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Balanced gain and loss in Bose-Einstein condensates without PT symmetry
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Balanced gain and loss renders the mean-field description of Bose-Einstein condensates PT symmetric.
However, any experimental realization has to deal with unbalancing in the gain and loss contributions breaking
the PT symmetry. We will show that such an asymmetry does not necessarily lead to a system without a stable
mean-field ground state. Indeed, by exploiting the nonlinear properties of the condensate, a small asymmetry can
stabilize the system even further due to a self-regulation of the particle number.
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I. INTRODUCTION

Since the discovery of real eigenvalues in a non-Hermitian
PT -symmetric Hamiltonian by Bender and Boettcher in 1998
[1] a lot of work was put into replacing the usual concept
of Hermitian quantum mechanics with the more general
condition of PT symmetry [2–4]. In the course of the search
for experimental realizations, the attention shifted to optical
systems, where PT symmetry is accomplished by a positive
and negative imaginary refractive index that in the equations
effectively models a gain and loss of the field strength [5–9].

In fact the first realizations succeeded in two coupled
optical waveguides. In the first experiment two different
absorption strengths were used to create passivePT symmetry
[10], whereas in a subsequent realization one waveguide was
actively pumped to amplify the field strength [11]. This showed
that while the original concepts of PT symmetry focused on
fundamental changes in the nature of quantum mechanics,
its first realizations succeeded in an effective mean-field
description, which again attracted further theoretical and
experimental efforts [12,13]. Another approach towards a
realization lies in purely electronic frameworks [14,15].

With the success of PT symmetry in these mean-field
systems in mind it is quite comprehensible that Bose-Einstein
condensates should also qualify for a realization [6]. In this
many-particle system, the in- and out-coupling acts directly
on the particle density, increasing or decreasing the number of
particles. This interpretation of particle loss and gain recently
led to the first real quantum simulation of a PT -symmetric
system using a 6Li Fermi gas [16]. Numerical calculations
in spatially extended potentials confirm that condensates are
in principle able to provide all the effects known from linear
optical realizations [17–21]. Proposals for an experimental
realization in analogy to two optical waveguides have been
made. They include embedding a double-well system in a
longer chain of wells with time-dependent coupling param-
eters [22], and the description of two separate condensates
exchanging their particles [23]. Furthermore, particle gain and
loss can be realized by coupling particles into and out from the
surrounding environment. Both processes have already been
realized experimentally: Out-coupling by a focused electron
beam [24] and in-coupling by letting atoms fall into the
condensate from a second condensate [25].
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In real systems a perfect control of the in- and out-coupling
of particles is not possible. Therefore, asymmetries in the
imaginary potential have to be expected, i.e., the system is not
exactly PT symmetric. Even though PT symmetry is neither
a necessary nor a sufficient condition for real eigenvalues
[4] and its typical properties are also found in other systems
[26,27], it is not to be expected that such a perturbation leaves
the stationary states intact. However, we will show that by
increasing the in- and out-coupling parameter to a specific
strength, one can restore a single real eigenvalue.

This paper is organized as follows. We start with a two-
mode approximation, analyzing its eigenvalues and stability
in Sec. II. Its dynamical properties and a comparison with the
PT -symmetric double-well system are investigated in Sec. III.
Afterward, the discussion is extended to a spatially extended
potential in Sec. IV.

II. STATIONARY SOLUTIONS

A Bose-Einstein condensate allowing for asymmetry in the
gain and loss of particles can be described by the Hamiltonian

H =
(

iγ (1 + aI ) −1

−1 −iγ (1 − aI )

)
, (1)

where aI ∈ R is the asymmetry between gain and loss and
γ is the dimensionless overall strength of the in- and out-
coupling. The relative particle loss in the second well reads
2γ /τ , where the time scale τ is fixed by the size and shape
of a trapping potential. Using the double-well experiment of
[28] as an example, an approximate time scale of τ ≈ 30 ms is
found. Comparing this time scale to the losses realized in [29]
shows, that such particle losses are well within experimental
possibilities.

For aI = 0, thePT -symmetric two-mode model [17,19,30]
is restored, where in the first well particles are injected into
the system and particles are removed from the second well.
In this system the ground and first excited state are PT
symmetric and have real eigenvalues up to an exceptional
point at which eigenstates and eigenvalues coalesce and vanish.
From this point twoPT -broken states with complex-conjugate
eigenvalues emerge.

