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Bosons with incommensurate potential and spin-orbit coupling
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We chart out the phases of ultracold “spin-half” bosons in a one-dimensional optical lattice in the presence of
Aubry-André (AA) potential and with spin-orbit (SO) and Raman couplings. We investigate the superfluid (SF)
and localized phases and demonstrate the existence of density wave phase for nearest-neighbor interaction (NNI)
between the bosons. We show that the presence of SO coupling and AA potential leads to a spin-split momentum
distribution of the bosons in the localized phase near the boundary with the SF phase, which can act as a signature
of the SF-localized phase transition. We also obtain the level statistics of the bosons in the superfluid phase with
finite NNI and demonstrate its change from Gaussian unitary ensemble (GUE) to Gaussian orthogonal ensemble
(GOE) as a function of the Raman coupling. We discuss experiments which can test our theory.
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I. INTRODUCTION

The study of localization phenomena in correlated systems
has regained a new interest recently in the context of many-
body localization (MBL) [1,2]. Ultracold atoms in optical
lattices, which act as emulators of strongly correlated model
Hamiltonians [3], can serve as test beds for such phenomena
[4,5]. In this context, systems with quasiperiodic potentials,
which have posed several interesting theoretical challenges
over many decades [6–8], turn out to be particularly relevant.
A model Hamiltonian describing such a quasiperiodic system
is the well-known Aubry-André (AA) model [9], which, unlike
the Anderson model, exhibits localization transition in one
dimension [9,10]. This property of the AA model has generated
an impetus to study MBL [11,12]. Moreover, experimental
realization of the AA model in bichromatic optical lattice has
led to observation of localization of both the light [13] and
ultracold matter wave [14,15].

In the recent past, extensive research on the Bose-Hubbard
(BH) model using ultracold bosonic atoms in optical lattices
paved the way for studying the effect of interactions on lo-
calization phenomenon [16] leading to possible glassy phases
[17–20]. In addition, intense theoretical studies have also been
carried out on the BH model in the presence of Abelian and
non-Abelian gauge fields; such gauge fields have been experi-
mentally realized in atom-laser systems [21,22]. Such systems
allow for observation of several exciting phenomena [23–25];
most interestingly, they enable us to study strongly interacting
bosons in the presence of tunable spin-orbit (SO) coupling
[26–30]. Furthermore, recent studies have predicted interesting
phases of a SO coupled dilute weakly interacting Bose gas in
the presence of periodic or quasiperiodic potentials [31–33].
Moreover the effect of SO interaction on the single-particle
properties of disordered noninteracting electronic system has
led to several recent studies [34–36]. The realization of the AA
model in bichromatic lattice and the creation of SO interactions
for ultracold bosons therefore provides a unique opportunity
to study localization phenomenon induced by the AA potential
in the presence of tunable SO interactions in one dimension;
moreover it allows us to study the effect of strong interactions
in such systems which, to the best of our knowledge, has not
been studied before.

In this work, we study a two-species Bose-Hubbard model
coupled by Raman frequency �, in the presence of AA
potential and SO coupling and show that such a system leads
to several features which appear only in the presence of both
the AA potential and the SO coupling. The Hamiltonian of
such a Bose Hubbard model is given by

Ĥ = −J
∑
l,σ

(
b̂
†
l,σ eiqσ̂z b̂l+1,σ + H.c.

) + 1

2

∑
l,l′

Vl,l′ n̂l n̂l′

+λ
∑
l,σ

cos(2πβl)n̂l,σ + �
∑
l,σ

b̂
†
l,σ b̂l,σ̄ , (1)

where, b̂
†
l,σ and n̂lσ = b̂

†
l,σ b̂l,σ are the creation and the density

operator of the bosons of (pseudo)spin σ at the lattice site
l, n̂l = ∑

σ n̂lσ , σ̄ =↓ (↑) for σ =↑ (↓), J is the hopping
strength, q is the SO coupling strength, � is the Raman
frequency, σ̂x,y,z are the usual Pauli spin matrices, and λ and β

denotes the strength and period of the quasiperiodic potential,
respectively. In the rest of the paper we consider nearest
neighbor and on-site interactions with coupling strengths:
V = Vl,l+1 and U = Vl,l , respectively, and we choose β =
(
√

5 − 1)/2 which is a Diophantine number. In what follows,
we shall scale all energies in units of J .

