given in Fig. 10. The matrix
forms of the Hamiltonians for the mF = ±2 sets of states are

identical, although the signs of some of the Rabi frequencies
differ according to the signs of the transition moments as given
by Steck [36].

The mF = ±1 sets of states are given in Eq. (A2). As with
the Hamiltonians for the mF = ±2 states, the matrix forms of
the Hamiltonians for the mF = ±1 states are identical to each
other, although the signs of some of the Rabi frequencies again
differ according to the transition moments given by Steck [36].

The Hamiltonians for the states with mF = 0 separate into
two independent sets of states as shown in Fig. 10. The
Hamiltonian for the states that start in the 3s F = 1 state are
given in Eq. (A3). The Hamiltonian for the states that begin in
the 3s F = 2 state are given in Eq. (A4):

⎡
⎢⎢⎢⎢⎢⎣

−2�p − �A �12 �13 �14 0

�21 −�B 0 0 �25

�31 0 −2(�SO + �D + �E) 0 �35

�41 0 0 −2(�SO + �D + �E + �F ) �45

0 �52 �53 �54 2�s − �C

⎤
⎥⎥⎥⎥⎥⎦, (A1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2�p + �A 0 �13 �14 �15 �16 0 0 0

0 −2�p − �A �23 �24 �25 �26 �27 0 0

�31 �32 �B 0 0 0 0 �38 �39

�41 �42 0 −�B 0 0 0 �48 �49

�51 �52 0 0 −2(�SO + �D) 0 0 �58 �59

�61 �62 0 0 0 −2(�SO + �D + �E) 0 �68 �69

0 �72 0 0 0 0 −2(�SO + �D + �E + �F ) 0 �79

0 0 �83 �84 �85 �86 0 2�s + �C 0

0 0 �93 �94 �95 �96 �97 0 2�s − �C

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A2)⎡
⎢⎢⎢⎢⎢⎣

−2�p + �A �12 �13 �14 0

�21 −�B 0 0 �25

�31 0 −2�SO 0 �35

�41 0 0 −2(�SO + �D + �E) �45

0 �52 �53 �54 2�s + �C

⎤
⎥⎥⎥⎥⎥⎦, (A3)

⎡
⎢⎢⎢⎢⎢⎢⎣

−2�p − �A �12 �13 �14 0

�21 +�B 0 0 �25

�31 0 −2(�SO + �D) 0 �35

�41 0 0 −2(�SO + �D + �E + �F ) �45

0 �52 �53 �54 2�s − �C

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A4)

APPENDIX B: MODELING DETECTED FLUORESCENCE

1. Determination of Rabi frequencies

Inasmuch as our laser pulses are Gaussian in space and
time, the pulse intensity as a function of the peak electric field
strength, time, and radial distance from the pulse center is
given by

I (E0 ,t ,r) = (1/2)ε0cE
2
0e

−2(t/�τ )2
e−2(r/W )2

, (B1)

where ε0 is the permittivity of free space, c is the speed
of light in vacuum, E0 is the peak electric-field magnitude

in both position and time, �τ is the measured 1/e2 width
of the pulse duration, and W is the beam radius at 1/e2 of
its maximum. The temporal full width at half-maximum is
given by FWHM = √

2 ln(2)�τ . Integrating the intensity,
I (E0,t,r), over both time and area provides the energy as a
function of E0, W , and �τ :

U (E0) =
∫ ∞

−∞
dt

∫ 2π

0
dφ

∫ ∞

0
dr r I (E0 ,t ,r)

= (π/2)3/2ε0c�τW 2E2
0 . (B2)
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Equation (B2) is solved for E0 and inserted into the
expression for the maximum Rabi frequency:

�0 = μE0

h̄
=

μ

√
23/2U (E0)

π3/2ε0c�τW 2

h̄
, (B3)

where μ is the transition dipole matrix element for the
transition of interest. The parameters U (E0), �τ , and W are
measured experimentally and �τ and W are listed in Table I.
We now integrate the Rabi frequency over time, using the
envelope width of the electric field, as opposed to the intensity
as in the integral in Eq. (B2),

