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Extracting Lyapunov exponents from the echo dynamics of Bose-Einstein condensates on a lattice
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We propose theoretically an experimentally realizable method to demonstrate the Lyapunov instability and to
extract the value of the largest Lyapunov exponent for a chaotic many-particle interacting system. The proposal
focuses specifically on a lattice of coupled Bose-Einstein condensates in the classical regime describable by the
discrete Gross-Pitaevskii equation. We suggest to use imperfect time reversal of the system’s dynamics known
as the Loschmidt echo, which can be realized experimentally by reversing the sign of the Hamiltonian of the
system. The routine involves tracking and then subtracting the noise of virtually any observable quantity before
and after the time reversal. We support the theoretical analysis by direct numerical simulations demonstrating
that the largest Lyapunov exponent can indeed be extracted from the Loschmidt echo routine. We also discuss
possible values of experimental parameters required for implementing this proposal.
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I. INTRODUCTION

Historically, statistical physics was established by Boltz-
mann, Gibbs, and others on the basis of the assumption that the
internal dynamics of a typical interacting many-body system
is chaotic. Yet one of the outstanding issues of the foundations
of modern statistical physics remains: to produce experimental
evidence that a typical many-particle system is indeed chaotic.
A classical system is called chaotic if it has at least one
positive Lyapunov exponent, which characterizes exponential
sensitivity of phase-space trajectories to infinitesimally small
perturbations of initial conditions. The practical challenge
here is that it is impossible first, to monitor all phase-
space coordinates of a many-body system, and second, to
prepare initial conditions with very high accuracy required for
extracting Lyapunov exponents. On top of this, microscopic
many-particle systems are not classical but quantum, which
makes the whole notion of phase space not very well defined.
To make progress on the issue of chaos in statistical physics, it
is reasonable to separate the difficulty of extracting Lyapunov
exponents for classical systems from the difficulty of defining
quantum chaos [1] as such. In this paper, we concentrate on
the former.

A method of extracting the largest Lyapunov exponent of a
many-particle classical system without using full phase-space
trajectories was proposed recently in Ref. [2]. The method
is based on tracking the initial behavior of virtually any
observable quantity in response to imperfect reversal of a
system’s dynamics. This imperfect reversal is called the
Loschmidt echo. It can be realized experimentally by reversing
the sign of the Hamiltonian of a system. In the quantum
context, the description of Loschmidt echoes involves out-of-
time-order correlators (OTOCs), which have recently become
a subject of numerous investigations (see, e.g., Refs. [3–6]).

In Ref. [2], the possibility to extract the largest Lyapunov
exponent was demonstrated for a lattice of classical spins,
whereas in the present article we generalize the same analysis
to a system of coupled Bose-Einstein condensates (BECs) on
a lattice in the regime describable by the classical discrete

Gross-Pitaevskii equation (DGPE) [7,8]. In other words, we
consider the classical dynamics of this system, despite the
fact that the system is of quantum origin. The advantage
of coupled Bose-Einstein condensates over classical spins
is that the former were already realized experimentally. In
particular, Struck et al. [9] recently performed an experimental
simulation of frustrated classical magnetism using Bose-
Einstein condensates of ultracold atoms. However, Ref. [9]
concentrated on simulating low-temperature equilibrium prop-
erties of the system, while the present article concentrates
on finite-temperature dynamics and its time reversal. Time
reversal of DGPE was previously considered in Refs. [10],
but not in the context of extracting the largest Lyapunov
exponent. An alternative time-reversal procedure analogous to
the sign change of all particle velocities in classical mechanics
was already experimentally realized for the propagation of a
wave packet of intense light in a nonlinear crystal, which is
describable by the continuous nonlinear Schrödinger equation,
an analog of the continuous Gross-Pitaevskii equation [11].
We further note that, for Bose gases in optical lattices,
the extraction of Lyapunov exponents from OTOCs was
considered in Ref. [6] in intermediate- and high-temperature
regimes not describable by DGPE.