The central results of our study are as follows. First, we
chart out the phase diagram of one-dimensional (1D) ultracold
bosons in an optical lattice and demonstrate the existence of
density wave (DW), superfluid (SF), and localized phases and
study the transition (or more accurately crossovers for finite-
sized systems) between these phases. Second, we show that for
sufficiently high �, the bosons in the presence of both the AA
potential and the SO coupling exhibits a spin-split momentum
distribution in the localized phase, near the boundary with the
SF phase, irrespective of the strength of their interaction. Such
a splitting can therefore serve as a signature of this transition.
We note that this spin splitting does not occur in the absence
of either the AA potential or the SO coupling. Third, we study
the level statistics of the bosons in the strongly interacting
regime, where the presence of the AA potential and Raman
coupling � between the spins play a crucial role in changing
the spectral statistics between different universality classes of
random matrix theory (RMT). Apart from Poissonian level
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FIG. 1. Energy dispersion for (a) � < �c and (b) � > �c. All
energies are scaled in units of J and all momenta are scaled with
inverse lattice spacing a−1

0 .

spacing distribution in the localized regime, we find that the
level statistics change continually from GUE (� = 0) to GOE
as a function of �. We identify the additional symmetry at the
� = 0 point which is behind this change. Finally, we discuss
possible experiments which can test our theory.

The organization of the rest of the work is as follows. In
Sec. II, we investigate the properties of the system in the
noninteracting limit. This is followed by analogous studies
on hard-core bosons with finite nearest-neighbor interaction
in Sec. III. Next, in Sec. IV, we study the spectral statistics
of the bosons. This is followed by a study of nonequilibrium
dynamics of the bosons in the strongly coupled regime in
Sec. V. Finally, we summarize our results, discuss relevant
experiments, and conclude in Sec. VI. We also provide a
discussion on momentum distribution of weakly coupled
bosons in the appendix.

II. NONINTERACTING BOSONS

In this section, we analyze the single-particle properties of
this Hamiltonian [Eq. (1)] by setting U = V = 0. For λ = 0,
this reduces to a system of SO coupled bosonic particles with
a 2 × 2 matrix in the momentum representation as

Hso =
∑
k,σ

ψ
†
k

(−2 cos(k + q) �

� −2 cos(k − q)

)
ψk, (2)

where ψk = (bk↑,bk↓)T is the two-component boson field. The
single-particle energy spectrum for Hso is

E±
k = −2 cos k cos q ± 2[sin2 k sin2 q + �2/4]1/2, (3)

and the eigenstates are given by

ψ±
k = (cos(θk − π/4 ∓ π/4), sin(θk − π/4 ∓ π/4))T ,

cos θk = [1/2 + [4 + �2/(sin2 k sin2 q)]−1/2]1/2. (4)

From the lower branch of the energy dispersion E−
k , we find

that there exists a critical value �c below which the ground
state is doubly degenerate; this critical Raman coupling is
given by

�c = 2 sin q tan q. (5)

For � < �c, the minima of the energy dispersion shifts to
±k0, where

k0 = ± cos−1[cos q
√

1 + �2/(4 sin2 q)]. (6)

This is illustrated in Fig. 1. These doubly degenerate ground
states are related by ψ−k = σ̂zT̂ ψk , where T̂ = −iσ̂y Ĉ is the

Ω λ λ

Δ

FIG. 2. (a) Superfluid fraction as a function of � for λ = 0. Solid
line represents the SFF obtained analytically from the effective mass
calculation. (b) SFF and IPR of the ground state is plotted as a function
of λ for � = 0.2. (c) Energy gap between ground state and first excited
state as a function of λ for � = 3.5. All energies are scaled in units
of J and all momenta are scaled with inverse lattice spacing a−1

0 .

time reversal symmetry (TRS) operator, Ĉ is the complex
conjugation operator, and σ̂x,y,z are the usual Pauli spin
matrices. We note here that the effective mass (or the band
mass) of the bosons is thus given by m∗−1 = ∂2

k E−
k |k=k0 . For

� > �c, the expression of m∗ can be written as

m∗−1
�>�c

≡ m∗−1
> =

(
∂2E−

k

∂k2

)
k=0

= (1 − �c/�) cos q. (7)

In the absence of disorder, the superfluid fraction (SFF), given
by ∂2Eg/∂θ2, thus turns out to be the inverse of the boson
effective mass. Thus m∗−1 captures the behavior of the SFF
obtained numerically as a function of � [see Fig. 2(a)]; this
situation is similar to that obtained in the continuum limit [37].

