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Quantum walk of a Bose-Einstein condensate in the Brillouin zone
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We propose a realistic scheme to implement discrete-time quantum walks in the Brillouin zone (i.e., in
quasimomentum space) with a spinor Bose-Einstein condensate. Relying on a static optical lattice to suppress
tunneling in real space, the condensate is displaced in quasimomentum space in discrete steps conditioned upon
the internal state of the atoms, while short pulses periodically couple the internal states. We show that tunable
twisted boundary conditions can be implemented in a fully natural way by exploiting the periodicity of the
Brillouin zone. The proposed setup does not suffer from off-resonant scattering of photons and could allow for
a robust implementation of quantum walks with several tens of steps at least. In addition, on-site atom-atom
interactions can be used to simulate interactions with infinitely long range in the Brillouin zone.
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I. INTRODUCTION

Quantum walks are relevant for simulating topological
phases [1,2], for engineering quantum algorithms [3,4], and
have been considered as a possible mechanism explaining
the efficient energy transfer in biomolecular clusters [5].
Moreover, the crossover between classical and quantum
motion in the presence of decoherence can be optimally studied
in quantum walks [3,6–8] for the reason that the characteristic
features of a quantum walk are based on sensitive quantum
interference [9].

Inspired by the experimental implementation of quantum
walks with trapped neutral atoms [10,11], in particular by the
experiments carried out by the Bonn group [6,10,12,13], we
propose a realization of discrete-time quantum walks in the
reciprocal space of a periodic optical lattice. Today, it is fairly
standard to prepare a Bose-Einstein condensate (BEC) with a
vanishing thermal fraction and with a well-defined momentum.
Once loaded into an optical lattice, such a BEC exhibits a very
narrow quasimomentum distribution, which can reach down
to one percent of the Brillouin zone [14]. In this paper, we
propose to delocalize the BEC in a controlled way through
discrete steps in the reciprocal space of the lattice. Our scheme
realizes a discrete-time quantum walk in quasimomentum
space, despite the fact that the motion of atoms in real space
is nearly frozen by a deep optical lattice potential: For that
purpose, two internal states of the atoms are employed, which
determine the step direction of the BEC in reciprocal space
and which are coherently mixed at periodic intervals to realize
the so-called coin operation. As a consequence, the internal
states become entangled with the different quasimomentum
states of the BEC, which play here the role of the walker’s
position states. Like in the Bonn experiments, the internal
degree of freedom can be realized through two hyperfine
levels of alkaline atoms, forming a pseudo-spin-1/2 system. In
this work, however, we suggest to encode the position of the
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walker in quasimomentum instead of position space. Figure 1
presents a sketch of the state-dependent shift in a lattice that
we envisage. This idea differs from a recent proposal based
on a quantum ratchet [8,15], where a discrete-time quantum
walk is realized in true momentum space by a δ-kicked optical
lattice, which leaves quasimomentum unchanged.

Embedding the quantum walk in quasimomentum instead
of true momentum space opens new possibilities for investi-
gating interaction-induced effects on the walk [16] and novel
applications for matter-wave interferometry requiring high
spatial densities. Provided that it is sufficiently deep, the lattice
effectively freezes tunneling between lattice sites, thereby
ensuring that the original spatial distribution remains invariant
for the whole quantum-walk evolution. This implementa-
tion of quantum walks opens interesting avenues for future
exploration of strongly correlated systems with long-range
interactions, which are expected to occur in the reciprocal
space (i.e., the effective space for the quantum walk) as a result
of localized on-site interactions among ultracold atoms [17].
Moreover, we expect that our suggestion of quantum walks
in the Brillouin zone can be implemented with technology
presently available in state-of-the-art BEC apparatuses.

II. QUANTUM WALKS IN QUASIMOMENTUM SPACE

A. Physical model without interactions

We are interested in atoms prepared in a static optical lattice
and subject to a state-dependent force F , which displaces
quasimomentum in opposite directions for the two internal
states, as shown in Fig. 1. The motion of an effective two-level
atom is then described by the spinor Hamiltonian,

H = − h̄2

2M

∂2

∂x2
+ V sin2

(
πx

dL

)
− (x − x̄)F σz, (1)

where x is the center-of-mass coordinate of the atom, x̄ is a
fixed parameter defining the point where the Zeeman potential
vanishes, σz is the Pauli matrix acting on the spinor �ψ(x) =
{ψ1(x),ψ2(x)}, and M is the atomic mass. The optical lattice
has a lattice constant dL and an amplitude V . We here neglect
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FIG. 1. Sketch of the proposed experiment for the realization of
quantum walks in the Brillouin zone. A state-dependent force shifts
the atoms to the left or to the right depending on the internal state
(sketched by the two arrows). The two internal states of the atoms are
coherently coupled by short pulses to realize the coin-toss operation
at constant time intervals. The curve represents the energy dispersion
relation E(k) of the populated band.

atom-atom interactions, which will be discussed subsequently
in a mean-field approach for weak nonlinearities.