�int =
∫ ∞

−∞
�0 · e−(t/�τ )2

dt = √
π �τ �0, (B4)

which gives us the peak integrated Rabi frequency at the center
of the Gaussian beam. The integrated Rabi frequencies are then
calculated over the entire spatial Gaussian envelopes of both
the pump and the Stokes beams, which is the integrated Rabi
frequency times the spatial dependence of the beam given in
Eq. (B1):

�i(r) = √
π �τ �0 e−2(r/W )2

. (B5)

When �i in Eq. (B5) refers specifically to the pump or
Stokes beams a subscript p or s is added in equations that
follow. Equation (B5) is used to calculate the efficiencies
(STIRAP, SEP, Autler-Townes, etc.) as a function of the
position within the beam. Finally, the amount of light that
enters the spectrograph as a function of the position in the
beam is calculated and spatially integrated over the beam to
yield the quantity of light collected by the spectrograph. The
details of this process are outlined in Sec. B 3 below.

For purposes of calibration, we investigate how strongly
the falloff in intensity in the spatial beam profile for both
the pump and the Stokes beams contributes to the STIRAP
efficiency measured in sodium vapor. It is common to use
the time-integrated Rabi frequency, or pulse area in Eq. (B4)
as a measure of the strength of the beams. It is important to
note that this measure refers only to the peak of the spatial
Gaussian beam and does not take into account the wings of the
Gaussian and the related lower intensities as the profile falls off
towards 0.

2. Probability of photon detection, P(x, y)

To determine how the spatial beam profile contributes to
the measured fluorescence, it is first necessary to model the
area of fluorescence generated by the overlapping beams in
the sodium vapor and the collection of light along the optical
path to the spectrograph entrance slit. By doing so we can
predict the probability that a spontaneously emitted fluorescent
photon will enter the spectrograph as a function of its emission
position in the beam profile. In Fig. 11, fluorescence from
the center of the beam is imaged onto the center of the slit;
fluorescence emitted from point P behind and to the right of
the center of the beam is brought to a focus in front and to the
left of the entrance slit. Since the light from P is brought to a
focus in front of the slit, it then diverges, forming a circle by
the time it reaches the plane of the slit. Note that fluorescence
emerging from points in front of the center of the beam would

FIG. 11. Collection of fluorescence into a spectrograph. Pump
and Stokes beams travel into the paper at the lower left corner,
giving rise to sodium fluorescence. Fluorescence is collected by two
lenses and focused on the entrance slit of the spectrograph. Since
the fluorescence from various locations within the beam cannot all
be brought to a focus on the entrance slit, the center of the beam
is imaged perfectly on the center of the slit. Fluorescence from the
representative point P behind and to the right of the beam center forms
an unfocused circle of light to the left of the entrance slit as shown
in the expanded view to the right. Experimental parameters from the
diagram are as follows: spectrograph slit width s = 0.028 mm, lens
focal length f = 203.2 mm, lens diameter DL = 50.8 mm, and lens
separation d = 1–2 cm.

also form a circle at the plane of the slit since they would be
intercepted while converging to a point behind the slit. The
circle of light on the entrance slit is shown in more detail as an
expanded view on the right-hand side of Fig. 11. The fraction
of this circle that is within the slit enters the spectrograph. The
analysis that follows illustrates how this fraction is calculated.

Two assumptions are inherent in determining the probabil-
ity of photon detection:

(1) Emitted fluorescent photons are assumed to be radially
symmetric about the z axis (see Fig. 11).

(2) Emission is independent of the distance z along the
beams. Moreover, the length of the slit is much greater than
its width so that effects due to the ends of the slit are small. In
addition, the diameters of the lenses are much greater than the
length of the slit.