For q = � = 0, the above Hamiltonian is reduced to a
two-component AA model which undergoes a localization
transition above a critical coupling strength λc = 2. For
two extreme regimes q 	= 0,� = 0 (pure SO coupling) and
q = 0,� 	= 0 (strong Raman coupling) the single-particle
Hamiltonian preserves the self-duality at λc = 2 and all
states are localized above λc. Similar studies on duality for
quasiperiodic systems in the absence of spin-orbit coupling
is done in Refs. [34,35]. To study localization transition in
the intermediate regime with q 	= 0,� 	= 0, we numerically
diagonalize the single-particle Hamiltonian to obtain the
ground state and the excitation spectrum. Since the duality
does not hold in this regime a mobility edge appears and energy
dependent localization occurs for eigenstates [34]. We focus on
the localization transition of the ground state in the presence of
SO interaction and the variation of the critical disorder strength
λc on Raman coupling. We locate the change from the SF to the
localized phase in two ways. First, we measure the superfluid
fraction (SFF) by applying a phase twist [38] θ 
 π at the
boundary. In the presence of such a twist Jl,l+1 → Jeiθ/Ns

[Eq. (1)]. The SFF can then be computed as [20]

fs = N2
s (E[θ ] − E[0])/(Npθ2), (8)

where E[θ ] is the ground-state energy in the presence of twist,
and Ns(Np) is the number of sites (particles).

The second measure of localization is the inverse participa-
tion ratio (IPR) of the ground-state wave function defined as

I =
∑

l

(|ψl,↑|2 + |ψl,↓|2)2, (9)
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FIG. 3. (a) Phase diagram is shown in the �-λ plane. (b)
Momentum distribution in the delocalized phase is shown for � =
2.5, λ = 0.65. Solid (dashed) curves correspond to the up (down)
spin. (c)and (d) 
k as a function of λ for q = 0.3π and as a function
of q for λ = 0.65 is shown. For both the plots we set � = 2.5. All
energies are scaled in units of J and all momenta are scaled with
inverse lattice spacing a−1

0 .

where |ψl,σ |2 is the boson density of spin σ at site l. As
expected, we find that SFF decreases and the IPR increases
with increasing λ around the transition [see Fig. 2(b)].

The phase diagram obtained from these computations is
shown in Fig. 3(a) in the λ−� plane for q = 0.3π . We note
that λc decreases from its self-dual value ∼2 for q 	= 0 and
shows a dip at �c, which demarcates the delocalized phase
in two regimes. Below �c the degeneracy of the ground state
is lifted by the quasiperiodic potential; however the ground
state has a net momentum and sz polarization. For � > �c,
the ground-state wave function is spin polarized along x̂ and
has vanishing net momentum. The behavior of λc with �

can be understood from the enhancement of effective mass
of bosons in the lower branch m∗−1 = ∂2E−

k /∂k2|k=k0 due
to the combined effect of SO and Raman couplings. This in
turn reduces the effective hopping strength Jeff = J/m∗ of the
underlying AA model for which the critical strength for the
localization transition can be estimated as λc ∼ 2Jeff ∼ 2/m∗.
We note that the idea of m∗ also quantitatively explains the
variation of SFF with � for λ = 0 and that SFF decreases and
the IPR increases with increasing λ around the transition as
expected.

To elucidate the role of the AA potential and the SO
coupling in the transition, we compute the spin-resolved
momentum distribution defined as

nkσ =
∑
l,l′

exp{ik(l − l′)}〈c†lσ cl′σ 〉/Ns, (10)

where k = 2πm/Ns , with m ∈ [−Ns/2,(Ns − 1)/2]. For � >

�c, both nk↑ and nk↓ is peaked at k = 0 in the delocalized phase
as seen for standard superfluids. In contrast, in the localized
regime near the transition, nkσ becomes spin dependent and
is peaked at k = kmax

σ 	= 0 preserving the symmetry n↑(k) =
n↓(−k) [see Fig. 3(b)]. The splitting of these peaks are given

ξ−1

π
π

λ

φ

(b)(a)

FIG. 4. (a) kmin as a function of ξ−1 is plotted for � = 3. (b)
|〈eiφ〉| as a function of λ has been plotted for noninteracting bosons
for � = 2.5 and q = 0.3π . All energies are scaled in units of J and
all momenta are scaled with inverse lattice spacing a−1

0 .

by 
kmax
σ

= kmax
↑ − kmax

↓ ∼ q leading to the conclusion that the
split in nkσ arises from a finite SO coupling. As shown in
Figs. 3(c) and 3(d), 
kmax

σ
vanishes for either q = 0 or λ = 0;

this shows the necessity of both the AA potential and the SO
coupling for the peak splitting.