This behavior changes drastically for aI �= 0. While the
eigenvectors are not influenced by the asymmetry in the
imaginary part, the eigenvalues of the Hamiltonian (1)
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now read

μ± = iγ aI ±
√

1 − γ 2. (2)

Even though the second part of this equation shows the
described behavior from the PT -symmetric case, the asym-
metry aI generates a purely imaginary shift rendering both
eigenvalues complex, i.e., they are no longer real stationary
solutions of the Schrödinger equation.

One can easily check that one of the eigenvalues reaches
Im μ = 0 at a specific parameter value γ0 =

√
1/(1 − a2

I ), thus,
the corresponding eigenvector becomes stationary. We stress
that at this intersection point γ0 the other eigenstate of the two-
mode system has the eigenvalue μ = 2iaI which means that it
grows exponentially for aI > 0, for which the particle gain is
stronger, and decays for aI < 0. The actual eigenstate is there-
fore stable only if an asymmetry is chosen in such a way that
the particle loss is stronger than the gain. It can be shown that
this requirement is, in fact, mandatory for spatially extended
systems, since a stronger particle gain would enhance any
high-energy perturbations that are equally strong in both wells.

However, a major problem remains. The actual stationary
state exists only at one specific parameter γ0 for a given
asymmetry aI . This leaves the experimental realization with
the same problem as before since a small deviation from the
desired gain or loss of particles could force the particle number
to grow exponentially. However, the problem can be overcome
by the particle-particle interactions present in a Bose-Einstein
condensate if they are manufactured in such a way that a growth
or decay in the particle number stabilizes the state.

Introducing a nonlinear contact interaction term leads to
the two-mode Gross-Pitaevskii equation,

2∑
j=1

Hijψj + U |ψi |2ψi = μψi, (3)

where U specifies the strength of the interaction, which can
take values from 0 to 2000 [31]. Such a contribution renders
the spectrum dependent on the norm of the wave function.
Thus, the parameter γ , for which the stationary state is found,
changes with a growth or decay of the wave function. In the
PT -symmetric case, aI = 0, analytical solutions were given
by Graefe et al. [30]. With U > 0, the PT -broken states
no longer bifurcate at γ = 1, at which the PT -symmetric
states vanish. Instead, they emerge at an earlier point, γ =√

1 − U 2/4, from the excited state. It is a solid hypothesis
that a similar effect can be expected for aI < 0, where
alongside the PT -broken states, also the intersection point γ0

moves to lower values. This is confirmed by Fig. 1(a), which
shows the eigenvalue spectrum for the nonlinearity parameters
U = 0,0.5,1, and 1.5. In these calculations, the asymmetry
aI = −0.2 was used.

Not only is the aforementioned hypothesis confirmed but
the results already show that the system cannot be stable:
Consider an experimental system in which the non-Hermiticity
or gain-loss parameter γ is chosen larger than γ0. The
ground state with Im μ > 0 is then growing instead of staying
stationary. This effectively increases the nonlinearity and shifts
the intersection point of γ , at which the true stationary state
with Im μ = 0 can be found, to even lower values. The distance
between the chosen and the correct value of γ increases, and
thus the error is amplifying itself due to the nonlinearity.
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FIG. 1. (a) Imaginary part of the nonlinear spectrum of the
asymmetric double well of Eq. (1) with aI = −0.2. For stronger
nonlinearity parameters U the upper branches intersect the axis
Im μ = 0 at lower parameters γ . (b) The imaginary part of the
Bogoliubov–de Gennes eigenvalues ω are given for the upper branch,
which contains the stationary state. In the nonlinear case this state is
unstable. (c) For the system described by Eq. (4) with aR = −0.15,
i.e., the case of asymmetric on-site energies, this behavior changes.
Stronger nonlinearity parameters U now lead to upper branches that
intersect the axis Im μ = 0 at larger parameters γ . This holds up
to U ≈ 1.5. For even stronger nonlinearities, the intersection with
the axis again moves to lower values of γ . (d) The appropriate
stability eigenvalues of the Bogoliubov–de Gennes equations are now
negative imaginary numbers, which shows that the stationary state is
a dynamical attractor.

This instability can also be shown numerically using the
corresponding Bogoliubov–de Gennes equations [32]. The
eigenvalues of this system of equations describe how small
perturbations of the eigenstate behave. Positive imaginary
parts show an unstable behavior, while negative imaginary
parts characterize a dynamical attractor. These eigenvalues are
shown in Fig. 1(b) for the PT -broken state that intersects with
Im μ = 0 at γ0. In agreement with our prediction there is a
positive imaginary part and the states are unstable.