The structure of the present paper is as follows. In Sec. II,
we describe the general idea of how one extracts the largest
Lyapunov exponent from the Loschmidt echo in a many-
particle system. Then, in Sec. III we formally define the
problem of Loschmidt echo for interacting BECs on a lattice.
In Sec. IV, we provide some details of the numerical algorithm
and describe the methods of extracting the largest Lyapunov
exponent of the system governed by DGPE in one, two, and
three dimensions: the direct one and from the Loschmidt echo.
In Sec. V, we consider the limits of applicability of DGPE
imposing constraints on experimental realization. Finally, in
Sec. VI, we make a proposal of an experimental setting that
could potentially verify our theoretical results. In particular,
we describe the possible range of system parameters where the
approximations we used are valid.
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II. LYAPUNOV EXPONENT FROM LOSCHMIDT ECHO:
GENERAL IDEA

In general, a conservative system with 2N -dimensional
phase space is characterized by a spectrum of N pairs of
Lyapunov exponents of the same absolute value and opposite
signs. When two phase-space trajectories R1(t) and R2(t) are
initially infinitesimally close to each other, their separation
from each other after sufficiently long time is controlled by
the largest positive Lyapunov exponent λmax of the system.
λmax describes the average expansion rate along the direction
of the corresponding eigenvector in tangential space, which
typically has fluctuating projections on all phase-space axes.
Let us choose one of the axes of the phase space to correspond
to the observable quantity of interest. In such a case, it is
expected that the projection of the difference between the
two separating phase trajectories R1(t) and R2(t) on this axis
will exhibit erratic behavior, but the envelope of that behavior
will grow exponentially and will be controlled by λmax. If the
system is ergodic the value of λmax does not depend on where
the two phase-space trajectories start, but the corresponding
eigenvector and the resulting fluctuating projection on the
chosen axis do. It is therefore expected that if one averages
over an ensemble of initial conditions on the same energy
shell, then the fluctuating component of the difference between
the trajectories would average into a constant multiplied by a
factor exp (λmaxt).

As suggested in Ref. [2], the above considerations can be
converted into the following scheme of extracting λmax. Let us
consider the equilibrium noise of observable X as a function
of time t for a system governed by Hamiltonian H. Next, we
record this noise during the time interval from zero to τ and
at time τ reverse the sign of the Hamiltonian with a slight
perturbation of the system at the moment of Hamiltonian
reversal. If the perturbation is infinitesimally small, the
quantity X(τ + �t) will track the quantity X(τ − �t) while
gradually departing from it as the echo time �t increases.
After sufficiently long time, |X(τ + �t) − X(τ − �t)| should
be modulated by exp (λmax�t). The preceding consideration
then suggests that λmax can be extracted from the following
average over the initial conditions:

λmax = 1

�t
〈ln |X(τ + �t) − X(τ − �t)|〉, (1)

where τ should be larger than �t [12].
Typical behavior of 〈ln |X(τ + �t) − X(τ − �t)|〉 as a

function of �t for almost any reasonable quantity X is
qualitatively depicted in Fig. 1. It starts growing from a tiny
value at �t = 0 and then evolves through a transient regime,
where all Lyapunov exponents contribute to the growth, and
the largest one is not dominant yet. After that, it enters the ex-
ponential growth regime, where the largest Lyapunov exponent
controls the growth. For any finite initial difference between
the two departing phase-space trajectories, the exponential
growth regime is eventually followed by the saturation regime,
where |X(τ + �t) − X(τ − �t)| is no longer small enough
to be describable by linearized dynamics. This means that,
experimentally or numerically, the perturbation of a perfect
time reversal should be small enough, so that the time �t for

FIG. 1. Sketch of a typical Loschmidt echo response
〈ln |X(τ + �t) − X(τ − �t)|〉 (thick black line). Three characteristic
regimes described in the text are indicated: transient, exponential
growth, and saturation.

which |X(τ + �t) − X(τ − �t)| remains small is sufficiently
long to extract λmax.