The application of H for a certain time τ realizes the state-
dependent shift operation of a discrete-time quantum walk on
a line [9],

Ushift = exp(−iHτ/h̄)

≈
∑

k

(
eiφ+(k) |k + 	k〉〈k| 0

0 eiφ−(k) |k − 	k〉〈k|
)

,

(2)

where k is the quasimomentum of the atom, 	k = F τ/h̄ is the
step size in the Brillouin zone, and φ±(k) are Peierls phases,
which take into account both dynamical and geometrical
phase contributions. The expression on the right-hand side
of Eq. (2) relies on the assumption that the atoms populate
initially only one single band (typically the lowest band),
and that Landau-Zener tunneling [18,19] to higher bands can
be neglected. The latter condition is very well fulfilled for
sufficiently deep lattices or small forces [20]. Note that the
operator Ushift, instead of displacing the state in position space
by a discrete amount of lattice sites such as in Refs. [10,12,13],
displaces the quasimomentum state |k〉 in the Brillouin zone
by a fixed amount, which is determined by 	k, in a direction
conditioned upon the internal state. Using quasimomentum
space to implement the discrete-time quantum walk has two
advantages: (1) the step size can be arbitrarily tuned by
choosing the force F and the duration τ ; (2) most importantly,
periodical boundary conditions are naturally realized by
quasimomentum k in the Brillouin zone, provided that the
latter contains an integer number n of sites, n	k = 2π/dL.

The coin-toss operation couples the two internal states
through a Rabi-oscillation dynamics and is repeatedly applied
after a fixed period τ . It realizes the following beam-splitter
unitary transformation acting on �ψ ,

Ucoin =
(

cos(α/2) i sin(α/2)
i sin(α/2) cos(α/2)

)
, (3)

where α represents the coin angle [9]; the symmetric 50-50
beam splitter is realized for α = π/2, corresponding to the
Hadamard quantum walk. Such a unitary transformation is
specified in the rotating frame of the drive, where the two
hyperfine states of an alkali atom are degenerate in energy,
and can be readily implemented with microwave pulses
[10,12,13,21] or with two-photon Raman pulses [22,23]. These
pulses can be applied very rapidly, on the time scale of
microseconds for microwaves, as shown in Refs. [10,13],
and in an even shorter time for optical Raman transitions
[23]. In the following, we assume that the coin pulses act
“instantaneously” on the time scale of the evolution of the
period τ and uniformly for all positions x over which the
BEC extends, or, alternatively, that the force is switched off
while the two internal states are coupled. In either case, the
time-evolved state after j steps of the quantum walk is equal
to �ψj = W �ψj−1, with W = UshiftUcoin being the walk operator
of the single step.

B. Peierls phases and twisted boundary conditions

The Peierls phases φ±(k) are the sum of two contributions,
namely a dynamical φD

±(k) and a geometrical φG
±(k) one:

φD
±(k) = ∓F x̄ τ

h̄
∓

∫ ±	k

0
dk′ E(k + k′)/h̄, (4)

φG
±(k) =

∫ ±	k

0
dk′ A(k + k′), (5)

where E(k) and A(k) are the energy dispersion relation and the
Berry-Zak connection [24,25] of the occupied band, respec-
tively. To begin with, we confine ourselves to a subregion
of sites strictly within the Brillouin zone (−π/dL,π/dL],
thus excluding that the walker can reach the band edge and
wind around the Brillouin zone. With this constraint, the
Peierls phases of the one-dimensional walk operator W can
be removed through a gauge transformation when (and only
when) the condition

φ+(k) + φ−(k + 	k) = 2γ (6)

is fulfilled [26], with γ being a constant term whose only effect
is shifting by that amount the global phase of the quantum
state after each step. Peierls phases that can be gauged away
have no bearing on observable quantities defined locally in the
Brillouin zone such as the probability density (assuming that
these phases are maintained static). The condition in Eq. (6)
is directly fulfilled by the geometrical phases in Eq. (5) and
by the first term of Eq. (4), but is not by the second term of
Eq. (4). Hence, confined to a subregion of the Brillouin zone,
we can neglect the contribution from the geometrical phases
as well as that from the dynamical Zeeman phase, but we
cannot a priori discard the one originating from the energy
dispersion E(k). The energy band’s width, however, decreases
exponentially with the lattice depth V , and the energy band
becomes nearly flat for lattice depths of the order of a few
tens of recoil energies, ER = (πh̄)2/(2M dL). In this limit,
the dynamical phases approximately meet the condition in
Eq. (6) because they reduce to a constant value, which does
not depend on k nor on the internal state, and can therefore
be neglected. Figure 2 shows that neglecting the dynamical
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FIG. 2. (In)fidelity computed as a function of the lattice depth
V for a discrete-time quantum walk in reciprocal space with 20
sites, for a different number of steps j . To compute the fidelity [27],
a reference walk with vanishing dynamical phases, φD

±(k) = 0, is
considered. Here, the Zeeman force is set to F = 0.2 ER/dL and
periodical boundary conditions are considered with x̄ = 0.

phases originating from E(k) is a very good approximation
for deep lattices: for example, for V > 40 ER, the discrepancy
between the evolved quantum state after j = 2000 steps and
that of a discrete-time quantum walk with vanishing Peierls
phase results in an infidelity of 1 − F < 10−5 [27].

Although Peierls phases can be ignored in a subregion of
the Brillouin zone when the condition in Eq. (6) is met, these
can play an important role if the walker is allowed to wind
around the Brillouin zone. In fact, a global gauge canceling
all Peierls phases on the entire Brillouin zone exists only [26]
when the phase

ϕ =
∑

k

φ+(k) ≈ −n	k x̄ +
∫ π/dL

−π/dL

dk A(k) (7)

is an integer multiple of 2π , with the discrete sum being taken
over all n sites in the Brillouin zone. In the the right-hand-side
expression, we neglect the dynamical phases originating from
energy dispersion since we assume a sufficiently deep lattice;
see Fig. 2. The quantity ϕ defines the twist phase of twisted
boundary conditions [25],

〈k + 2π/dL| �ψ〉 = eiϕ 〈k| �ψ〉 . (8)

Twisted boundary conditions are an important instrument
in theory to characterize topological phases of many-body
systems [25] and are generally believed to be difficult to
implement in nature [28–30]. Physically, a quantum walk with
twisted boundary condition simulates a particle with charge Q

moving on a ring lattice that is threaded by a magnetic flux
h̄ϕ/Q. In this situation, persistent currents are predicted to
appear even if no electric field is applied [31,32], provided that
no other relaxation mechanism (e.g., decoherence) is present.