The effect of spin-split momentum distribution of the
localized wave function in the regime � > �c arises due to
the interplay between the SO interaction and Raman coupling
and can be qualitatively understood from a simple variational
calculation. To this end, we construct the variational wave
function describing the localized bosons given by

ψl = N e−|l|/ξ
(

eikl

−e−ikl

)
, N =

√
tanh(1/ξ )

2
, (11)

where l is the site index and ξ represents localization length
which contains the effect of AA potential and the interaction.
The spinor part is chosen in such a way that up (down) spin
momentum distribution is peaked at ±k and for k = 0 it
reduces to the usual form of the ground state for � > �c. For
the aforementioned wave function, the parameter k is treated
as the variational parameter and we investigate its dependence
on ξ and �. Considering the single-particle Hamiltonian of a
spin-orbit (SO) coupled bosonic system in an optical lattice,
the energy can be written as

E(k) = −
[

cos(k − q)

cosh(1/ξ )
+ � tanh(1/ξ ) sinh(2/ξ )

cosh(2/ξ ) − cos 2k

]
. (12)

We minimize E(k) to obtain kmin and have shown its variation
as a function of ξ−1 in Fig. 4(a); it is evident that kmin

decreases with increasing ξ and finally it vanishes in the
delocalized regime, i.e., ξ−1 → 0. We further notice for a
fixed ξ the spin splitting (characterized by kmin) decreases with
decreasing strength of SO interaction (q) and eventually vanish
for q = 0. This simple variational calculation elucidates how
the combined effect of localization and SO interaction gives
rise to the spin splitted momentum distribution in the regime
� > �c.

Finally, we relate the effect of spin splitting in momentum
distribution near the localization transition with phase fluctua-
tion of the wave function. In general, the boson wave function
can be written as

ψl =
√

nl
0

(
cos θ leiφl

↑

sin θ leiφl
↓

)
, (13)
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where φl = φl
↑ − φl

↓ is the phase angle of the spinor at site l.

For � > �c, we find that cos θ = sin θ ≈ 1/
√

2 and φ ≈ π

in the delocalized phase, whereas, near localization transition
due to increasing phase fluctuations, the phase angle fluctuates
significantly from π at different sites. We quantify the phase
fluctuation by calculating |〈eiφ〉|, where the average is taken
over all the lattice sites. In Fig. 4(b) we have shown the
behavior of |〈eiφ〉| as a function of the disorder potential
strength λ which shows that near the localization transition
it decreases from 1 with increasing strength of the disorder λ.
This indicates that spin diffusion is intimately related to the
momentum spilling of the boson momentum distribution; both
these phenomenon originates from the combined effect of AA
potential and the SO coupling.

III. BOSONS WITH HARD-CORE REPULSION

In this section, we study the properties of interacting bosons
with AA potential and spin-orbit coupling. First, we consider
the case V = 0, where, at half-filling, the bosons are always
in the SF phase for zero or weak AA potential. The choice
of such a hardcore limit facilitates computation by imposing
the constraint nl � 1 at each site and allows us to perform
exact diagonalization within a restricted Hilbert space of three
states per site. We restrict our calculation to half-filled HC
bosons,

∑
l nl = Ns/2, so that we are always in the SF phase

for λ = V = 0. In addition to SFF we also compute the
boson condensate fraction (BCF) since BCF and SFF are quite
different for strongly interacting bosons and are important for
characterizing the localized phases. We construct the one-body
density matrix from the ground state |ψ0〉 given by

ρ(l,σ ; l′,σ ′) = 〈ψ0|b̂†l′,σ ′ b̂l,σ |ψ0〉. (14)

We note that the largest eigenvalue Nc of ρ(l,σ ; l′,σ ′) gives
the BCF fc = Nc/Tr(ρ̂) [39].

A plot of fs and fc in the �−λ plane for a fixed q is shown
in Figs. 5(a) and 5(b). These plots clearly indicate a regime
for λ > λc where fs vanishes but fc remains finite indicating
a localized phase of the bosons. Although in the finite system
there is no transition, the behavior of λc obtained from SFF is
similar to that for noninteracting bosons; however, �c shifts
to a lower value. Near this boundary, particularly for � � �c,
there is clear indication of the Bose-glass (BG) phase with
fs = 0 and fc 	= 0.

We have also studied the variation of SFF with coupling
strength λ as shown in Fig. 6 for different numbers of lattice
sites: N = 8,10,12. The variation of SFF with system size
is not a significant deep inside the SF phase away from
the crossover region to the localized phase. Also for the
noninteracting AA model finite size scaling analysis of IPR
has been presented in Ref. [11]. These results clearly indicate
that finite size effects are not too large in the AA model.
Thus we expect that the phases obtained from our analysis
shall be present for larger systems. However, we note that a
more sophisticated finite size scaling analysis with much larger
system size is required to determine the phase boundaries and
the nature of the phase transition. This is clearly beyond the
scope of the exact diagonalization method that we use here.