The influence of the nonlinearity in this simple model
not only fails to stabilize the stationary state against small
deviations from γ0 but introduces an instability against norm
oscillations. To get rid of this additional instability the opposite
behavior is required: A stronger nonlinearity must reduce the
imaginary part of the chemical potential. Therefore, we have to
invert the movement of the intersection point γ0 in the spectrum
such that it is shifted to higher parameters γ if the interaction
is increased, and vice versa.

To influence the overall form of the spectrum a new
parameter has to be introduced. The inversion of the movement
of the intersection point can be achieved by introducing an
additional asymmetry, now in the real part of the potential. Fig-
ures 1(c) and 1(d) show the same values as Figs. 1(a) and 1(b)
but for the Hamiltonian

H =
(

iγ (1 + aI ) + aR −1

−1 −iγ (1 − aI ) − aR

)
, (4)

with aR = −0.15 and aI = −0.2.
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Introducing an increased on-site energy in the loss and
a decreased energy in the gain well, one gets rid of the
exceptional point. This can be understood intuitively since
the probability densities in the two wells now differ for the
ground and excited states, i.e., either the gain or the loss well
is favored. However, the two previously PT -broken states and
the intersection point are not lost. Instead, the ground state μ−
turns into the upper branch, intersects with the axis Im μ = 0,
and forms a stationary state. Since the ground state has a larger
probability of presence in the energetically lower gain well, its
out-coupling of particles is weakened and the imaginary part
of the chemical potential is shifted upward. Consequently, the
intersection point γ0 for U = 0 is shifted to a lower parameter
as compared to the case aR = 0.

In this new configuration, a repulsive interaction tends to
equalize both densities. This weakens the influence of the
real asymmetry and shifts the imaginary part of the chemical
potential down to smaller values, thus, the intersection point
moves again to larger values of γ . Now, as expected, the insta-
bility due to norm oscillations vanishes and no Bogoliubov–de
Gennes eigenvalue has a positive imaginary part. In fact, all
eigenvalues apart from the trivial solution ω = 0 describing a
phase shift have negative imaginary parts at the intersection
point, at which the stationary state with Im μ = 0 resides.
The stationary state is therefore not only stable, but acts as
an attractor. If the in- and out-coupling parameter is not at
the intersection point γ0, the wave function’s norm grows or
decays to match the appropriate interaction strength for which
γ0 = γ holds.

It is clear that the intersection point for U = 0 is the lowest
possible parameter γ for which such an attractor can be found.
If this lowest parameter is set, the wave function is attracted
to the norm 0, i.e., the condensate will completely deplete.
Note that due to the strong particle out-coupling the same
happens if even smaller values of γ are used. To determine this
threshold, the linear wave equation is solved, and one finds that
the eigenvalue of the ground state,

μ− = iγ aI −
√

1 + (aR + iγ )2, (5)

becomes real for

γ = 1 − a2
R

(
a−2

I − 1
)

1 − a2
I

. (6)

This shows that the limit γ = 0 is reached for aR =
aI /

√
1 − a2

I . Even stronger real asymmetries lead to a dom-
inance of the gain contribution and therefore to a completely
unstable system.

One remark has to be made on the choice of the parameters
aR and U . The negative sign of the parameter aR leads to the
intersection point of the eigenvalue of the ground state with
the axis Im μ = 0. Obviously, a positive sign of the parameter
would lower the particle out-coupling of the excited state.
In this case an intersection of the eigenvalue and the axis
Im μ = 0 can be achieved for attractive interaction. Therefore,
it is possible to achieve real stationary states for both U > 0
and U < 0. However, a real ground state is only possible using
repulsive interactions and aR < 0.

III. DYNAMICS AND CONVERGENCE

Each state of the non-Hermitian two-mode system is
defined by three real parameters,

ψ(R,φ,θ ) = R

(
cos (θ/2) e−iφ/2

sin (θ/2) e+iφ/2

)
. (7)

Using the norm R of the state as the radius, and the two angles
θ ∈ [0,π ] and φ ∈ [0,2π ) as spherical coordinates, every state
ψ is represented by a point in the three-dimensional real space.

Since the dynamics is not norm conserving, it is not possible
to restrict the discussion to the surface R = 1, as it was
possible for Graefe et al. [33] studying the dynamics of the
PT -symmetric Bose-Hubbard dimer. Instead, an analysis of
the complete three-dimensional dynamics as known from the
PT -symmetric double well [21] is required.