Superlattices such as those demonstrated in Refs. [33–35]
allow one to fine tune the twist phase ϕ through the Berry-
Zak phase [24], φZak = ∫

dk A(k), which is determined by
the relative displacement between two commensurate optical
standing waves. For the simple lattice potential considered
in Eq. (1), the Berry-Zak phase is trivially zero. However,
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FIG. 3. (a) Sketch of the experimental protocol to realize discrete-
time quantum walks in the Brillouin zone. The curves show in relative
units the lattice depth V , the force F , the harmonic trap frequency ωx ,
and the number of Bloch oscillations as a function of time (the initial
parameters are provided in the main text). Circled numbers refer to
(1) preparation phase in a shallow harmonic trap, (2) free expansion
followed by δ-kick cooling, (3) ramp up of lattice and force, (4)
pulse preparing internal state, (5) discrete-time quantum walk, (6)
ramp down of lattice and force, and (7) Fourier-optics mapping from
momentum to position space. (b) (Quasi)momentum distribution
normalized to unity after 10 steps of the walk in the reciprocal
space. The distribution is obtained by integrating numerically the
Schrödinger equation and displayed at the end of the ramp-down
phase (6). The underlying gray bars show the theoretical prediction
[9]. In the simulation, coin pulses are applied instantaneously. The
temporal evolution of both spatial and momentum distribution is
provided in the Supplemental Material [47].

this is not a limitation since twisted boundary conditions can
also be realized by controlling x̄ in Eq. (1), where in this
case ϕ = 2π x̄/dL. Controlling x̄ might be more convenient
to be realized with an existing BEC experimental apparatus
than controlling the Berry-Zak phase through a superlattice
potential.

C. Experimental protocol

The full experimental protocol to realize discrete-time
quantum walks in the Brillouin zone is illustrated in Fig. 3(a)
and proceeds as follows: (1) The condensate is first prepared
in the ground state of a shallow harmonic trap, in one of the
two internal states. (2) It is then allowed to freely expand in a
horizontal waveguide potential [36] for a certain time, before
the harmonic potential is again turned on for a short transient
time; during this transient time, the momentum spread is
significantly reduced according to the principle of δ-kick
cooling [36–39]. (3) Subsequently, the condensate is loaded
adiabatically into the optical lattice and nearly simultaneously
a Zeeman force F is turned on; the duration of this process,
in which the lattice potential and the force are ramped up,
is chosen such that the quasimomentum sweeps once the
Brillouin zone, thus performing a full Bloch oscillation. (4)
The internal state is then prepared in the desired initial
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superposition of the two internal states by applying a suitable
coin pulse. (5) The discrete-time quantum walk is performed
by Ushift, which shifts the atoms in the Brillouin zone in a
direction conditioned upon their internal state, and by applying
at periodic time intervals the coin pulse Ucoin, which mixes
the internal states. (6) To read out the final quasimomentum
distribution of the atoms, which is the effective quantum-
walk position distribution, the quasimomentum distribution
is mapped onto a momentum distribution by switching off
the force and the lattice adiabatically; the switch-off time of
the Zeeman force is chosen such that the quasimomentum
performs an additional full Bloch oscillation. (7) Finally, to
detect the momentum distribution with high resolution, which
is required to resolve the small separation 	k between two
sites of the quantum walk in the Brillouin zone, the atoms are
let evolve for a quarter of a period in the shallow harmonic
trap [40]. This operation maps in a finite time the momentum
distribution onto a position distribution, which can then be
readily measured by standard absorption imaging [41–46].

We note that variations to the proposed scheme are also
conceivable: Atoms could be loaded into a vertical optical
lattice. The vertical orientation would have the advantage of
not requiring a horizontal waveguide potential [36] to support
the atoms against gravity. In this case, however, one should
keep track of the state-independent shift of quasimomentum
caused by the gravity force, which adds on top of the
spin-dependent shift produced by the Zeeman force. Further,
in the presence of repulsive atom-atom interactions, which
broaden the initial spatial distribution of the BEC [14] and
correspondingly shrink the initial momentum distribution (see
also Sec. IV), the δ-kick-cooling procedure may even not be
required to resolve several lattice sites in quasimomentum
space.

To study the behavior of the quantum walker under
realistic experimental conditions, we numerically integrate the
time-dependent Schrödinger equation by the split-step finite-
difference propagation method [48], assuming the following
parameters of the optical lattice: dL = 532 nm and V0 ≡
V/ER = 20, with the recoil energy ER = (h̄kR)2/2M for
kR = π/dL. For 87Rb atoms, these lattice parameters result
in a nearly photon negligible scattering rate of 0.015 s−1.
We adopt rescaled units for quasimomentum k and time
t by defining k0 ≡ k/kR and t0 ≡ ER t/h̄, respectively. In
the rescaled units, the Zeeman force and the step size in
the Brillouin zone read F0 ≡ FdL/ER and 	k0 ≡ 	k/kR =
F0 τ0/π , respectively, with τ0 ≡ ER τ/h̄. For our simulations,
we choose F0 = 0.2, which is in the typical range of previous
experiments [19,42–46,49,50], and a longitudinal trap fre-
quency ωx = 2π × 10 Hz, which is applied in the preparation
stage. Moreover, in order to accommodate the entire quantum
walk within the first Brillouin zone, we choose the duration
of a step (and thus the step size 	k0) such that j 	k0 = 2j/n