We emphasize here that, in chaotic systems, no matter how
small the above perturbation is, the separation between the
direct and the reversed phase-space trajectories is bound to
grow and reach large values characteristic of the saturation
regime. This is the quintessential “butterfly effect” of chaotic
dynamics [13,14]. It means that, in an experiment, one does
not need to specially create a perturbation; any imperfection of
the time-reversal procedure will initialize the butterfly effect.
In computer simulations, machine rounding errors can, in
principle, seed the initial perturbation. Yet, in order to shorten
the computing time, practical simulations introduce additional
perturbations, which, while remaining very small, are much
larger than the machine rounding error. The strength of the
initial perturbations does not affect the duration of the initial
transient regime. But then, the smaller these perturbations, the
longer it takes to reach the saturation regime, which means
that the exponential growth regime extends over a longer time.

As follows from the above analysis, the method does
not use any specific properties of quantity X; thus it
can be either scalar or vector. If one chooses a K-
dimensional vector observable X = {Xi}, then the perturbation
of interest |X(τ + �t) − X(τ − �t)| can be redefined as√∑K

i=1 (Xi(τ + �t) − Xi(τ − �t))2.
We finally remark, that, as demonstrated in Ref. [2], the

qualitative picture of the three regimes, which are sketched in
Fig. 1, remains valid also when the perturbation making the
time reversal imperfect comes not only from a small shaking
of the system at time τ , but also from an imperfect reversal of
the system’s Hamiltonian.

III. FORMULATION OF THE PROBLEM

In this work we consider Bose-Einstein condensates on a
lattice of N sites describable by the DGPE

i
dψj

dt
= −J

NN(j )∑
k

ψk + β|ψj |2ψj , (2)
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where ψj is the complex order parameter, describing the
condensate at site j = 1, . . . ,N , and J and β are two param-
eters controlling hopping and nonlinear on-site interactions,
respectively. The summation over k extends over the nearest
neighbors NN(j ) of site j . As shown in Sec. VI, the DGPE is
derivable from the Bose-Hubbard model in the limit of large
occupation numbers.

The DGPE generates conservative dynamics corresponding
to the Hamiltonian

H = −J
∑
〈i,j〉

ψ∗
i ψj + β

2

∑
i

|ψi |4. (3)

This dynamics has two integrals of motion: the total energy
Etotal [the right-hand side of Eq. (3)] and the total number of
particles, Np = ∑

i |ψi |2.
For all our calculations, we have chosen J = 1, β = 0.01,

and the initial conditions |ψi(0)|2 = 100 with almost random
phases, fixed such that the energy per site is equal to 100 by
the procedure described in Sec. IV. With the above choice,
the energy is nearly equally distributed between different
sites and between the hopping and the interaction terms
in Eq. (3). This allows the system to stay in the ergodic
regime not influenced by solitonic and breatherlike solutions.
(The experience with classical spin lattices [15,16] indicates
that many-body classical systems are generically ergodic
and chaotic at energies corresponding to sufficiently high
temperatures.)

We mark all the variables corresponding to the time interval
preceding the time reversal at time τ with a subscript “−” and
succeeding the time reversal with a subscript “+”.

The Loschmidt echo is implemented as follows. The time
evolution of the system during time interval [0,τ ] is governed
by the Hamiltonian H− [Eq. (3)] and, after time τ , by the
sign-reversed Hamiltonian H+ = −H−; i.e., we change the
sign of the Hamiltonian parameters at time τ : J+ = −J−,
β+ = −β−. How to realize such a time reversal experimentally
is discussed in Sec. VI C. At the moment of time reversal, we
also introduce a tiny perturbation to the state vector: ψi(τ +
0) = ψi(τ − 0) + δψi , where {δψi} is a random vector, subject

to the constraint
√∑

i |δψi |2 = 10−8.