Figure 2 shows this representation for both the
PT -symmetric [Fig. 2(a)] and the asymmetric case [Fig. 2(b)]
with aR = −0.15, aI = −0.2 for the parameters U = 1 and
γ = 0.7. The dynamics of the PT -symmetric system are
defined by two types of trajectories. If the wave function lies
near a stable stationary point [near the south pole in Fig. 2(a)],
it will start to oscillate around this point forming a closed
trajectory. If it lies far away from such a stable fixed point,
the wave function will follow the PT -broken state, while
increasing its norm to infinity [21].

Studying Fig. 2(b) one immediately notices major dif-
ferences. A dynamical attractor exists near the south pole
approximately where the original stable ground state of the
PT -symmetric system resides. It lies at a norm smaller than
unity and at z > 0, favoring the gain well. This is the only stable
stationary point in Hilbert space and every trajectory must
either converge to this point or diverge to a state with a large
norm mainly localized in the gain well. Due to this, convergent
norm oscillations, which are one of the characteristic features
of PT -symmetric systems, can only be observed for a few
oscillations. The amplitude of such a norm oscillation decays
until the appropriate norm, i.e., the appropriate particle number
of the stationary state, is reached.

It is apparent that the convergent area of the asymmetric
system is similar to the area of stable oscillations in the PT -
symmetric case. The only qualitative difference between these
two cases lies in the fact that the region of the PT -symmetric
case is closed in positive and negative z direction, while its
counterpart with aR = −0.15 and aI = −0.2 includes strongly
asymmetric states with large norms from the loss well. The
exact separatrix between the divergent and the attractive region
can be calculated in a straightforward manner; however, a
three-dimensional presentation as done in Fig. 2 does not
allow a quantitative analysis. Instead, it is beneficial to restrict
the calculation to discrete interaction strengths, i.e., discrete
radii in the Bloch representation, which can be characterized
as either convergent or divergent. The results are shown in
Fig. 3, in which the PT -symmetric and asymmetric cases are
compared. In both cases, the first configurations that start to
diverge are evenly distributed between both wells and possess
currents from the loss to the gain well due to the phase dif-
ference φ ≈ 1.25π . At this point the first important difference
becomes apparent. While the PT -symmetric case becomes
unstable at R ≈ 0.6, the asymmetric case does not show any
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FIG. 2. Bloch sphere for the parameters U = 1 and γ = 0.7.
Since the radius of each state equals its norm, the transparent sphere
at radius one represents all normalized states. Large z values, which
reside on the left side of the figure, correspond to states mainly
residing in well one, i.e. the gain well, while the right side contains all
states favoring the loss well. The PT -symmetric sphere in (a) shows
stable oscillations (thin blue closed lines), while diverging trajectories
(thick red open lines) start in the loss well for t → −∞ and end up in
the gain well for t → ∞. All trajectories are symmetric with respect
to the x-y plane. In the PT -broken case in (b) this symmetry is lost.
While the upper two diverging trajectories (thick red lines) still run
from the right to the left side, the converging trajectories (thin blue
converging lines) are no longer closed.

diverging trajectories up to R ≈ 0.85. For larger radii the
divergent region grows quickly, symmetric around θ = 0.5π

for the PT -symmetric case and strongly asymmetric for the
case aR = −0.15 and aI = −0.2. The asymmetry is the second
important difference between both cases. This is essential for
large radii, as the case R = 2 demonstrates in Fig. 3. Due to
the broken symmetry, wave functions with a major occupation
in the loss well are able to converge to the attractor.

IV. EXTENDED POTENTIALS

In the previous sections we discussed a two-mode system
which describes a Bose-Einstein condensate with asymmetric
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FIG. 3. Intersection between the separatrix and spheres with
given radii in the three-dimensional Bloch space for U = 1 and
γ = 0.7. The upper panel shows the PT -symmetric case with
aR = 0 and aI = 0 where the separatrix divides the space between
stable oscillations and diverging wave functions. The lower panel
presents the asymmetric case with aR = −0.15 and aI = −0.2; due
to the attractor, no oscillating trajectories can be found and all
wave functions are either divergent or convergent. In both cases, the
separatrix reaches the lowest radii for θ ≈ 0.5π and φ ≈ 1.25π . For
higher radii, more wave functions become divergent, until only a small
region around θ ≈ 0.5π and φ ≈ 0.25π remains stable. The two
cases differ in two aspects: The asymmetric case supports convergent
wave functions with higher norms and is not symmetric to the axis
θ = 0.5π like the PT -symmetric situation.