equals one, with j being the number of steps. Our numerical
simulations are based on 87Rb atoms. However, the choice
of the atomic species and other details of the implementation
are not crucial, as long as the parameters remain comparable
in the rescaled units, which are marked in the text with the
subscript index 0. The results of the numerical simulations of
the foregoing protocol are shown in Fig. 3(b) for j = 10 steps
of a Hadamard quantum walk, with the initial internal state

chosen in a symmetric superposition. The numerical results
show an excellent agreement with the theory of discrete-time
quantum walks [9]; this is even the case for lattice depths as low
as V0 = 2 (not shown in the figure), provided that dynamical
phases φD

±(k) are taken into account in the theoretical model.
For even shallower lattices, the agreement degrades since the
condition V0 	

√
32F0/π2 for no Landau-Zener tunneling is

not fulfilled [20].
Moreover, the numerical simulations show that the quasi-

momentum distribution is insensitive to x̄ provided that
quasimomentum remains confined within the first Brillouin
zone, j � n/2. Further numerical simulations carried out with
j > n/2 and x̄ 
= 0 also exhibit a perfect agreement (not
shown in the figure) with the theoretical model of discrete-
time quantum walks, corrected to included twisted boundary
conditions with twist phase ϕ = 2π x̄/dL.

A crucial condition for future experiments investigating
long-range atom-atom interactions beyond the mean-field
regime is that the atom density in real space is sufficiently high,
and that it remains constant during the entire quantum-walk
sequence. These two conditions are fulfilled in our setup
where tunneling of matter waves is frozen for sufficiently
deep lattice potentials, V0 � 20. The animation provided
as Supplemental Material [47] shows for V0 = 20 that the
probability distribution in position space remains unaffected
during the quantum walk.

D. Implementation of the Zeeman force

A force acting on the atoms can be realized experimentally
by gravity [51–53], accelerating the standing wave [19,42–
46,49,50], state-dependent optical potentials [8,54–56] or
magnetic field gradients [57–59]. Since gravity and lattice
accelerations exert equal forces for both spin states, they are
not suited for our purpose here.

State-dependent optical potentials do instead discriminate
the Zeeman magnetic levels of the atom because they act as
an effective magnetic field whose strength depends on the
polarization ellipticity [54]. Thus, an extra light field super-
imposed to the optical lattice, which exhibits a polarization
gradient from right- to left-handed circular polarization, can
be employed to realize the Zeeman force in Eq. (1). Such
optical potentials can be switched on and off on the time
scale of microseconds, thus allowing one to apply the coin
operation while the external degree of freedom does not evolve;
motional excitations produced by the instantaneous switching
of the Zeeman force are suppressed when the coin duration is
much shorter than the energy band gap ≈πτ0/

√
V0, which can

be realized using fast coin pulses. However, state-dependent
optical potentials require the laser wavelength to be tuned
sufficiently close to an atomic resonance in order to resolve the
intrinsic spin-orbit interaction in the excited states of the atom,
which is the mechanism underlying their state-dependent
action [60,61]; to mitigate the effects of off-resonant scattering
of photons, which is a possible source of decoherence [6],
among alkali atoms, heavier ones are more favorable because
of their stronger intrinsic spin-orbit coupling.

As an alternative to state-dependent optical potentials,
magnetic field gradients can also be used to produce Zeeman
forces directed in opposite directions for the two hyperfine
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states. The use of magnetic field gradients has the advantage
that a only single light field, namely, that of the optical lattice,
is required to perform quantum walks, and that its wavelength
can be very far detuned from any atomic resonance, resulting in
a very little off-resonant scattering of photons. The downside
is that they cannot be switched on and off rapidly. For our
proposal, however, it is sufficient to switch on and off the
force at the beginning and the end of the walk, as shown in
Fig. 3, provided that the duration of the coin toss is much
faster than the duration τ of the state-dependent shift. This is
certainly doable by choosing a long τ of the order of 100 μs
as compared to the duration of a microwave pulse, which can
be as short as just a few microseconds [10,13].

To use a constant Zeeman force, however, one must also
ensure that the pulses act resonantly (i.e., uniformly) for
all sites over which the BEC extends despite the spatially
dependent detuning caused by the magnetic field gradient. We
estimate this detuning across the BEC as follows: The number
n of sites in the Brillouin zone depends on the separation
	k between two adjacent sites, n = 2π/(dL 	k); in order to
resolve n sites in the reciprocal space, the BEC must extend
in real space, at least, over a number of optical-lattice sites
of the same order n, meaning that the frequency detuning
caused by the Zeeman force across the BEC is of the order of
F ndL/h̄ = 2π/τ . Hence, pulses much shorter than τ do not
resolve such detuning and act resonantly over the whole extent
of the BEC.