-3 -2 -1 0 1 2 3
k

0.15

0.2

0.25

0.3

0.35

0.4

n k

(d)
λ=3.0

-3 -2 -1 0 1 2 3
k

0

0.2

0.4

0.6

0.8

1

n k

λ=0.8(c)

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

1.2

FIG. 5. (a) and (b) Color plot of the SFF fs and the BCF fc

have been shown in the �-λ plane for q = 0.3π and number of sites
Ns = 12 at half filling. (c) and (d) Momentum distribution of spin
up (down) particles are shown for � = 2.5 by solid (dashed) lines.
All energies are scaled in units of J and all momenta are scaled with
inverse lattice spacing a−1

0 . See the text for details.

Since true phase transition is absent in finite systems, we only
show the variation of the relevant order parameters without
any phase boundary in the phase diagram to identify various
phases and crossover between them. We would like to point
out in this context that the results obtained for finite lattice
size are of direct relevance with real experimental systems for
which the typical lattice sites are N � 12 [40].

Finally, we compute the nkσ of the hardcore bosons for
V = 0. As shown in Figs. 5(c) and 5(d), the splitting of the spin
momentum peak occurs in the localized phase and survives in
the hardcore limit. We have checked that nkσ are peaked at
k = 0 in the delocalized regime and at kmax

σ in the localized
regime near the transition. Thus we find that the shift in nkσ

due to the presence of a finite q survives in the presence of
strong on-site interaction. Similar conclusions can be drawn

0 0.5 1 1.5 2 2.5
λ
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0.3

f S

N
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N
s
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N
s
 = 12

FIG. 6. Superfluid density as a function of λ for � = 1.5, q =
0.3π and using different system sizes at half filling as mentioned in
the inset. All energies are scaled in units of J and all momenta are
scaled with inverse lattice spacing a−1

0 .
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function of λ for V = 2.5. All energies are scaled in units of J and
all momenta are scaled with inverse lattice spacing a−1

0 . See the text
for details.

for weakly interacting bosons for which U/J 
 1; this has
been detailed in Appendix A.

Next we turn on a finite V for the hardcore bosons and
obtain the phase diagram by computing SFF and BCF as a
function of V/J and λ/J for a fixed q and � [see Figs. 7(a)
and 7(b)]. For small V we find that an increase of λ leads to a
depletion of superfluid density keeping the condensate fraction
finite indicating a finite-size crossover from an SF to a localized
phase. Similarly for a fixed small λ, an increase in V leads to
an analogous depletion of superfluid density; this indicates the
onset of the DW phase with broken translational symmetry. For
λ = � = 0, Eq. (1) reduces to the well-studied XXZ model
which exhibits the SF to DW transition at V/J = 1 [41].
Similarly for the SF-DW transition at small λ, a first-order
transition is expected since the DW state breaks translational
invariance while the SF states breaks U (1) gauge symmetry.

The phase diagram of the bosons in the large V/J regime
as a function of λ cannot be completely understood from
Figs. 7(a) and 7(b) since ρs = 0 for all λ in this regime. To
have an understanding of the nature of the boson phase with
increasing λ, we study the structure factor given by

S(k) = 4
Ns∑

l,l′=1

eik(l−l′)〈n̂l n̂l′ 〉/Ns. (15)

We first note that in the limit λ/J << 1 the ground state forms
a DW leading to S(π ) � 1 and S(k) � 0 for k 	= π [42]. This
DW state is expected to melt with increasing λ leading to a
vanishing of peak of S(k) at k = π . A plot of S(π ) in the λ−V

plane, shown in Fig. 7(c), indicates the melting with increasing
λ. The dynamical signature of such melting may be obtained
by studying boson dynamics following quench of λ across its
melting value. We shall present our results on this issue in
Sec. V.
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IV. SPECTRAL STATISTICS OF BOSONS

In this section, we show that the present model with V 	= 0
hosts a change of spectral statistics from GUE-GOE in the
superfluid phase at finite λ. To this end, we first note that
for � = 0, [Ĥ ,Ŝz] = 0, and the boson ground state lies in the
S total

z = Ns/2 sector. However, for states within this sector, one
does not have TRS since [Ĥ ,T̂ ] 	= 0 for a fixed Sz sector. Thus
for � = 0 with a fixed Smax

z 	= 0 sector, one has [Ĥ ,ŜzT̂ ] 	= 0.
In contrast for � 	= 0, it is easy to see using Eq. (1), [Ĥ ,ŜzT̂ ] =
0. The latter symmetry is a consequence of invariance of Ĥ

under TRS followed by a π rotation in spin space about the z

axis. The presence of this additional symmetry leads to GOE
to GUE crossover as � is turned on and increased [36,43,44].

