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Position, spin, and orbital angular momentum of a relativistic electron
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Motivated by recent interest in relativistic electron vortex states, we revisit the spin and orbital angular
momentum properties of Dirac electrons. These are uniquely determined by the choice of the position operator
for a relativistic electron. We consider two main approaches discussed in the literature: (i) the projection of
operators onto the positive-energy subspace, which removes the Zitterbewegung effects and correctly describes
spin-orbit interaction effects, and (ii) the use of Newton-Wigner-Foldy-Wouthuysen operators based on the
inverse Foldy-Wouthuysen transformation. We argue that the first approach [previously described in application
to Dirac vortex beams in K. Y. Bliokh er al., Phys. Rev. Lett. 107, 174802 (2011)] has a more natural physical
interpretation, including spin-orbit interactions and a nonsingular zero-mass limit, than the second one [S. M.

Barnett, Phys. Rev. Lett. 118, 114802 (2017)].
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I. INTRODUCTION

Impressive achievements in investigations and applications
of optical vortex beams and optical angular momentum (AM)
[1,2] motivated the prediction and generation of free-electron
vortex states carrying orbital angular momentum [3—6]. These
electron vortices are currently attracting considerable attention
in several areas of physics, including electron microscopy,
quantum theory, and high-energy physics (see [7,8] for
reviews). Free-electron vortex states were first described using
a simplified model of a scalar nonrelativistic electron [3]. Soon
after the generation of electron vortex beams in transmission
electron microscopes [4—6], we provided a fully relativistic
description of vortex electrons with spin by constructing exact
Bessel-beam solutions of the Dirac equation (Dirac-Bessel
beams) [9]. Using a covariant position operator for the Dirac
electron, we also introduced the corresponding separately
conserved spin and orbital AM of a relativistic electron
and described observable spin-orbit interaction (SOI) effects.
Later, Dirac-Bessel electron beams were employed in the
contexts of high-energy physics, scattering, and radiation
problems [8,10-15].

In fact, the scalar-model description is still the most suitable
for electron-microscopy applications. First, electron beams in
transmission electron microscopes (TEMs) are unpolarized.
Second, these are strongly paraxial and SOI effects become
negligible under such conditions [16]. Nevertheless, there is
still theoretical interest in relativistic electron vortex states, and
two recent works [17,18] revisited vortex solutions and AM
properties of the Dirac equation, in slightly different contexts
to [9].

First, Bialynicki-Birula and Bialynicka-Birula [17] sug-
gested an elegant way to construct Dirac-Bessel beams [9]
and other vortex solutions of the Dirac equation. In particular,
the authors introduced vortex “wave-packet” solutions, which
are actually localized only in time but unbounded along the
longitudinal z coordinate. Therefore, such solutions cannot
model longitudinally localized electron wave packets in
typical experimental conditions, but they could be useful
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in problems where the finite width of the electron energy
spectrum is crucial. Note that usually electron beams in
electron microscopes are modeled via an integral of Bessel
beams over different transverse momenta [8,19] rather than
energies [17]. In any case, Dirac-Bessel beams still repre-
sent the main building blocks for relativistic electrons, and
superpositions of such states with different momenta or/and
energies provide properly localized solutions. The authors
of [17] also emphasized the nonsingular character of the
vorticity based on the Dirac probability current, i.e., the
absence of a well-defined vortex core in Dirac vortex beams.
Here we should note that Dirac vortex beams represent vector
beams (or, more accurately, spinor beams), which should be
characterized via polarization singularities [20] rather than
the simple vorticity used for scalar wave fields, and there is
no natural analog to the polarization singularities of spin-1
waves like light for spin-1/2 particles. Nonetheless, such
vector beams clearly exhibit vortices in each component of
the spinor wave function and they carry well-defined (but
noninteger) orbital AM [9]. Finally, the Dirac current is
naturally decomposed into the orbital and spin parts [17] via
the Gordon decomposition, although we emphasize a crucial
difference with the analogous decomposition for optical fields
(photons): while the orbital (canonical) current is observable in
monochromatic optical fields (because it is directly coupled to
dipole particles or atoms) [21-23], only the total Dirac (kinetic)
current is observable in experiments with electrons (because it
corresponds to the electric current coupled to electromagnetic
fields).