We have chosen a set of on-site occupations ni ≡ |ψ2
i |

as the quantity of interest X(t) ≡ {n1,n2, . . . ,nN }. Thus, we
characterize the Loschmidt echo by the function G(�t) ≡
〈ln |X(τ + �t) − X(τ − �t)|〉, which for the chosen quantity
of interest can be written as

G(�t) =
〈

ln

√√√√ N∑
i=1

[�ni(�t)]2

〉
, (4)

where �ni(�t) ≡ ni(τ + �t) − ni(τ − �t), and 〈· · · 〉 de-
notes ensemble averaging over initial conditions. As explained
in Sec. II, the regime of the exponential growth of perturbation
is expected to be characterized by the asymptotic relation

G(�t) ∼= λmax�t, (5)

from which the value of the largest Lyapunov exponent can
be extracted. In the following sections, we demonstrate the
validity of the above proposition by, first, directly calculating
λmax according to the algorithm of Ref. [17], and then

comparing it with the value extracted from Eq. (5) on the
basis of direct simulations of Loschmidt echoes.

We do this for a one-dimensional lattice with ten sites,
a two-dimensional square lattice of size 10 × 10, and a
three-dimensional cubic lattice of size 4 × 4 × 4 with nearest-
neighbor interactions and periodic boundary conditions.

IV. NUMERICAL ALGORITHM

To simulate the solutions of the DGPE, we employ a
Runge-Kutta fourth-order algorithm with discretization step
δt = 0.001. This limits the algorithmic error to O(δt4) or
roughly 10−12, whereas by using the quadrupole-precision
numbers we fix the machine precision to be roughly 10−33.

The value of λmax in general depends on the two conserved
quantities of the system, Etotal and Np.

We generate an ensemble of initial conditions correspond-
ing to Etotal = 100N and Np = 100N , where N is the number
of lattice sites. We do this by choosing initially all |ψi | = 10,
with random phases. Then, we minimize (Etotal − 100N )2 +
(Np − 100N )2 by the steepest descent optimization procedure.

As mentioned in Sec. III, we introduce a small perturbation
at the moment of time reversal by adding a random perturbation
{δψi} to the state vector {ψi}. The length of the perturbation
vector is 10−8. This procedure slightly changes Etotal and
Np, but the resulting difference in the value of the largest
Lyapunov exponent is several orders of magnitude smaller than
the chosen precision of three significant digits. Therefore, we
can neglect it.

For further details one can refer to the source code published
in a GitHub repository [18].

A. Lyapunov exponent calculation

The definition of the largest Lyapunov exponent reads

λmax ≡ 1

t
lim

(
ln

∣∣∣∣ d(t)

d(0)

∣∣∣∣
)

t→∞,d(0)→0

, (6)

where d(t) = ‖R1(t) − R2(t)‖2 is the distance between two
phase-space trajectories, which are infinitesimally close to
each other at t = 0.

This definition is not practical for numerical simulation
because it in general requires unachievable computational
precision. Instead, we perform the direct calculation of
the largest Lyapunov exponent λmax following the standard
numerical algorithm (see, e.g., Ref. [19]).

This algorithm tracks two trajectories: the reference tra-
jectory R1(t) and the slightly perturbed trajectory R2(t) =
R1(t) + δR(t). The algorithm starts with |δR(0)| = d0 and
then lets δR(t) grow during time interval T0, then it shifts
R2(t) closer to R1(t) by resetting the length of δR back to d0.
This procedure is repeated as many times as necessary, until
the following quantity converges:

λmax = 1

MT0

M∑
m

ln

∣∣∣∣d(tm)

d0

∣∣∣∣, (7)

where M is the number of resets, m is the reset index, and tm
is the time just before the mth reset. The time evolution of the
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FIG. 2. Illustrations of the numerical routine for computing λmax.
(a) Black line denotes the distance d(t) = ‖R1(t) − R2(t)‖2 between
two phase-space trajectories R1(t) and R2(t) used for computing λmax

for the DGPE on a one-dimensional lattice with N = 10 sites. Time
is divided into intervals of duration T0 ≈ 20, and each starts at the
reset time tm (green dots), for which d(tm) = d0 = 10−8, and finishes
at time tm + T0 (red triangles). According to Eq. (7), the contribution
to λmax from each such interval (local stretching rate) is 1

T0
ln | d(tm)

d0
|.