gain and loss of particles. For a more quantitative analysis the
one-dimensional Gross-Pitaevskii equation is solved numeri-
cally exact without the restriction to a finite set of basis vectors.
The Gross-Pitaevskii equation reads[−∂2

x + V (x) + g|ψ(x,t)|2]ψ(x,t) = i∂tψ(x,t), (8)

with the strength of the nonlinear contact interaction g and the
asymmetric complex double-well potential

V (x) =
{

V1(x), x � 0,

V2(x), x > 0.
(9)

The left half of the potential, x � 0, is chosen as

V1(x) = 1
4x2 + 4e− 1

2 x2 − iγ x e−0.12x2
. (10)

It describes a single well composed of a harmonic trapping
potential and a Gaussian barrier at x = 0.

The imaginary part is positive and thus describes particle
gain. Its strength is controlled by the parameter γ . The right
well, x > 0, is modified,

V2(x) = 1
4x2 + 4 e−( 1

2 +aR )x2 − iγ x e(−0.12+aI )x2
. (11)
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FIG. 4. (a) Real part and (b) imaginary part of the spatially
extended potential [Eqs. (11) and (10)] for various asymmetry
parameters and γ = 0.05.

In this well, particle loss is applied which is weakened for
aI > 0 and strengthened for −0.12 < aI < 0. The parameter
aR shrinks or expands the barrier, i.e., lowers or raises the
potential in the loss well. Note that, as in the two-mode system,
negative values of aR and aI correspond to a stronger particle
loss and a shallower loss well. For the case aR = aI = 0,
both halves become equal and result in an extensively studied
PT -symmetric potential [19–21]. The potential is shown in
Fig. 4 for various parameters aR and aI .

First we study whether and where stable stationary states
can be found for nonvanishing asymmetries. Numerical calcu-
lations show that the conclusions from the two-mode system
hold true also for the spatially extended potential. The ground
state shows the desired behavior for repulsive interactions and
a stronger particle loss if, at the same time, the on-site energy
in the loss well is increased. We therefore set the parameters to
aR = −0.01, aI = −0.08, and g = 0.1. The parameters used
correspond to a relative imbalance of the well’s depths of about
1% and an imbalance of the particle in- and out-coupling of
about 25%. Note that, compared to the experiment [28], the
interaction strength is very weak, i.e., Feshbach resonances
[34] would have to be employed. The stationary state for each
parameter γ is calculated and its norm, i.e., the necessary
nonlinear strength to stabilize this in- and out-coupling, is
shown in Fig. 5(a). For most parameters γ two stationary states
can be found. The lower state in Fig. 5(a) has a higher stable
norm for larger values of γ , thus, stabilizing itself against
norm oscillations as discussed previously for the two-mode
model. The second branch results from the fact that stronger
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FIG. 5. (a) Norm of the stationary states and (b) their four smallest
Bogoliubov–de Gennes eigenvalues over the value of the in- and
out-coupling parameter γ for g = 0.1, aR = −0.01, and aI = −0.08.
As long as larger values of γ support a higher norm of the stationary
state (solid line), it is stable. Therefore, the upper branch (dotted line)
is unstable for all parameters γ .

interaction strengths shift the stationary state back to smaller
parameters γ . This was shown in Fig. 1(c). However, in this
range the state is not protected against norm oscillations, and
therefore is unstable.

The Bogoliubov–de Gennes eigenvalues shown in Fig. 5(b)
confirm these considerations. There are three different types
of perturbations, one of which is the trivial solution with
Im ω = 0. The second type becomes zero for a vanishing norm.
Additional studies of the data confirm that the eigenvalue is
approximately linear in the squared norm of the stationary
state and negative. This is exactly the behavior we expect from
a stable perturbation of the wave function’s norm and is only
found for the lower branch. The eigenvalues of the third type
have a finite value even for a vanishing norm. At this point,
the particle-particle interaction vanishes, i.e., the perturbation
exists even for linear systems. It corresponds to a higher
excited state which decays exponentially since the particle out-
coupling is stronger than the in-coupling into the system. Even
though only one of them is shown in Fig. 5, all such eigenvalues
are negative, i.e., they correspond to stable solutions.