Second, Barnett [18] used approximate paraxial Laguerre-
Gaussian beam solutions of the Dirac equation to characterize
relativistic electron vortex states. In the regime considered, the
transverse momenta are assumed to be negligible compared to
the mass and longitudinal momentum. However, SOI effects
appear in nonparaxial corrections to the paraxial regime [9] and
their accurate analysis requires full nonparaxial solutions, just
as for solutions of Maxwell’s equations [24,25]. In this manner,
a typical nonparaxial vortex solution of the Dirac equation
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with vortex charge ¢ in the main component (surviving in
the paraxial limit) acquires extra components with vortices
of charge ¢ + 2s,, where s, = £1/2 corresponds to the two
states of the longitudinal projection of the rest-frame spin
of the electron [8-12,26,27]. However, only one of these
components is present in [18] and, furthermore, calculations
of the expectation value of the operator (r x a), (where « is
the usual matrix operator characterizing the Dirac probability
current) yielded ¢/E (where E is the electron energy).
However, this quantity describes the z component of the
magnetic moment of the electron [28,29], and in the paraxial
regime in [9] it was found to be (¢ + 2(s.))/E, where (s.) is
the expectation value of the longitudinal spin component. This
latter expression correctly incorporates the expected g factor
of 2 for the electron spin.

Most importantly, alternative separately conserved spin and
orbital AM operators were suggested in Ref. [18], which do
not exhibit any signature of SOI and yield expectation values
that are different from those obtained in Ref. [9]. The nontrivial
differences between these treatments, and particularly the two
apparently conflicting descriptions of the spin and orbital AM
of the Dirac electron in Refs. [9] and [18], motivated the present
study. Here we show that the choice of the spin and orbital AM
operators for the Dirac electron is uniquely determined by the
choice of the position operator for a relativistic electron. This
is a longstanding problem analyzed in detail in a number of
earlier works [30—42], starting with the seminal paper [30] by
Pryce in 1948. It is not surprising that the position operator
is not completely straightforward in relativistic quantum
mechanics: as position does not commute with the Dirac
Hamiltonian, its action mixes positive- and negative-energy
Fourier components of the Dirac equation, giving rise to
Zitterbewegung. In short, there are two main approaches, each
of which was used in [9] and [18], respectively:

(i) The operators under discussion, including position,
spin, and orbital AM, are projected onto the direct sum
of positive-energy (electron) and negative-energy (positron)
subspaces. This does not change observable expectation values
for pure electron states, but “corrects” the time evolution
of observables by removing Zitterbewegung effects [33-38].
Such an approach results in the Berry-phase formalism
commonly used for the description of various SOI phenomena
for both relativistic spinning particles, including photons, and
quasiparticles in solids [24,25,39-41,43-45].

(i) Alternative operators are obtained via the Newton-
Wigner-Foldy-Wouthuysen (NWFW) approach, which is based
on the inverse Foldy-Wouthusen (FW) transformation of the
canonical operators [31,32,34-37,42]. The Dirac Hamiltonian
is diagonal in the FW representation, and so it might seem
natural to define the position and other operators to have
canonical forms in this representation, giving rise to the
NWFW operators introduced in [31,32]. It is worth noting,
however, that the FW representation is problematic in full
quantum electrodynamics, where the electromagnetic field
is minimally coupled to the electron characteristics in the
standard (Dirac) representation.

In this work, we present an overview of various position
and AM operators in different representations, emphasizing
their properties, physical meaning, and observable manifes-
tations. We argue that the NWFW approach has drawbacks
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compared to the “projection” formalism. Namely, it changes
the observable expectation values of the quantities and also
has a singular massless limit m — 0, i.e., it cannot be used for
massless particles (e.g., photons). We show that this approach
is essentially related to the rest-frame characteristics of the
electron and therefore lacks the observable relativistic SOI
phenomena. Throughout the paper, our treatment is based on
the first-quantized (wave) approach to the Dirac equation.

II. BASIC EQUATIONS

We work with the standard representation of the Dirac
equation in units with i = ¢ = 1:
0y
IEZHVI, H=a p+pm, (1)
where ¥ (r,t) is the bispinor wave function, H is the Dirac
Hamiltonian, and

(o 8) =06 %)

are the 4 x 4 Dirac matrices [37,46]. The four-component
Dirac wave function implies four independent bispinor “po-
larizations,” which correspond to two spin states with positive
energy (describing electrons) and two spin states with negative
energy (corresponding to positrons in the first-quantization
approach we use).