(b) Ergodicity test: Lines represent λmax obtained from Eq. (7) as
a function of the number of resets, M . Each line is obtained for
different randomly chosen initial conditions for R1(t) on the same
shell of constant Etotal and Np . Convergence to a single value of λmax

with time indicates that the system is ergodic.

distance d(t) in the course of such simulation is presented in
Fig. 2(a).

In all our simulations we test the ergodicity of system’s
dynamics numerically by checking that the values of λmax

obtained for several randomly chosen initial conditions on a
shell with the given values of Etotal and Np are the same. In
all cases reported below, this ergodicity test was positive. One
such test is illustrated in Fig. 2(b).

B. Loschmidt echo simulations

We have computed the Loschmidt echo response function
G(�t) given by Eq. (4) for one-, two-, and three-dimensional
lattice geometries with the parameters defined in Sec. III. The
results of these simulations are presented in Fig. 3.

As clearly seen in Fig. 3, the expected exponential growth
regime of G(�t) is present in all three cases. The values of λmax

FIG. 3. Loschmidt echo response exp (G(�t)) obtained from
Eq. (4) for a one-dimensional chain of ten sites (1D, blue line),
a two-dimensional 10 × 10 square lattice (2D, green line), and a
three-dimensional 4 × 4 × 4 cubic lattice (3D, red line). The inset
shows the behavior of exp (G(�t)) in the transient regime at small
echo times, where all Lyapunov exponents contribute to the growth.
The transient regime takes longer time for lower dimensions. In
Table I, the values of λmax obtained by fitting the exponential growth
regime are compared to those obtained from the direct calculation
described in Sec. IV A.

characterizing this regime are summarized in Table I, where
they are also compared with the values of λmax obtained from
the direct calculation described in Sec. IV A. The agreement
between the two sets of values is within the numerical accuracy
of the calculations. Similar agreement was demonstrated
previously in Ref. [2] for classical spins. We finally note here
that the fact that the largest Lyapunov exponent for the 3D
cubic lattice is slightly smaller than that for the 2D square
lattice is presumably a finite-size effect related to the small
size of the 3D lattice.

V. APPLICABILITY OF DGPE AS A CONSTRAINT ON
EXPERIMENTAL IMPLEMENTATION

Throughout the paper we used the DGPE to model the
dynamics of Bose-Einstein condensates on a lattice. In order
to observe experimentally the regime of exponential growth
G(�t) and to extract from this regime the value of λmax, the
measured system should be such that the DGPE approximates
its dynamics with a very high accuracy. The question then
arises whether such an accuracy is feasible for realistic
experimental settings. To address this question, let us recall

TABLE I. Comparison of the largest Lyapunov exponents λmax

obtained from the direct calculation with those extracted from
Loschmidt echoes shown in Fig. 3 for one-, two-, and three-
dimensional lattices.

Lattice λmax from direct calculation λmax from Loschmidt echo

1D 0.481 ± 0.002 0.475 ± 0.004
2D 0.703 ± 0.003 0.702 ± 0.004
3D 0.648 ± 0.002 0.650 ± 0.003
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that DGPE is normally justified for the lattices of Bose-
Einstein condensates by describing it at a level of a more
fundamental Bose-Hubbard model. Therefore, we have to
define the experimental regime, where both conditions would
be satisfied simultaneously: the Bose-Hubbard model would
be applicable and the classical mean-field approximation to it
would be sufficiently accurate.