We also note that short pulses, lasting just a few mi-
croseconds, could excite higher bands of the lattice since
they are spectrally broad and do not resolve the small energy
gaps separating the optical lattice bands. To circumvent
this problem, momentum transfer during pulses must be
suppressed, either by using microwave radiation or by using
copropagating Raman laser beams. However, suppressing
momentum transfer does not suffice alone to prevent excitation
of higher bands. The Zeeman force, in fact, distorts the two
optical-lattice potentials trapping the two internal states in a
different manner, resulting in a nonvanishing coupling between
Bloch eigenstates belonging to different bands [62,63]. For
sufficiently deep lattices, the effect of the Zeeman distortion is
chiefly a state-dependent shift of the trap minimum, which
we estimate, by approximating the lattice potential with a
harmonic trap, to be about F0/(π2 U0) in units of dL. Using
numerical integration of the Schrödinger equation, we confirm
the validity of this simple estimate; moreover, we compute
by way of example for V0 = 20 the overlap integral after
adiabatically switching on the Zeeman force between two
Bloch eigenstates corresponding to the two different internal
states. We obtain that the squared modulus of the overlap
integral, |I|2, amounts to ≈1–4 × 10−5 and ≈1–3 × 10−3

for F0 = 0.2 and F0 = 2, respectively. Correspondingly, each
coin pulse has a probability equal to 1 − |I|2 to excite
some higher band, limiting the number of coherent steps to
about 1/|I|2.

To partially overcome this limitation, one can use a state-
dependent optical lattice, which allows the optical-lattice
potentials for the two internal states to be displaced by an
amount equal in strength, but opposite in direction to the
differential displacement produced by the Zeeman force. This
countermeasure requires choosing the quantization axis along

the lattice direction and setting the polarization of the two
counterpropagating laser beams forming the optical lattice
potential in a lin-θ -lin configuration [63], which can be readily
realized using static wave plates. With reference to the same
example of 87Rb atoms, the Zeeman differential displacement
is counteracted by choosing θ equal to 12◦ and 66◦ for the
two cases of the Zeeman force considered above, respectively,
resulting in a significantly reduced probability � × 10−5 to
excite higher bands for both cases.

We conclude this section by discussing the requirements
on the stability of the Zeeman force that are necessary to
prevent decoherence of the discrete-time quantum walk. Our
discussion focuses on the implementation of the Zeeman force
by a magnetic field gradient; analogous considerations may
be derived for the implementation by state-dependent optical
potentials.

We assume that the magnetic field originates from the
superposition of a homogeneous field B0, typically of the
order of 1 G, which defines the quantization axis along
the direction of the optical lattice, and a quadrupole field
producing a magnetic field gradient along the same direction.
With reference to the experimental parameters considered in
Sec. II C, a force F0 = 0.2 corresponds to a field gradient B ′
of about 10 G/cm for 87Rb atoms.

Fluctuations of the gradient strength B ′ result in fluctuations
of the force F . These fluctuations cause detrimental variations
of the step size, which effectively lead to spin dephasing. In
the first section of the Appendix, we estimate the decoherence
probability per step p. We find that it is related to the relative
stability of the field gradient, p ≈ 〈δB ′2〉/〈B ′〉2. Probabilities
as low as 10−5 should be achievable with ordinary laboratory
equipment.

Fluctuations of the quantizing magnetic field B0, as well as
of stray magnetic fields along the quantization axis, cause
stochastic fluctuations of the Zeeman phases in Eq. (4),
which lead to dephasing. In addition, fluctuations of the
zero-field position of the quadrupole field also contribute to
dephasing since their effect can be represented as an additional
fluctuating magnetic field. We estimate the effect of these
fluctuations during shift operations in the second section of the
Appendix. We find that suppression of stray magnetic fields
and highly stable current sources may be needed to prevent
decoherence. With state-of-the-art magnetic-field suppression
techniques [64,65], our estimates show that >100 coherent
quantum-walk steps should be achievable. In the third section
of the Appendix, we also compute the effect of magnetic-field
fluctuations on the coin operation. We find that decoherence
during the coin operation can be entirely neglected for short
pulses.

Note also that slowly fluctuating magnetic fields (i.e.,
slow drifts) characterized by frequencies much smaller than
the inverse of the duration of a quantum walk (typically a
few milliseconds) produce no measurable effect on the local
properties of a quantum walk on a line [6] because the resulting
Zeeman phases [see Eq. (4)] can be removed by a suitable
gauge transformation [26]. However, this is not the case for
quantum walks in quasimomentum space, which take place on
a ring geometry instead of a line. In such a multiply connected
lattice, even slow drifts can affect coherences once the walker
has wound around the Brillouin zone since the twist phase ϕ
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[see Eq. (7)] can vary from one realization of the quantum
walk to the next. Very slow drifts on the time scale of several
minutes, or even hours, can be suppressed by calibrating
the magnetic-field gradients, for example, by spectroscopic
measurements of the atomic hyperfine transitions [66].

III. LONG-WAVELENGTH LIMIT AND DIRAC EQUATION

A remarkable characteristic of the proposed setup is that
it allows one to tune the lattice constant of the effective
space of the walk by simply choosing the step size 	k. This
can be exploited to simulate “relativistic” continuous-time
quantum walks, which are realized in the limiting case when
the Zeeman force and the coin pulses act simultaneously. For
sufficiently deep lattices, the dynamics is then described by
the one-dimensional Dirac equation,

HDirac ≈ F σz(ih̄∂k) + h̄�R σx/2, (9)

where �R is the Rabi frequency of the coin operation, which
in this case is constantly active. Moreover, by varying 	k

and the coin angle α, one can study the transition of discrete-
time quantum walks to the long-wavelength limit of the Dirac
equation [67]. In the future, it will be interesting to investigate
the nonlinear dynamics of the Dirac equation beyond the cases
studied in quantum field theory of the Thirring and Gross-
Neveu model [68], by including long-range interactions.

IV. WEAK NONLINEARITY

We study the effect of weak nonlinear interactions on the
quantum walk of a condensate in quasimomentum space. In our
simulations, we use similar parameters as above in Sec. II C,
i.e., dL = 532 nm, V0 = 10, and F0 = 0.2. Similar values were
used as well, for instance, in the experiments reported in
Refs. [42,43] employing 87Rb atoms for which the value of
the scattering length is ≈ 5.3 nm.