The positive-energy (electron) plane-wave solutions of
Eq. (1) are y; = W(p)exp(ip -t — i ET), with the bispinor

W:#( VE +muw ) )
V2E\WE —mo -pw)’

Here, E = \/m?+ p?2 > 0, o is the three-vector of Pauli
matrices, p = p/p is the unit vector along the momentum
direction, and w = (a,b)” is the two-component polarization
spinor, wfw = 1, describing the spin state of the electron
[37,46]. The fact that the bispinor (2) has nonzero lower
components for p # 0 means that the standard representation
is not diagonal with respect to the electron and positron
subspaces, and describing pure electron properties requires
some care.

The positive- and negative-energy subspaces can be sep-
arated in the momentum representation using the unitary
Foldy-Wouthuysen (FW) transformation which diagonalizes
the Dirac Hamiltonian [32,37,46]:

Yrw = Urw(P)¥, Hrw = UFWHU;[W = BE,
E4+m+ Ba-p
Upy = ———.

V2E(E +m)

The bispinor (2) of the electron (positive-energy) plane wave
has only upper components in this representation: Wgw
(w,0)". Although the FW transformation is momentum-
dependent and hence is nonlocal in real space, it is often
convenient for the analysis of operators and calculations of
their expectation values.

We focus on the angular momentum (AM) properties of a
relativistic electron. The total AM operator J is well defined

3)
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for the Dirac equation,

J=rxp+S=L+s, s=-(7 © )
o p - ’ “2\0 o)

where L and S are canonical operators of the orbital and spin
AM. It is well known that the total AM J commutes with
the Hamiltonian and thus is conserved, while L and S do not
[37,46]:

[(HJ]=0, [HL]#0, [HS]#O0. ®)

This has led to considerable discussion and various suggestions
on how to describe the spin and orbital AM of the Dirac
electron.

As first realized by Pryce [30], since the operators J
and p are uniquely defined and conserved for the free-space
Dirac equation, the spin-orbital separation is intimately related
to the choice of the position operator. Indeed, choosing
some position operator ¥ determines the corresponding orbital
AM L = x p and spin § = J — L. Most significantly, the
canonical position operator r is somewhat problematic for
relativistic electrons as it corresponds to the velocity

dr | H 6

g — A= (6)
This velocity operator has eigenvalues 1 and is in sharp
contrast to the equation of motion of a classical relativistic
electron: dr/dt = p/E. This discrepancy is interpreted as
Zitterbewegung oscillations produced by the interference in
mixed electron-positron solutions [37]. At the same time, the
expectation value (r) for a pure electron (positive-energy)
wave function ¥ ¢(r,¢) is meaningful and does obey the proper
equation of motion: d(r)/dt = (pH -1y [37]. Similarly, the
commutators (5) are nonzero due to Zitterbewegung effects
[37], whereas the expectation values (S) and (L) for an electron
wave function are meaningful observable quantities.

III. SPIN-ORBIT INTERACTION

Relativistic wave equations (including the Dirac and
Maxwell equations) have inherent spin-orbit interaction (SOI)
properties. In the Dirac equation, the SOI appears not because
of nonzero commutators (5) (i.e., not due to Zitterbewegung)
since SOI is clearly manifest in the expectation values of
observable quantities for pure electron states. Below we show
a few important examples.

(i) Consider the expectation value of the canonical spin
operator S, given by Eq. (4), for an electron plane-wave state
(2). For a motionless electron, p = 0, and the bispinor W
has only the two upper components, given by the spinor w,
which describes the nonrelativistic (in other words, rest-frame)
electron spin: (S) = WISW = wiow/2 = (s). In particular,
wt = (1,007 and w™ = (0,1)7 correspond to (s.) = +1/2,
respectively. For a relativistic electron with p # 0, the expec-
tation value of the spin becomes

(S) = % (s) + ép (shp

(E+m)

Up to the additional m/E factor in the first summand,
this equation coincides with a Lorentz boost of the spatial
components of the four-vector (0,(s)) from the electron

)
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rest frame to the laboratory frame [46]. Thus, the expec-
tation value of the relativistic electron spin is momentum-
dependent, which signals the SOI caused by relativistic
transformations of the dynamical properties of the electron.
This effect grows in significance in the ultrarelativistic (or
massless) limit, when the momentum is large compared to the
mass.