To put the quantitative results into perspective, we briefly
recall the corresponding results from the PT -symmetric
system [19]. For small parameters γ , this system supports
two stationary states for a wide range of interaction strengths.
The PT -symmetry breaking occurs at γ ≈ 0.042 after which
the PT -symmetric stationary states vanish. Figure 5 shows
that the range of stable stationary ground states is 0.01 �
γ � 0.035, i.e., it includes most of the original range in the
PT -symmetric system.

As a final test the attractive behavior of the stationary state is
examined in dynamical calculations. To reduce the number of
parameters describing the time-dependent wave function, the
Bloch-sphere representation is used again. Since the Hilbert
space is not two-dimensional anymore, we choose a projection
onto the space spanned by the normalized ground state e1 = ψg

and the orthogonal vector e2 = α(ψe − 〈ψg,ψe〉ψg) selected
by the Gram-Schmidt method, where α is the normalization
constant. Calculations from [21] for the PT -symmetric case
show that this is a good approximation for the system
considered. An arbitrary state in this basis can be written as in
Eq. (7) and is therefore defined by the three real parameters R,
φ, and θ . Note that the orthonormal two-dimensional basis is
different from the choice made in the two-mode approximation
and, thus, the parameters φ and θ must differ.

We study two distinct cases which differ only in the
strength of the in- and out-coupling parameter γ1 ≈ 0.0277
and γ2 ≈ 0.0366. Both cases support a stationary state ψi with
norms R1 = 1 and R2 = √

2 and the two Bloch angles φi

and θi . Figure 6 shows the time evolution of the three Bloch
coordinates for both states in both systems. We see that the
coordinates Ri , φi , and θi of both states converge to the appro-
priate dynamical attractor, i.e., they converge to the coordinates
of ψ1 in the left panel and of ψ2 in the right panel. The time of
the convergence to the stationary states differs in the two cases.
This results from the difference of the smallest Bogoliubov–de
Gennes eigenvalue which is inversely proportional to the time
scale of the convergence. Here | Im ω| from ψ2 is larger than
ψ1; therefore, the time of convergence for ψ1 is smaller. This
is confirmed by Fig. 6. Thus, we have shown that the behavior
of the two-mode system is also found in a realistic spatially
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FIG. 6. Time evolution of the Bloch coordinates of the two
stationary states ψi for γ1 ≈ 0.0277 (green dotted line) and γ2 ≈
0.0366 (magenta solid line). In the left panel a system with g = 0.1,
aR = −0.01, aI = −0.08, and γ ≈ 0.0277 is used. Hence, ψ1 is
stationary while ψ2 converges to ψ1 within approximately four
oscillations. In the right panel the in- and out-coupling parameter
is changed to γ ≈ 0.0366, and the two states exchange their roles.

extended system; i.e., for a large range of values of the coupling
strength γ , the stationary states act as attractors.

V. CONCLUSION

In this work we studied Bose-Einstein condensates in an
asymmetric non-Hermitian double well. In an experiment

such asymmetries are always unavoidable. However, we were
able to show that it is possible to manipulate the system in
such a way that an attractor of the dynamics exists which
possesses all properties of an PT -symmetric state required to
identify it in an experiment. First, we presented stationary
solutions to the Gross-Pitaevskii equation of a two-mode
system with asymmetric gain and loss. One requirement for
a stable realization can be formulated a priori: If the particle
gain is stronger than the particle loss, perturbations with high
excitation energies will be exponentially enhanced rendering
the state unstable. Therefore, the particle loss must always
be stronger than the gain. In this configuration, the ground
state of the system cannot only be made stable but becomes
a dynamical attractor. To achieve this, a real asymmetry of
the trapping potential was introduced, reducing the particle
density of the ground state in the loss well, i.e., the stronger
particle loss is partially counterbalanced by the asymmetric
trap.

Next, the dynamical properties were carefully studied using
a specific asymmetric potential and a fixed repulsive contact
interaction. Weak asymmetries leave the PT -symmetric oscil-
lations mainly intact. However, all such wave functions end up
at the dynamical attractor, effectively limiting the time scale
during which such oscillations can be observed. It was shown
that the convergent region is indeed even larger than in the
PT -symmetric case including a set of wave functions with
large norms residing in the loss well.

Finally, the results were compared to those of a realistic
spatially extended potential. Not only do all observations from
the two-mode approximation remain valid, but in addition we
were able to show that an attractor exists in a wide range of
particle in- and out-coupling strengths. Therefore, the potential
is capable of acting as a setup for a PT -symmetric realization
with unbalanced gain and loss.
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