For the small nonlinearities and a quasi-one-dimensional
tube geometry considered here, it is sufficient to use a one-
dimensional effective theory, which is obtained by rescaling
the nonlinear coupling constant, as demonstrated in the
pioneering paper of Olshanii [69]. For simplicity, here we
assume that the scattering lengths a1 = a2 = a12 ≡ as are
equal for all combinations of the two internal states, which
is a very good approximation for 87Rb atoms. As we focus
here on the weakly interacting regime, this assumption will
not affect our conclusions. Hence, the dynamics of the spinor
condensate can be described by the following time-dependent
Gross-Pitaevskii equation simplified to one dimension:

ih̄
∂

∂t
�ψ(x,t)

=
[
− h̄2

2M

∂2

∂x2
+ V sin2

(
πx

dL

)
− F xσz + 1

2
Mω2

xx
2

+ g1D(|ψ1(x,t)|2+|ψ2(x,t)|2)

]
�ψ(x,t) , (10)

where we assume cylindrical symmetry as realized, e.g., in
Ref. [70], and x̄ = 0 for simplicity. The nonlinearity pa-
rameter g1D = 2 h̄as ωrN accounts for the interaction-induced
nonlinearity, which depends on the number of atoms N
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FIG. 4. Quasimomentum distributions normalized to unity. (a)
Bose-Einstein condensate prepared initially in the ground state of
an optical lattice, i.e., at the minimum of the band structure, where
the black dotted line is computed without interactions, whereas the
blue solid and red dash-dotted lines are obtained for repulsive and
attractive nonlinearity, respectively. (b) Quantum-walk distribution
obtained after ten steps for linear evolution, repulsive and attractive
interactions integrating Eq. (10). All parameters are given in the text.
Momenta are scaled in units of the recoil momentum pR = h̄kR.

and on the frequency ωr of the radial trap. This expression
is valid for h̄/(Ma2

s ) 	 ωr 	 ωx . In our simulations, we
chose ωr = 2π × 100 Hz, ωx = 2π × 2.5 Hz. The harmonic
confinement in both longitudinal and radial directions can be
maintained during the walk evolution without any noticeable
effect for a walk of j = 10 steps, which we consider here. The
Gross-Pitaevskii in Eq. (10) is numerically integrated using
the finite-difference propagation method, adapted to include a
predictor-corrector estimator to reliably evaluate the nonlinear
interaction term [71,72]. In the simulation, the coin tosses are
assumed to be instantaneous or, at least, much faster than τ .

The results of the numerical simulations of a discrete-time
quantum walk with weak nonlinearities are presented in
Fig. 4. The simulated quasimomentum distribution shows
that tens of steps of a quantum walk should be well within
the reach of present BEC experimental apparatuses. These
results are obtained for relatively small nonlinearities, with
aS = ±5.3 nm and about 100 atoms per tube for the positive
and 10 atoms for the negative value of the scattering length, i.e.,
for repulsive and attractive interactions, respectively; stronger
nonlinearities would require other integration methods suited
for strongly correlated quantum systems.

Indeed, our simulations show that the main effect of weak
nonlinearities is merely influencing the width of the initial mo-
mentum distribution. Interestingly, the repulsive nonlinearity
enhances the effective spatial resolution of the quantum walk
since the momentum peaks tend to be narrower (as opposed to
the distribution in real space, which is broadened). As seen in
Fig. 4, this effect can be used to prepare narrower initial peaks
and thereby to host a higher number of sites in the Brillouin
zone. In contrast, even very weak attractive nonlinearities
produce the opposite effect of decreasing the visibility of the
peaks by broadening them substantially. This is related to the
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tendency to collapse in real space, resulting in an instability of
the condensate for attractive interactions [72,73].

V. CONCLUSIONS AND OUTLOOK

Our work shows that atoms can be frozen in real space
using a sufficiently deep optical lattice, and yet can perform
a discrete-time quantum walk in reciprocal space. A robust
protocol to realize quantum walks in quasimomentum space
is provided, including estimates of parameters and the numer-
ical simulations based on realistic experimental conditions.
Employing an optical lattice to freeze the atoms’ motion in
real space holds promise to overcome present decoherence
limitations of momentum-space experiments with nontrapped
particles, which suffer from spatial separation of wave packets
possessing different momentum components [74].

The present work only focuses on a weakly interacting
BEC, which is described by a one-dimensional single-mode
mean-field approach. In this regime, we observe that the
different quasimomentum peaks remain well separated and
their relative populations are unaffected by interactions.

An interesting open question concerns the effect of stronger
atom-atom interactions. Contact interactions in real space
are expected to produce infinitely long-range effects in
quasimomentum space. This regime completely differs from
that of strongly correlated quantum walks in real space
[11,16,75]. In momentum space, the long-range interactions
may not just dephase the ideal walk considered here, but
might lead to novel topologically ordered states and to other
interesting mechanisms, for example, to bias or to steer the
evolution.

As suggested in Ref. [17], effective finite-range interactions
may emerge as a result of quantum statistics (i.e., exchange
interaction) even when the scattering lengths are isotropic, as
is the case of 87Rb atoms. Such a study of interaction effects
calls for a more complex theory allowing one to capture strong
correlations in the system, possibly including more degrees of
freedom such as spin mixtures.