(i) Only momentum and spin can be determined for
a single plane wave. Calculating other characteristics re-
quires structured Dirac-electron solutions, such as electron
vortex beams [3-8]. A monochromatic beam with well-
defined energy E > 0, propagating along the z axis, can
be constructed as a Fourier superposition of multiple plane
waves with momenta p distributed around the propagation
direction,

(D) o / o W(p) f(pL)e® ®)

Here,p. = (px, p,) are the transverse momentum components
describing deflections of the plane waves from the z axis, while
f(pL) is a scalar function describing Fourier amplitudes of
the plane-wave components. For the simplest case of Bessel
beams, the momenta are distributed on a circle in p space
(lying on the appropriate mass shell),

feePL) x 8(p1 —k)e'?, ©)

where (p,,¢) are polar coordinates in the p, plane, k
determines the aperture angle 6, of the beam (sin6y =
k/p < 1), and £ is the integer azimuthal quantum number
(vortex charge) of the beam. Although Bessel beams are
not properly localized (square integrable) with respect to the
radial coordinate, they are very convenient for mathematical
analysis. If radial localization is crucial, one can consider some
appropriate Hankel integral of Bessel beams over «, fKKf dk,
while keeping the energy fixed (for k| < k2, this corresponds
to the physical electron vortex beams generated in transmission
electron microscopes [8,19]).

The polarization (spin) state of the beam (8) is specified by
setting the spinor w(p) for each plane wave in the spectrum.
Assuming uniform polarization for all plane waves, i.e., w
independent of p, our earlier calculations [9] showed that the
expectation value of spin and orbital AM in such electron
vortex states becomes

(82) = (1 = A)(sz),

where A = (1 — m/E)sin® 6, is the SOI parameter involving
the beam aperture angle 6y. Equations (10) describe the SOI
effect known as “spin-to-orbital AM conversion,” which is
well studied for nonparaxial light beams, both theoretically
and experimentally [24,25,47-50]. This shows that the orbital
AM (and other observable orbital characteristics [9,24,25])
of relativistic particles become spin-dependent. Note that
the expectation value (S;) in Eq. (10) follows from the
plane-wave equation (7) after the substitutions (s) = (s;)Z
and p-Z = p cosfy, where Z is the unit vector along the z
axis. We also note that the SOI vanishes in the paraxial limit
90 — 0.

(iii) Finally, the expectation value of the position operator,
(r), can also reveal SOI effects [24,25,33,35,36,39-41,43-45].
First, the spin-Hall effect, well studied for electrons and

(L;) = £+ Alsz), (10)
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photons in external potentials, appears as a semiclassical spin-
dependent correction in the equation of motion for d(r)/dt
[25,39-41,43—-45,51-53]. Second, we explicitly calculate the
expectation value (r;) for the transverse coordinates in the
electron vortex beam. Obviously, (r;) = 0 for any cylindri-
cally symmetric probability density distribution. For the same
beam in a reference frame moving perpendicular to the beam
axis with a relativistic velocity v_LZ, the beam centroid drifts
back as —vt’, where primes denote quantities in the moving
reference frame. Importantly, relativistic transformations of
the angular-momentum tensor also require the centroid of the
electron carrying intrinsic AM to be shifted in the direction
orthogonal to both v and Z [54,55]. As a result, the expectation
value of the electron coordinate in the moving frame becomes
[54-57]

() = —vi' — ¥ >2<E(J>’ (11)

where (J) = (£ + (s;))Z for the vortex beams considered
above. This AM-dependent transverse shift induced by the
transverse Lorentz boost can be called the relativistic Hall
effect [55] and it is closely related to the phenomena of Thomas
precession, SOI, and AM conservation [54].

IV. PROJECTED AND NEWTON-WIGNER-
FOLDY-WOUTHUYSEN OPERATORS

Having meaningful expectation values, one might wish to
construct more meaningful position, spin, and orbital AM
operators, free of Zitterbewegung effects. As mentioned above,
there are two main ways of doing this.

A. Projected operators

The most natural way to provide electron position, spin,
and orbital AM operators is to project these onto positive-
and negative-energy subspaces, eliminating the cross terms
corresponding to the electron-positron transitions. This idea
was first suggested by Schrodinger and can be written as
[36-38]

R =Iellt + eIl (12)

where

% = LUt (14 B)Upy = 1(1imﬁ)i“'p

oW TV T E 2E

are the projectors onto the corresponding subspaces, and only

the “+” subspace contributes to the expectation values for pure-

electron states. Equation (12) yields the following projected

position operator in the standard and FW representations
[9,36-41,43-45]:

pxS
EE +m)

x S o
p +.mﬂ

R=r+"m Y

Rew =1+ (13)
The same projection procedure (12) can be applied to other
operators. While it does not affect p and J, the modified orbital

and spin AM operators become

L=Rxp, S=J-L. (14)
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Explicitly, the projected spin operator is [9,37,38,42]
m'o (®-Sp mplaxp)