The optical imaging of photons onto the slit along the x axis
through a pair of thin lenses is given by

q(p) = df (p − f ) − pf 2

(d − f )(p − f ) − pf
, (B6)

where q(p) is the image distance as a function of the object
distance, p, for a point source at position P and image position
at Q, f is the focal length of the planoconvex lenses L4 and L5,
and d is the distance of separation between the two lenses. The
center of the beam profile and the center of the spectrograph slit
are located at the object and image focal lengths, respectively.
See Fig. 11 for a visualization of the optical path.
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From Eq. (B6), we find that if p ≈ f , the x position in the
final image is near the entrance slit of the spectrograph. Setting
p = f − x in Eq. (B6), the Maclaurin series expansion in x is

qa(p) = f + x +
(

2

f
− d

f 2

)
x2 + O(x3), (B7)

where qa(p) is the approximate image position along the x
axis. The signs of the terms in Eq. (B6) reflect the object and
image x-axis directions in Fig. 11. It is important to note that
the p values used in this calculation were between f ± 3 mm,
which makes the first two terms in Eq. (B6) accurate to 2.7%.
This error corresponds to distances of ±7.7σ for the pump
pulse and ±8.6σ for the Stokes pulse, where σ is the standard
deviation with respect to the measured Gaussian spatial
pulse.

Using the constant and linear terms in Eq. (B6), we observe
a direct mapping along the x axis for source photons in the
beam and image photons at the slit, i.e., a photon emitted 1
mm from the beam center, in a negative direction along the
optical axis will be imaged 1 mm in front of the slit. Mapping
the yaxis is simple: yimage = −(q/p)ysource ≈ −ysource.

If one takes the beam profile to be a continuous collection
of point sources, it falls next to determine how an emission
from each position in the Gaussian beam profile, (x,y), maps
to a disk projected onto the spectrograph slit and the fraction
of the disk that enters the spectrograph. In order to simplify
calculations, we define

rm(x) = f − x

DL

, (B8)

where DL is the diameter of the lenses. As x → 0, the image
is formed at the focal point of the lens and Eq. (B8) reduces to
the f number of the lens.

To first order in x the spatial boundary condition for a
photon emitted from an area in the beam profile with a nonzero
detection probability is given by

|y| � x + rm(x) · s

2 rm(x)
, (B9)

where x and y correspond to the axes in Fig. 11 and s is
the spectrograph slit width. The boundary condition shown in
Eq. (B9) is shown in Fig. 12 as the boundary making up the
bow-tie shape.

The probability P (x,y) that a photon emitted from (x,y)
in the beam profile (and collected by the lenses) will enter the
spectrograph is equal to the area of the projected disk (p-disk)
that overlaps the slit divided by the total disk area (see Fig. 11).
This is calculated as

P (x,y) = Anear(x,y) − Afar(x,y)

Ap-disk(x)
, (B10)

where

Ap-disk(x) = π

(
x

2rm(x)

)2

, (B11)

Anear(x,y) = θ−(x,y)

2π
Ap-disk(x) − A�−(x,y), (B12)

Afar(x,y) = θ+(x,y)

2π
Ap-disk(x) − A�+(x,y), (B13)
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FIG. 12. Bow-tie region defined in Eq. (B9). The color bar and
P (x,y) represent the probability that a photon emitted at point (x,y)
will enter the spectrograph slit assuming pump and Stokes aligned at
the origin along the z axis. Note that the scale is an order of magnitude
larger on the x axis than on the y axis.

with θ±(x,y) and A±(x,y) given by

θ±(x,y) = 2 · cos−1

[
2rm(x)

(
y ± s

2

)
|x|

]
, (B14)

A�±(x,y) =
(
y ± s

2

)√(
Ap-disk(x)

π

)
−

(
y ± s

2

)2
. (B15)

The quantities Ap-disk(x), A�±(x,y), and θ±(x,y) are shown
in Fig. 11. Anear(x,y) and Afar(x,y) are, respectively, the
circular segments to the right of the left and right edges of
the slit. These quantities are calculated by subtracting the
triangular areas, A�− and A�+, respectively, from the circular
sectors formed by the angles θ− and θ+, respectively. Due to
symmetry, the calculations need only be performed for one
quadrant in the xy plane, which was arbitrarily chosen as the
second (x � 0, y � 0). Furthermore, it is important to note
that the following condition is necessary for nonzero values of
θ± and A�±,

0 � y <
|x|

2rm(x)
∓ s

2
, (B16)

where the 0 on the left represents our choice of the second
quadrant. The probability P (x,y) is shown in Fig. 12.