The Bose-Hubbard (BH) model is defined by the Hamilto-
nian

ĤBH = −J
∑
〈i,j〉

â+
i âj + β

2

∑
i

n̂i n̂i , (8)

where â+
i and âi are the quantum creation and annihilation

operators for site i, respectively, n̂i ≡ â+
i âi is the operator

for the occupation at site i, J is the hopping parameter, β

is the on-site interaction parameter, and the notation 〈i,j 〉
implies nearest-neighbor sites. When the number of bosons in
each potential well is large, one can approximate the Bose-
Hubbard Hamiltonian (8) with the DGPE Hamiltonian (3)
by making the following substitution: âi = ψi , â+

i = ψ∗
i , and

n̂i = ni = |ψi |2.
For the single-orbital Bose-Hubbard model to be valid, the

hopping term J must be relatively small, so that the lattice
potential is deep enough and, as a result, the gap �0 between
the lowest and the second-lowest bands is sufficiently large
[20,21]. In addition, in order for a Lyapunov instability to
be observable, not only the order parameters ψi but also
small deviations δψi should be well defined in the mean-field
approximation, which implies sufficiently large values of
ni . The implementation of our proposal then requires the
following conditions to be satisfied: (i) J � �0, the condition
for not involving the second band, (ii) βnj � J , the condition
preventing the system from exhibiting self-trapping [22–27],
and (iii) ideally that the number of particles per well, ni ,
should be of the order of 500 or larger [20,21,28]. (Although
in our simulations we used the numbers of particles per well
|ψi(0)|2 = 100, the simulation results also represent any case
with β|ψi(0)|2 = 1; i.e., for |ψi(0)|2 = 500 they correspond
to β = 0.002.) We note here that condition (ii) together with
condition (iii) implies that the condition for the validity of
the mean-field approximation in the Bose-Hubbard model,
β/J � 1, is automatically fulfilled. It should be possible to
satisfy all the above conditions with an optical lattice having
potential depth of the order of five to ten recoil energies and
not too strong interactions between atoms [29]. We also note
that the numerical experience with large quantum spins [30]
indicates that even ni ∼ 15 might be already sufficient to
extract the largest Lyapunov exponent.

VI. EXPERIMENTAL PROPOSAL

An experiment implementing our proposal should satisfy
the following requirements: (i) high accuracy of the measure-
ments of the number of particles, ni , for individual sites leading
to the high accuracy of G(�t) extracted from these measure-
ments, (ii) high accuracy of the experimental realization of
the time-reversed Hamiltonian, and (iii) high accuracy of the
DGPE approximation for the given experimental setting. The
relative accuracy in each case should be at least 10−2 and

preferably better. Let us now consider the above requirements
one by one.

A. Measurement of the quantity of interest

In order to extract G(�t) from experiment, the initial and
the final values of ni should be measured with high accuracy. In
principle, there exist techniques, such as absorption imaging
[31] or resonant fluorescence detection [32], that allow one
to achieve the required accuracy. In particular, the current
state-of-the-art record for the resonant fluorescence detection
[32] is to measure the number of atoms of the order of
1000 with accuracy better than 1% . However, our proposal
implies an additional requirement, namely, that the initial
measurement should not significantly perturb ni , so that the
measured values represent the initial conditions for the actual
experimental run. This implies that destructive techniques,
such as absorption imaging, would not be suitable for the initial
measurement, because they would destroy the condensate.
Therefore, it is preferable that at least the initial measurement
is performed by a nondestructive technique, such as, e.g.,
dispersive (off-resonance) imaging [33,34] or the techniques
used in Refs. [35,36]. The alternative approach would be to
controllably prepare the initial state with an accurate a priori
knowledge of the initial number of particles on each site. The
final measurement can then be done by either destructive or
nondestructive imaging techniques.

B. Initial and final conditions

We propose to create the optical lattice initially with
sufficiently high potential barriers between adjacent sites,
which would suppress hopping between them while the
initial occupations are measured. Then, the barriers should
be lowered to the heights corresponding to the desired value
of the hopping parameter J . The barriers should be lowered
sufficiently fast, so that the initial occupations of individual
wells remain the same. At the same time, after the barriers are
lowered the initial phases of individual order parameters ψi

are expected to be random. Thereby an ensemble of random
initial conditions is to be implemented. After this, both the
direct and the reversed time evolution should last for a time
τ each. Then, the barriers should be raised again, so that the
final occupations of individual wells can be measured slowly
and accurately.