S=5ESt 2E? as)
m (p-S)p

Skw = =S+ — 0

W= B Etm

Importantly, the projected spin (15) corresponds to the spatial
part of the Pauli-Lubanski four-vector YW", which correctly
describes the spin states of moving relativistic particles (i.e.,
generating the little group of the Poincaré group) [38,42]:

S=WH', W=W""W)=[p-S,i(SH + HS)].
(16)

We also note that the operator Sgw explicitly reflects the
structure of the expectation value of the relativistic electron
spin (S), given by Eq. (7). Furthermore, since the electron
wave function in the FW representation is reduced to the upper
two components corresponding to the spinor w, the projected
operators (13)—(15) in the FW representation can be reduced
to the 2 x 2 operators acting on the “+” electron subspace:
S—>s=a/2.

The projected operators have two important properties.
First, they obey proper time evolution with conserved spin
and orbital AM [30,36,37],

dR . -

P i[HR]=pH ',
Second, for any localized electron state, they have the same
expectation values as the corresponding canonical operators,

(R)=(r), (8)=(8), (£)=(L). (18)

[H,S]=[H,L]=0. (17)

These follow automatically from the definition (12) assuming
the states averaged over are pure-electron states ¥¢ (i.e.,
already in the “+” subspace). Thus, the projection (12) affects
the Zitterbewegung phenomena for mixed electron-positron
states, but does not change observable quantities for pure-
electron states.

Projection onto the “+” and “—” subspaces plays the role
of a constraint and it modifies commutation relations of the
operators [9,30,33—40] (cf. [24,58] for the photon analogs),

S,
[RiRj) = ~itije 5. (19)
.S
[Si.Sj]l =ieiji <5k - %)
-5 (20)
[;C,‘,Ej] = l'S,'jk (,Ck — %)

In modern terms, one says that the projection generates a non-
trivial Berry connection Ag(p) and curvature Fg = —S/E?
in momentum space, resulting in covariant noncommutative
coordinates (13) and (19): R =r + Ap,[R;,R;] =i&iji Fpx
[9,24,39-41,43-45].

The above covariant (projected) operators underpin the
modern theory of quasiparticles in solids (e.g., Bloch elec-
trons) and relativistic spinning particles in external fields (in-
cluding photons) [9,24,39-41,43-45,51-53,59,60]. This ap-
proach has two great advantages. First, it describes observable
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Berry-phase and SOI phenomena, from SOI Hamiltonians to
Hall effects and topological states of matter. Second, the above
approach can be equally applied to massive and massless
particles, i.e.,itisnot singularin the m — 0limit. In particular,
for m = 0, Egs. (13)-(20) become equivalent to the analogous
equations for photons or classical light [24,36,58—60]. The
only difference is that in the photon case, there is no negative-
energy subspace, and the so-called transversality constraint
(p-E=p-H=0, where E and H are complex electric and
magnetic field amplitudes) corresponds to the projection onto
the transversal subspace (where Fourier components of the
fields are orthogonal to the wave vectors). The drawback of
this approach to the Dirac equation is that it allows one to
deal with only purely electron (or positron) states, excluding
the Zitterbewegung effects in mixed states. But in all cases
where the type of particles is fixed and the interband transitions
(e.g., via scattering on external potentials) are negligible, this
formalism perfectly describes the observable dynamics.