In addition, we suggest the possibility to realize discrete-
time quantum walks with more than two internal states. This
could be achieved with the proposed setup by exploiting a
larger manyfold of Zeeman states, where the state-dependent
shift operation displaces the atoms by a discrete number of
sites that is proportional to the Zeeman quantum number.
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APPENDIX: DECOHERENCE ANALYSIS

In this appendix, we estimate the decoherence effects
produced by a fluctuating Zeeman force. We focus here on
the implementation of the Zeeman force by a magnetic-field
gradient; however, similar results can be obtained for the case
in which the Zeeman force is implemented by state-dependent
optical potentials; see Sec. II C.

1. Fluctuating step size

Fluctuations of the Zeeman force F , here denoted by δF ,
make the step size become a stochastic quantity,

∫ τ

0
dt [F + δF (t)]/h̄ = 	k + δk, (A1)

where δk is the fluctuating component characterized by a zero
mean value and by a variance

〈δk2〉 =
∫ ∞

ωc

dω πf (ω)SF (ω)τ/h̄2. (A2)

In this expression, ωc is a low-frequency cutoff amounting
approximately to the inverse of the overall duration of a
quantum-walk experiment (or, more generally, the inverse
of the time between two subsequent calibration operations
of the field gradient), SF (ω) is the noise spectral density
normalized such that

∫ ∞
ωc

dω SF (ω) = 〈δF 2〉 is equal to the
variance of δF , and f (ω) = τ sinc2(ωτ/2)/π is the win-
dow function normalized to unity,

∫ ∞
0 dω f (ω) = 1. The

window function makes the step size insensitive to force
fluctuations δF occurring at frequencies much higher than
1/τ , since these fluctuations produce a vanishing effect on
average.

To estimate the decoherence effect of the fluctuating step
size, we assume that each quasimomentum peak of the quan-
tum walk in reciprocal space is characterized by a Gaussian
wave function with a width of σk ≡ 2π/(βn), where n is the
number of sites in reciprocal space and β > 1 is a small number
denoting how well a single site is resolved. Thus, the overlap
between the wave function shifted by δk in quasimomentum
and the original wave function is reduced to less than one,
with its modulus squared being equal to exp[−δk2/(4σ 2

k )] ≈
1 − δk2/(4σ 2

k ). This decoherence process can be effectively
modeled as spin dephasing, with a decoherence probability
per step equal to p ≈ 〈δk2〉/(4σ 2

k ) + O((〈δk2〉/σ 2
k )4) in the

limit of fluctuations with a small rms deviation.
For a magnetic-field gradient producing the force F , we

expect that fluctuations of the force predominantly occur at fre-
quencies smaller than 1/τ , with τ being of the order of 100 μs;
see Sec. II C. We can thus replace f (ω) in Eq. (A2) with its dc
value, f (0) > f (ω), to obtain an upper bound for the decoher-
ence per step, p � (β/2)2 〈δF 2〉/〈F 〉2 = (β/2)2〈δB ′2〉/〈B ′〉2,
where B ′ denotes the strength of the magnetic-field gradient.
From this result, we obtain that a decoherence probability per
step of p = 10−5 corresponds to relative fluctuations of the
field gradient of about

√
〈δB ′2〉/〈B ′〉 ≈ 0.4%. Because such

a gradient stability can be achieved with ordinary laboratory
equipment, it can be concluded that decoherence by magnetic-
field gradient fluctuations can be neglected in experiments.

2. Decoherence during shift operations

At the location of atoms, a nonvanishing magnetic field
is present to define the quantization axis. During the state-
dependent shift operation, fluctuations of the magnetic field
along the quantization axis result in the accumulation of a
stochastic relative phase between the two internal states, which
causes decoherence by spin dephasing [6]. The overall relative
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phase, which is accumulated in a shift operation, amounts to

−
∫ τ

0
dt 2F (t)x̄(t)/h̄ = φ̄ + δφ̄, (A3)

where φ̄ ≡ −2〈F x̄〉τ/h̄ is the Zeeman contribution to the
dynamical phase difference φD

+(k) − φD
−(k); see Eq. (4).

We assume that the magnetic field along the quantization
axis takes the form of B(x) = (x − ξ )B ′ + B0. Such a field
produces the Zeeman potential introduced in Eq. (1), −(x −
x̄)Fσz = (x − x̄)B ′μBmF gF σz, with x̄ = ξ − B0/B

′ + �.
Here, B0 is the strength of a homogeneous magnetic field, B ′
is the strength of the magnetic-field gradient, ξ is the zero-field
position of field gradient, � is a constant determined by the
frequency of the rotating frame, μB is the Bohr magneton,
and ±gF mF is the product between the Landé factor and the
magnetic quantum number for the two internal states. The
parameter � is chosen such that x̄ lies close to the center of
the BEC to allow the coin pulses to act resonantly at all sites
over which the condensate extends; see Sec. II D.

The magnetic-field gradient is generated by a quadrupole
magnetic field produced by, e.g., a pair of anti Helmholtz
coils or by a permanent quadrupole magnet. We assume that
the zero-field position ξ of such a quadrupole field lies, by
construction, at some point close to the center of the BEC. In
reality this point is not fixed, but can fluctuate with respect
to the optical lattice where the atoms are trapped. These
fluctuations can be accounted for by including them in δφ̄,
as shown below.

The homogeneous magnetic field B0, which is used to
define the quantization axis, is generated by a pair of Helmholtz
coils and is assumed to be of the order of 1 G, about two orders
of magnitude higher than the field strength B ′ξ produced by
the field gradient.