To show this, we first calculate the level spacing ratio given
by [11,45]

rν = min(δν+1,δν)/max(δν+1,δν), (16)

where δν = Eν+1 − Eν , and Eν is the ν th energy eigenvalue.
We compute the quantity 〈r〉 = ∑

ν rν/N , whereN is the total
number of levels. For � = 0, working with the energy levels in
the maximal Sz sector, we find that 〈r〉 shows a crossover from
its GUE value of ≈0.58 to that for Poisson statistics ≈0.38
with increasing λ [see Fig. 8(a)]. In contrast, for large � = 2,
a similar analysis shows that 〈r〉 crosses over from its GOE
value of ≈0.527 to Poisson with increasing λ [see Fig. 8(b)].

In finite-sized systems with no strict symmetry breaking,
the level statistics cannot be captured for small but finite
� values. We therefore concentrate on the variation of the
Shannon and structural entropy for studying the crossover
between GUE-GOE statistics. The eigenvector corresponding
to the ν th eigenmode can be written as

|�ν〉 =
∑

χ

cχ
ν |χ〉, (17)
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where |χ〉 are the basis states. The corresponding Shannon
entropy is given by

SShn
ν = −

∑
χ

|cχ
ν |2 ln |cχ

ν |2. (18)

It is well known that SShn = ∑
ν SShn

ν has the value SShn
GOE =

�(N/2 + 1) − �(3/2) for GOE and SShn
GUE = �(N + 1) −

�(2) for GUE [46,47]. Here � is the Digamma function and
N is the system dimension. The structural entropy for the νth
eigenmode is defined as

SStr
ν = SShn

ν − ln ξν, (19)

where ξν is the IPR corresponding to the νth eigenmode. It
is known that SStr

ν ≈ 0.37(0.27) for GOE(GUE) [47,48]. In
Fig. 8(c), we have plotted the distribution of SStr

ν showing
that the peak of the distribution shifts from in the delocalized
regime its GUE value (≈0.27) to its GOE value (≈0.37) as �

is changed from 0.6 to 2.0. In Fig. 8(d), we plot the variation
of SShn

ν showing a smooth crossover from its value for GUE to
that for GOE with increasing �.

V. NONEQUILIBRIUM DYNAMICS

To elucidate the localization transition of the HCB, we
now look into the nonequilibrium dynamics of the bosons.
We start from the density wave state at λ = 0 denoted by
|ψ(0)〉. Next we quench λ to a finite value λf so that the
system Hamiltonian after the quench is given by H [λf ]. Let
us denote the eigenfunctions and eigenvalues of H [λf ] as |m〉
and εm, respectively. The time-evolved wave function |ψ(t)〉
at any instant of time t after the quench can be obtained by
solving the Schrodinger equation ih̄∂t |ψ(t)〉 = H [λf ]|ψ(t)〉
and is given by

|ψ(t)〉 =
∑
m

cme−iεmt/h̄|m〉, cm = 〈m|ψ(0)〉. (20)

The expectation value of any operator O(t) can be obtained
from |ψ(t)〉 as

〈ψ(t)|O|ψ(t)〉 =
∑
m,n

c∗
mcne

i(εm−εn)t/h̄〈m|O|n〉. (21)

Using Eq. (21), we calculate the time evolution of the
imbalance factor which is defined as

I = No − Ne

Ntot
, (22)

where, No[e] = 〈ψ(t)| ∑i∈odd[even]sites b̂
†
i b̂i |ψ(t)〉 and Ntot =

No + Ne. Note that at t = 0, we have density wave state with
I = 1 and it approaches zero for a delocalized state. In Fig. 9(a)
we have shown the time evolution ofI(t) for the up spin species
(the same feature can be observed for the down spin species
as well) for different λ values. We note that for small λ which
corresponds to the delocalized regime, I vanishes to zero with
time showing the ergodic dynamics in that regime, whereas
for larger λ value which corresponds to the localized regime,
I doesn’t vanish and saturates to some positive value which
indicates the nonergodic regime and the density wave ordering
is retained in the course of time evolution. In Fig. 9(b) the final
density distribution after the time evolution has been shown
for different values of λ.