The covariant (projected) operators, defined via the Berry
connection and curvature, are now routinely used in a variety
of wave systems. Moreover, in the relativistic-electron context,
such operators were introduced long before the discovery of
the Berry phase [61]. First of all, in 1948 Pryce published
a comprehensive study [30] of various possible position and
AM operators for relativistic particles. There, his “case (c)”
with the position operator “q” and the corresponding spin
“S” exactly correspond to the projected operators R and S
considered here. In terms of the classical many-particle analog
of a quantum distributed wave function, Pryce introduced
this position as follows: “the coordinates of the mass-centre
in a particular frame of reference is defined as the mean
of the co-ordinates of the several particles weighted with
their dynamical masses (energies)”. One might think that
this corresponds to the center of energy of the electron state.
However, this is not the case. Pryce calculated his operator
using the center-of-energy operator N = %(rH + Hr)asq =
%(H‘IN +NH ). In fact, ¢ = R, and its expectation value
for a single-electron state corresponds to the center of the
probability density (center of charge), while the center of
energy is defined as rg = (N)/(H) # (q). The difference is
important, e.g., for the “relativistic Hall effect” (11), where
the center of energy rp undergoes the transverse shift twice
as large as the center of the probability density [54,55,57].
Second, the projected position operator R and the spin-Hall
effect corresponding to it appeared in 1959 in the work of
Adams and Blount [33] (up to some arithmetic inaccuracies
therein). There, the Dirac-equation calculations are given in
Appendix A as an example of application of the generic
formalism describing electrons in solids. This approach an-
ticipated the modern Berry-phase formalism [39-41,43-45].
Third, a detailed analysis of the projected position operators
for electrons and photons was provided in the papers [34,35]
by Fleming in 1965, in the book [36] by Bacry in 1988,
and also in a comprehensive monograph [37] by Thaller in
1992. The connection of the projected spin operator with the
Pauli-Lubanski vector was revealed by Czachor in 1997 [38].
Finally, accurate Berry-phase descriptions with analyses of
observable SOI effects in free space and in external fields was
given by Berard and Mohrbach (2006) [39], Bliokh (2005)
[40], Chang and Niu (2008) [41], and Bliokh et al. (2011) [9].
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The main equations and properties of the projected electron
operators are summarized in Table I.

B. Newton-Wigner-Foldy-Wouthuysen operators

An alternative way to construct relativistic-electron oper-
ators with proper time evolution is to use the inverse FW
transformation instead of the projection (12) [32],

o gt
r=U I'U]:w,
FW @1
L=U/ LUrw =% xp, S =USUpw =J - L.

Obviously, in the FW representation, these operators acquire
the canonical forms

fFW =T, I:FW =L=rx P, SFW =S. (22)

From here, using Hpw = BE, one can readily see that these
operators obey the proper time evolution similar to Egs. (17),

dr i[H,F] H™!
— =1 3 = 5
dt P

One can also see that these operators obey canonical commu-
tation relations [cf. Egs. (19) and (20)],

[7,71=0, [8.51=iejS, [Li,L;1=1ieiply. (24)

[HS]=[HIL1=0. (23)

In the standard representation, the position and spin operators
(21) read

poryR*S e, Fa-pp
E(E+m) 2E 2EXE+m) 5)
g-"g, @ Sp _ plexp)

ES T EE+m | 2E

The operator F is well known as the Newton-Wigner
position operator [31,32,34-37], while the general approach
(21)—(25) was described by Foldy and Wouthuysen [32].
Therefore, we refer to the operators (21)—(25) as the Newton-
Wigner-Foldy-Wouthuysen (NWFW) operators. Despite the
proper time evolution (23), these operators have a serious
drawback, namely, their expectation values differ from the
canonical ones [cf. Egs. (18)]:

(B) #(r), (S)#(S), (L) # (L) (26)

For example, using the FW representation Spy = S, we easily
see that the expectation value of the NWFW spin for a plane
electron wave (2) yields

(S) = (s). 27)

Evidently, this is the nonrelativistic spin in the electron rest
frame instead of the relativistic momentum-dependent spin
(7). Similarly, the spin-to-orbital AM conversion (10) in
nonparaxial electron vortex beams is missing for the NWFW
operators,

(Sz> = (Sz>: <Zz) ={. (28)

Thus, relativistic transformations of the dynamical properties
of the electron and the SOI phenomena are missing for
these operators. This contradicts numerous observable SOI
effects (spin-dependent orbital characteristics), known for both
electron [9,39-41,43-46,62] and optical (photon) [24,25,47—
53] fields.
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TABLE 1. Explicit expressions for the “projected” and NWFW operators in the standard and FW representations. Key works deriving
and analyzing these expressions are listed. In all cases, the orbital AM operator is given by the vector product of the corresponding positions
operator and momentum p. The last row lists the main physical features of the two sets of operators.

Projected operators NWFW operators
S .
Standard representation R =r+ X S ,’mﬂ « fory PX T pa ; _Bla-pp
E? 2E? E(E +m) 2E 2E%(E 4+ m)

Pryce 1948 [30]: first Eq. (6.6);
Bacry 1988 [36]: Eq. (6.8), expressed via ¥, S;
Thaller 1992 [37]: Eq. (1.145).

S— 7s+ (- S)p _ ;M xp)
E? E?
Pryce 1948 [30]: ﬁrst Eq. (6.7);
Thaller 1992 [37]: Eq. (1.151);
Czachor 1997 [38]: Eq. (23).