The accumulated relative phase δφ̄ is a stochastic quantity
with variance

〈δφ2〉 =
∫ ∞

ωc

dω πf (ω)SB ′x̄(ω)τ (2μBmF gF /h̄)2, (A4)

where SB ′x̄(ω) is the noise spectral density of B ′x̄. Such a
spectral density is the sum of two contributions, SB ′x̄(ω) =
SB0 (ω) + SB ′ξ (ω), with SB0 (ω) originating from fluctuations
of the quantizing magnetic field B0, with normalization∫ ∞
ωc

dω SB0 (ω) = 〈δB2
0 〉, and SB ′ξ (ω) originating from fluctu-

ations of B ′ξ , with related normalization.
Assuming a relative stability at around 10−5 for the current

sources generating the quantizing magnetic field, we infer

a rms deviation of the magnetic field at around
√

〈δB2
0 〉 ≈

10−5〈B0〉 ≈ 10 μG. Note that under typical laboratory condi-
tions, SB0 (ω) also contains a contribution from fluctuating stray
magnetic fields oriented along the quantization axis, which can
be as large as the contribution from fluctuations of the current
sources [65]. By suppressing stray magnetic fields using a
magnetic-field shielding and by generating the quantizing
magnetic field with permanent magnets, a coherence time of a
Zeeman qubit (without spin echo) of 300 ms has been reported

[65], which corresponds to
√

〈δB2
0 〉 ≈ 0.1 μG.

Further, SB ′ξ (ω) = B ′2Sξ (ω) + ξ 2SB ′ (ω) is the sum of two
contributions originating from fluctuations of ξ and B ′,

respectively. Because the average field 〈B ′ξ 〉 is two orders
of magnitude smaller than 〈B0〉 (see above), we obtain
ξ 2SB ′ (ω) ≈ 10−4SB0 (ω) under the assumption that the current
sources generating the dipole and quadrupole fields have the
same relative stability.

Very low-frequency fluctuations (i.e., slow drifts) of ξ can
be suppressed by calibrating the magnetic-field gradient, for
example, by means of spectroscopic measurements of the
atomic hyperfine transitions. Low-frequency fluctuations can
be suppressed by actively stabilizing [76] the position of
the optical standing wave producing the lattice with respect
to the position of the coils producing the field gradient;
measurements [76] show that the residual fluctuations of
ξ have a rms deviation

√
〈δξ 2〉 � 100 pm, where 〈δξ 2〉 is

experimentally obtained by integrating Sξ (ω) over a 10 MHz
bandwidth. Hence, we expect that fluctuations of ξ result in
a rms deviation of B ′√〈δξ 2〉 � 0.1 μG, where we assume
B ′ = 10 G/cm; see Sec. II D.

Thus, if the noise spectrum SB0 (ω) is concentrated at
frequencies smaller than 1/τ , we obtain an upper bound of
the phase deviation, 〈δφ2〉 � (2μBmF gF τ/h̄)2〈δ(B ′x̄)2〉, by
replacing f (ω) with its dc value in Eq. (A4). Note that for even
longer τ exceeding the correlation time of B ′x̄, the window
function f (ω) modifies the scaling behavior of 〈δφ2〉 from
〈δφ2〉∝ τ 2 to 〈δφ2〉∝ τ . Coherences [6,65] are suppressed
by a factor C = 〈exp(i δφ̄)〉, which can be computed as
exp(−〈δφ̄2〉/2) provided that the relative phase δφ̄ is Gaussian
distributed [which is the case when the noise spectral power
Sx̄(ω) is not concentrated in a few single-frequency peaks].
Hence, we estimate that the number of coherent steps is of the
order of

h̄

2μBmF gF τ
√

〈δ(B ′x̄)2〉
≈ 103, (A5)

based on the assumptions of
√

〈δ(B ′x̄)2〉 ≈ 1 μG and τ =
100 μs; see Sec. II C.

3. Decoherence during coin operations

Errors can also occur during the coin operation because
of fluctuations of magnetic fields. To evaluate coin errors,
we have computed the evolution of the internal state for a
Hadamard pulse in the presence of a fluctuating stray magnetic
B field which is characterized by a noise spectral density
SB(ω). The calculation is carried out analytically up to the
second order in the amplitude of the fluctuating magnetic field
[i.e., first order in SB(ω)]. By solving the evolution for an
arbitrary initial density matrix operator, we can determine the
quantum process matrix and the operator-sum representation
of the decohered coin operation in terms of the Kraus operators.
The details of the calculation will be reported elsewhere. Here,
we summarize the main result.

From the computed expression of the quantum process
matrix, we obtain the process fidelity [77],

F 2
pro = 1 − 2

(
μBmF gF

h̄�R

)2∫ ∞

ωC

dω SB(ω) g(ω/�R),

with g(r) = 1 + r2 − 2r sin(πr/2)

(1 − r2)2
, (A6)
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where the r = ω/�R is the ratio between frequency of
the fluctuating magnetic field and the Rabi frequency �R

associated with the Hadamard operation. Note that g(ω/�R),
as a function of ω, has a width of about �R , its maximum
at zero frequency, and its integral

∫ ∞
0 dr g(r) = π2/4. The

process fidelity is related to the average fidelity, F 2
ave = (1 +

d F 2
pro)/(d + 1), where d = 2 and the average takes place over

all pure input states. Moreover, the process fidelity measures
the distance between the physical (decohered) process and the
ideal unitary transformation, providing us with an upper bound
[77] on the probability of an error by the coin operation, p =
1 − F 2

pro. Assuming
√

〈δB2〉 = 1 μG (see the second section
of the appendix above) and �R = 2π × 200 kHz, we obtain
that the error probability p � 10−10 is vanishingly small.
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