λ = 0.5
λ = 3.0
λ = 10.0

λ = 10.0
λ = 3.0
λ = 0.5

λ = 0.5
λ = 3.0
λ = 10.0

λ = 10.0
λ = 3.0
λ = 0.5

FIG. 9. The time evolution of the imbalance factor for up spin
species has been shown starting from two initial states (a) density
wave and (c) bosons loaded in the left half of the lattice for different
values of the disorder strength λ. The final up spin density distribution
at the end of the time evolution for the same λ’s are shown for the two
types of initial states in (b) and (d), respectively. The other parameters
are � = 2, q = 0.3π , and V = 0. All times are measured in units of
h̄/J , energies in units of J , and momenta in units of a−1

0 .

We repeated the same numerical experiment starting from a
different initial state where the atoms are loaded on one-half of
the lattice and study the imbalance factor I ′ = (Nl − Nr )/Ntot

as a function of time Nl and Nr being the total number
density of bosons at the left and the right halves of the
lattice, respectively. In Figs. 9(c) and 9(d) we have plotted
the time evolution of the imbalance factor and the final density
distribution of the up spin species for different values of the
disorder strength.

Thus we find that nonequilibrium dynamics in such bosons
systems can serve as a clear indicator of the localized phase.
Such experiments have been carried out in the context of MBL
physics on ultracold atom systems in Refs. [4,49].

VI. DISCUSSION

In this work we have analyzed the interplay between SO
interaction, Raman coupling, and AA potential on the localiza-
tion phenomena of strongly correlated ultracold pseudo-“spin-
half” bosons in one dimension. From the superfluid fraction
and condensate fraction we identified the possible phases of
the hard core bosons. Apart from the superfluid and localized
phase a Bose glass (BG) phase with fs = 0 and fc 	= 0 can
exist in a large region in the phase diagram particularly for
small �. For sufficiently large nearest neighbor interaction
(V/λ � 1) an additional DW phase is formed which is
characterized by the peak in the structure factor S(k) at k = π .
For small hopping strength, the melting of the density wave
occurs by increasing the strength of the quasiperiodic potential
resulting in the vanishing of the peak of the structure factor
at k = π . The basic features of the localization transition can
be understood qualitatively by analyzing the noninteracting
model. Such a system exhibits the localization transition at the
self-dual point λc = 2 either in the absence of Raman coupling
� or for vanishing SO interaction (in the limit q/� 
 1).
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In contrast when both the couplings are present, localization
transition occurs at λc < 2. The variation of λc with � exhibits
a minimum at the critical Raman coupling �c where the nature
of the ground state changes for the pure SO coupled system. We
note that such a behavior of λc as a function of � resembles the
dependence of the effective mass of the bosons on � leading
to a simplified picture of bosons in the AA potential with an
effective hopping strength Jeff ≈ m∗−1.

Apart from a rich phase diagram, our analysis shows that
in a system of 1D ultracold bosons in an optical lattice the
interplay between SO interaction, Raman coupling, and AA
potential leads to the splitting in the spin-resolved momentum
distribution. Above �c, such a split happens only when both
λ, q 	= 0 and may serve as an indicator of the localization
transition. The experimental verification of this splitting would
involve preparing a system of bosons with SO coupling [22] in
the presence of a 1D bichromatic lattice to model AA potential
[14]; finally the spin-resolved momentum distribution of
these bosons can be measured by the usual Stern-Gerlach
technique [50]. Our prediction is that such an experiment
would observe a spin-split momentum distribution near the
localization transition which increases with increasing λ or q.
We note that typically experiments are done with finite lattice
sites Ns ∼ 12 [40]; thus our numerical results are expected to
be of direct relevance for experimental systems.

We have also shown that the spectral statistics of the
present model follows Poissonian distribution for large λ

indicating localization and hosts a GUE-GOE crossover as
a function of � in the delocalized regime. We note that this
is an experimentally accessible model which can exhibit the
transition of spectral statistics between two universality classes
of RMT by tuning a physical parameter �. The localized and
delocalized phases can also be identified by computing the
imbalance factor from the nonequilibrium dynamics of the
hard core bosons. In the presence of a finite λ starting from an
initial DW phase we performed exact diagonalization to study
the evolution of the imbalance factor which vanishes gradually
with time in the delocalized phase whereas it saturates to a fi-
nite value in the localized regime. In recent experiments [4,49]
on ultracold bosons such a dynamical characterization has been
demonstrated and can easily be tested for our model as well.