Note that for our experimental setup, the center of the beam
profile, and a small diamond-shaped area around it, shows
the probability of a photon’s entering the spectrograph as 1.0;
this probability initially falls off more rapidly than x−2 along
the x direction, but at relatively large distances the behavior
asymptotically approaches x−1. It is interesting to note that
vertical slices of equal width in the probability shown in Fig. 12
have equal areas. This indicates that even though the intense
center of the beam is imaged onto the spectrograph entrance
slit, the probability of collecting photons at any location x
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(integrating over y) in front of or behind the center of the beam
is equally likely, resulting in the collection of many photons
in the wings of the beam where the intensity is much lower.

3. Combining transfer efficiency

Numerically solving the Hamiltonian given in Eq. (1)
or the set of Hamiltonians in Appendix A allows us to
map out the transfer efficiency to the 5s state as a function
of the pump and Stokes integrated Rabi frequencies, as
shown in Fig. 3. The transfer efficiency as a function of the
integrated Rabi frequencies allows us to calculate the transfer
efficiency as a function of the position (x,y) within the beams
Eff[�is(x,y),�ip(x,y)].

Integrating the product of the transfer efficiency for a given
set of Rabi frequencies, Eff, and probability of detection,
P (x,y), over the spatial dimensions of the Gaussian pulse
provides a dimensionless measure, ε(�is,�ip), of the expected
level of fluorescence detection at a given set of pump and
Stokes pulse energies:

ε(�is,�ip) =
∫

Eff[�is(x,y),�ip(x,y)]P(x,y) dx dy.

(B17)

The top contour plot in Fig. 13 displays a region of the
top panel in Fig. 3 (the STIRAP transfer efficiency through
3 2 P1/2). The two arrows indicate the maximum integrated
Rabi frequencies at the center of laser pulses for (�is,�ip) ≈
(60.0,60.0) rad at α and (�is,�ip) ≈ (15.0,15.0) rad at β. The
black line that extends from α or β to the origin illustrates
the path in Rabi-frequency space obtained from Eq. (B5)
as the radial distance from the center of the pulses, r , increases.
The bottom panel in Fig. 13 displays Eff(�is,�ip) as a function
of r for α and β in the top panel.

It is interesting to note that there are intensities along these
pulse-pair envelopes that contribute more strongly than the
pulse peak does to a transition, i.e., higher Eff(�is,�ip) values.
The higher intensity pair of pulses, α, shows more complexity
along the Gaussian envelope than the lower intensity pair, β,
as the former follows a longer path along the black line in the
upper contour plot due to the less rapid reduction in intensity
from the Gaussian wings. It therefore passes over more of the
contoured structure in the upper mapping.

The quantities plotted in the bottom panel in Fig. 13 show
clearly that even after combining the rapid radial reduction
of photon detection probability from Sec. B 2, the photons
emitted from the wings of the Gaussian areas of fluorescence
can still contribute strongly to the detected fluorescence.
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FIG. 13. Top panel: Transfer efficiency from the 3s to the 5s
state with the lasers tuned through the D1 transition as a function of
the Stokes and pump integrated Rabi frequencies. Arrows mark two
example maximum Rabi frequencies, α and β. The dashed black line
illustrates the decreasing intensity (toward the origin) upon moving
from the center toward the wings of the Gaussian beam envelopes for
equal Stokes and pump spatial Gaussian beam widths. Bottom panel:
Radial plots of Eff(�s,�p) for α and β, shown in the upper panel.
Effα is represented by the solid black line and Effβ is represented by
the dashed red line.
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