C. Time reversal of dynamics

In order to reverse the sign of the Hamiltonian H [Eq. (3)]
at time τ , one can change the sign of the hopping parameter
J and the interaction parameter β. The sign reversal of J

can be implemented using fast periodic shaking of the optical
lattice. As shown in Refs. [9,37,38], the effective hopping
parameter J depends on the periodic forcing amplitude F and
the modulation frequency ω as follows:

J (F,ω) = J0

(
d|F |
h̄ω

)
J̃ , (9)

where J0 is the zero-order Bessel function, J̃ is the bare
hopping parameter, and d is the lattice spacing. Since J0 is
a sign-alternating function, one can find pairs of parameters
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F1, ω1 and F2, ω2 such that J (F2,ω2) = −J (F1,ω1). Such
a time reversal can be implemented on the time scale of the
order of the modulation frequency ω, which is several kilohertz
[9,39,40].

The sign reversal of the interaction parameter β can be
implemented with the help of Feshbach resonances [41,42].
This parameter is proportional to the atomic s-wave scattering
length asc, whose value and sign can be controlled by the value
of external magnetic field B. Cesium or rubidium-85 could
be good candidates for this kind of experiment, due to their
broad Feshbach resonances [43–45]. In this case, the on-site
interaction can be reversed on a time scale of fractions of a
millisecond.

According to the above proposal, the time reversal of the ef-
fective HamiltonianH can be implemented within a fraction of
a millisecond, whereas the system dynamics controlled by the
values of J and β can be at least one order of magnitude slower.

Bose-Einstein condensates with attractive interaction
(which will be required either for the forward or the backward
time evolution) are in general unstable to collapse. However,
if they are constrained to a finite volume, the collapse happens
only for numbers of atoms above a certain critical value, which
for realistic optical lattice parameters can be above 1000 per
lattice site [46–51]. As mentioned earlier, the implementation
of our proposal requires about 500 atoms per lattice site.

Another useful possibility that potentially improves the
flexibility of experimental implementation is to achieve the
time reversal not by realizing the strict condition H+ = −H−
but, instead, by borrowing the idea from the magic echo of
nuclear magnetic resonance [52,53], to change the sign of J

and β in such a way that in the Hamiltonian before the time
reversal J−,β− are related to the parameters after the time
reversal J+,β+ as follows: J+ = −CJ−, β+ = −Cβ−, where
C is some positive constant. In such a case, H+ = −CH−,
so the time-reversal routine would consist of the direct time
evolution taking time τ and the reversed time evolution taking
time τ/C.

D. Lattice geometry

Experimentally realized optical lattices are, normally, not
quite translationally invariant because of the presence of phys-
ical borders. This, in particular, leads to an effective position-
dependent on-site potential and/or position-dependent hop-
ping, whose values near the borders of the lattice are different
from those in the bulk. In such a case, the time reversal of
the full Hamiltonian requires reversing the sign of the above
position-dependent terms, which, in turn, poses an additional
experimental complication. It is, therefore, preferable for
implementing our proposal to use an optical lattice that actually
has periodic boundary conditions, which, for all practical
purposes, leaves us with a ring-shaped one-dimensional lattice.
Such a lattice can be realized, for example, on the basis of
an interference pattern of two Laguerre-Gauss modes with
different orbital indices [54,55].

VII. CONCLUSIONS

We proposed a method to extract the largest Lyapunov
exponent for a lattice of Bose-Einstein condensates on the
basis of a Loschmidt echo routine. We have validated this
method by numerical simulations and discussed its possible
experimental implementation with ultracold bosonic atoms in
optical lattices. A successful realization of this proposal may
produce a long-sought direct experimental evidence that the
dynamics of a typical many-particle system is chaotic. This,
in turn, would put the theory of dynamic thermalization on a
firmer foundation.

The code used for the analysis in the present paper is
provided in a GitHub repository [18].
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