In conclusion, we have studied a system of ultracold
bosons in the presence of the AA potential and spin-orbit
coupling. We have charted out the various phases of the
system, demonstrated a spin-dependent split in the momentum
distribution function of these bosons, and unraveled a change
in the spectral statistics of the bosons from GUE to GOE.
In particular, the splitting of the spin-resolved momentum
distribution for � > �c and the change in spectral statistics
from GUE to GOE by tuning the Raman coupling are the two
features that we unearth; of these, the first one is expected to be
easily verifiable in future experiments. We have also pointed
out an experimentally verifiable dynamical signature of the
localized phases in these systems.
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λ

FIG. 10. The IPR and SFF have been shown as a function of λ

for � = 2.5 and for different interaction strength UNp in (a) and (b),
respectively. The spatial distribution of the ground-state density has
been shown for UNp = 0.5, � = 2.5 in (c). IPR, the order parameter
m, and the total magnetization M as a function of λ for UNp = 20
and � = 0.3 are shown in (d). We set Np = 200 and Ns = 144 for
all the plots. All energies are scaled in units of J .

APPENDIX: LOCALIZATION OF WEAKLY
INTERACTING BOSONS

In the Appendix, we study the weakly interacting limit, i.e.,
for U/J 
 1 and V = 0 of the bosons. To this end, replace
the quantum field operator b̂l,σ by the classical field operator
ψl,σ assuming the existence of a 1D quasicondensate [51].
By minimizing the energy functional calculated thereby, we
obtain the discrete nonlinear Schrödinger (DNLS) equation
for the condensate wave function ψl,σ given by

−(ψl+1,↑eiq + ψl−1,↑e−iq ) + λ cos(2πβl)ψl,↑

+�ψl,↓ + U (|ψl,↑|2 + |ψl,↓|2)ψl,↑ = μψl,↑

−(ψl+1,↓e−iq + ψl−1,↓eiq) + λ cos(2πβl)ψl,↓

+�ψl,↑ + U (|ψl,↑|2 + |ψl,↓|2)ψl,↓ = μψl,↓,

where μ is the chemical potential. We then obtain the ground-
state wave function ψlσ numerically and use it to compute all
relevant quantities such as IPR and fs . In what follows we
have shown the results of such a numerical study which are
shown in Fig. 10.

In Fig. 10(a) we plot the ground-state IPR as a function
of λ for different interaction strength UNp/J . We see that on
increasing λ beyond the localization transition, the growth of
IPR decreases. This is due to the fact that the ground-state wave
function becomes multisite localized due to weak repulsive
interaction [see Fig. 10(c)]. We further calculate the superfluid
fraction which vanishes in the localized phase as depicted in
Fig. 10(b).

To gain a better understanding of the localization transition,
we further study the spin-resolved momentum distribution of
bosons in the regime � < �c. In contrast to the noninteracting
case, the superfluid with finite U chooses one of the two
symmetry broken states with spins polarized along the z axis
[28]. As a result the momentum distribution corresponding
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FIG. 11. Momentum distribution with increasing disorder
strength λ for � = 0.5 and UNp = 20. All energies are scaled in
units of J and all momenta are scaled with inverse lattice spacing
a−1

0 .

to the spin polarization of the ground state becomes highly
peaked at the nonvanishing momentum of the ground state
as depicted in Fig. 11(a). With increasing disorder strength,
other momentum modes get gradually occupied and spin-
momentum distributions are peaked at equal and opposite
momentum with a net spin polarization indicating symme-
try breaking (see Fig. 11). Finally in the localized phase,

FIG. 12. (a) and (b) Momentum distribution for up(down) spin is
shown in the solid(dashed) line with increasing disorder strength λ.
Other parameters are � = 2.5 and UNp = 10. All energies are scaled
in units of J and all momenta are scaled with inverse lattice spacing
a−1

0 .

the momentum distributions become symmetric and peaked
around finite momentum with nk,↑ = n−k,↓. To verify this we
plot the order parameter m = ∑

k(nk,↑ − n−k,↓)2 and the total
magnetization M = ∑

k(nk,↑ − nk,↓) which decreases with
increasing λ and finally vanishes in the localized phase [see
Fig. 10(d)].

Next we investigate the momentum distribution in the
regime � > �c; similar to the noninteracting case, we see that
in the delocalized regime the momentum distributions for both
up and down spins are peaked at zero momentum, whereas
in the localized phase they are peaked at finite momentum
and other momentum modes get gradually occupied [see
Figs. 12(a) and 12(b)]. Thus we conclude the the peak splitting
of the momentum distribution of bosons is robust against weak
on-site interaction between them.
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(1984); K. Ź yczkowski, M. Lewenstein, M. Kuś, and F. Izrailev,
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