Pryce 1948 [30]: third Eq. (6.6);
Newton, Wigner 1949 [31]: Eq. (2.2);
Foldy, Wouthuysen 1950 [32]: Eq. (23)
(with an arithmetic inaccuracy);
Thaller 1992 [37]: Eq. (1.158).
g_"mg, ®Sp  plaxp
E~  EE+m) 2E
Pryce 1948 [30]: third Eq. (6.7);
Foldy, Wouthuysen 1950 [32]: Table I
(global 1/2 factor is missing);
Barnett 2017 [18]: Eq. (1.11)
(1/2 missing in the second term).

FW representation

pxS
Rew = _—
W=t T E )
Adams, Blount 1959 [33]: the first line of

Eq. (A1b) (the second term has incorrect sign);

Berard, Mohrbach 2006 [39]: Eq. (10);
Bliokh 2005 [40]: Egs. (8) and (10).

f‘FW =T

Pryce 1948 [30]: third Eq. (6.9);
Foldy, Wouthuysen 1950 [32]: Table I;
Thaller 1992 [37]: Eq. (1.168).

m (p-S)p
Siw = =S+ —— %
W= St B E1m)

Bliokh, Dennis, Nori 2011 [9]: Eq. (15).

Srw =S

Pryce 1948 [30]: third Eq. (6.9);
Foldy, Wouthuysen 1950 [32]: Table I
(global 1/2 factor is missing);
Barnett 2017 [18].

Properties Proper time evolution;

Canonical expectation values;
Noncanonical commutators;
Smooth massless limit;

Naturally describe SOI and Berry-phase phenomena;
Spin is the spatial part of the relativistic

Pauli-Lubanski vector.

Proper time evolution;

Noncanonical expectation values;
Canonical commutators;

Singular massless limit;

Lack SOI and Berry-phase phenomena;
Spin is the nonrelativistic rest-frame spin.

Note that the most standard textbook example of the SOI
energy responsible for the fine structure of atomic levels is
naturally derived from the projected coordinate operator R
using the nonrelativistic limit (p < m) in the FW represen-
tation, where the electron wave function is two-component
[35,36,62]. Considering a spherically symmetric potential
V(r), we obtain, in the FW representation,

N r-(pxS) , L-S
Riw =0+ — o=+
(29)
dv(iryL-S

V(IRew)) = V(r) +

dr 2m?r’

Here the correction term (with the trivial reduction S — s)
is the well-known SOI energy [46]. Equation (29) shows
that the NWFW position operator Fpw = r corresponds to
the canonical coordinates in the Pauli Hamiltonian with a
separate SOI term (absent in the full Dirac equation), while the
projected position Rpw describes the covariant coordinates,
and the SOI is intrinsically present in the potential-energy

term V(r). Importantly, it is the covariant (i.e., projected)
coordinates that correspond to the actual centroid of a localized
electron state. Moreover, the covariant coordinates determine
the equations of motion of the electron in smooth external
potentials, while canonical coordinates can produce erroneous
results, as shown in [39,63,64].

Another important drawback of the NWFW operators is
that they cannot be extended to the case of massless particles
(e.g., Weyl particles or photons) [31,32,35,36]. Therefore, this
approach is singular in the m — 0 limit. This is explained by
the fact that such operators are associated with the rest-frame
properties of the electron, while there is no rest frame for
massless particles. This feature makes the NWFW approach
not suitable for condensed-matter systems. There, effective
masses (gaps in the spectra) can vary, passing via zeros
(Dirac or Weyl points), depending on tunable parameters of
the system. Therefore, the description of solid-state electrons
requires a formalism depending smoothly on m. Moreover,
solid-state electrons exhibit numerous observable SOI effects,
which underlie the field of spintronics.
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Historically, the NWFW operators first appeared in 1948 in
the same work [30] by Pryce. They correspond to the “case (e)”
and position “q” and spin “S.” Pryce derived these operators to
“improve” the noncanonical commutation relations (19) and
(20). He also explicitly mentioned the close relation of the posi-
tion operator q = T to the rest frame and impossibility to use it
for photons. One year later, Newton and Wigner suggested the
operator ¥ again [31] using arguments related to the localizabil-
ity of massive quantum particles. Finally, the whole approach,
including spin and orbital AM S and L, was described in 1950
by Foldy and Wouthuysen [32] (up to an arithmetic inaccuracy
in F). This approach was criticized by Bacry [36] in favor of the
projected-operators formalism. Finally, very recently, Barnett
revisited this formalism in [18], suggesting the same spin and
orbital AM S and L [up to a missing factor of 1/2 in the
B(a x p) terms], which are free of the SOI.

The main equations and properties of the NWFW electron
operators are summarized in Table I.

V. DISCUSSION

In conclusion, we have reviewed and compared two
approaches to the description of the position, spin, and angular
momentum (AM) of a relativistic electron. The first one is
based on the projection of canonical Dirac operators onto
the positive-energy (electron) subspace, whereas the second
one assumes a canonical form of operators in the Foldy-
Wouthuysen (FW) representation. We have shown that the
“projected” formalism results in the same observable phenom-
ena and expectation values as the canonical Dirac approach,
while elucidating the spin-orbit interaction (SOI) effects via
the Berry-phase formalism. In turn, the second formalism
produces the Newton-Wigner-Foldy-Wouthuysen (NWFW)
operators with essentially different physical properties. Most
importantly, because of the close relation of the NWFW
operators to the rest-frame properties of the electron, this
approach lacks SOI phenomena (in the full Dirac treatment)
and has a singular zero-mass limit.

The following qualitative arguments could shed some light
on the peculiarities of the NWFW operators. First, the FW
transformation (3) is defined in the momentum representation,
and it transforms the electron plane-wave bispinor (2) to the
spinor Wgw = (w,0)”. Consider now the Lorentz boost of an
electron plane wave to the rest frame. It is given by the nonuni-

it _ Etm—ap .
tary Hermitian operator A = REETm resembling Urw and

transforming the bispinor (2) to W' = AW = /m/E(w,0).
Thus, one can regard the FW transformation as a “unitary
counterpart of the Lorentz boost to the rest frame.” This
explains why the NWFW operators, chosen as “canonical in
the FW representation” describe some rest-frame properties of
the electron, such as the rest-frame spin (27).

Second, we consider the transition from the Dirac equation
to the nonrelativistic Schrodinger equation with Pauli Hamil-
tonian (including the SOI term) and two-component wave
function @p,y;;. Writing the Dirac bispinor wave function as
¥ = (¢, x)7, the Pauli wave function is given by [46] @pau;

1+ %)(p, where we used p < m and omitted the phase
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factor exp(imt). In the same approximation, using x ~ 2P¢

2
and Ugpw >~ 1 + % — 8’;: 5, the FW wave function {gy =
(¢rw,0) reduces to the same Pauli spinor: grw = @pauii- Thus,
one can say that the nonrelativistic two-component Pauli wave
function corresponds to the relativistic FW wave function.
Therefore, the NWFW position operator F, having canonical
form in the FW representation, appears as the canonical
coordinates r in the Pauli Hamiltonian, and an additional
SOI term arises there. However, one should remember that
the FW transformation is nonlocal in real space, and this
nonlocality is hidden in the Pauli Hamiltonian and wave
function. Using the canonical Dirac position and projecting it
onto the electron subspace results in the position operator Rpw
(with the trivial reduction S — s) in the Pauli formalism. This
operator corresponds to covariant coordinates, which describe
the electron centroid and determine the covariant equations
of motion [33,39-41,43-45,62—-64]. Moreover, this position
operator reveals the intrinsic nonlocality of the Pauli formalism
via anomalous commutation relations (19) and unveils the
geometric Berry-phase origin of the SOI term (29) in the
Pauli Hamiltonian [39-41,43-45,62]. In terms of covariant
operators, the SOI does not require additional terms in the
Hamiltonian, but appears as an inherent electron feature, as in
the full Dirac equation.

In this work, we mostly considered properties of the
Dirac electron in free space, i.e., without external potentials.
In the presence of potentials, the problem is complicated
considerably. Indeed, in this case, the notion of a pure electron
does not make sense, and the combined electron-positron de-
scription becomes necessary. Therefore, rigorously speaking,
the projected operators are applicable in external potentials
only in the adiabatic (semiclassical) approximation, when
the electron-positron transitions are negligible. Nonetheless,
even in scattering problems with electron-positron transitions,
the incoming and outgoing states of relativistic electrons and
positrons can be described using projected operators (e.g.,
the Pauli-Lubanski spin vector). A detailed comparison of
various spin definitions in the presence of external potentials
was recently provided in [42].

We finally note that, rigorously speaking, the domains
of applicability of the operators under discussion imply
square-integrable electron wave functions localized in three
spatial dimensions. In this manner, all of the explicit examples
mentioned in [9,17,18] and in the present work should be
considered as simplified illustrations, while a more accurate
wave-packet treatment may reveal additional fine features.
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