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The propagation time delay due to the finite speed of light (FSL) in atom gravimeters introduces a bias in the
gravity measurement, as well as that in classical free-falling corner-cube gravimeters, which is usually termed
the FSL effect. For a typical atom gravimeter, the FSL time delay is about several nanoseconds, resulting in
the FSL effect, a non-negligible bias in the gravity-acceleration measurement. However, a time delay of about
several microseconds, achieved by controlling the Raman-pulse timing directly, contributes a negligible effect.
This interesting phenomenon motivates us to make clear two questions: first, what are the origins of the FSL
effect in atom gravimeters, and second, what is the difference between the two time delays? Our analysis shows
that the FSL effect in atom gravimeters is not just a matter of FSL time delay to a great extent but also the change
in the effective wave vector; moreover, the FSL time delay can be quantitatively regarded as the same as the
pulse time delay since both actually affect the gravity measurement by changing the two interferometer pulse
separations.
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I. INTRODUCTION

The propagation time delay due to the finite speed of light
(FSL) introduces a bias in the g measurement in classical
free-falling corner-cube gravimeters [1–8]. A similar effect
also exists in atom gravimeters which is usually termed the
FSL effect. To evaluate the performance of high-precision
atom absolute gravimeters [9–14], systematic errors such as
the FSL effect need to be carefully considered since they are
at the level of instrument precision of the atom gravimeters
developing rapidly, introducing a non-negligible bias in the
g measurement. In the past few years, a few studies [15–21]
discussed the FSL effect in atom gravimeters: Peters et al.
[15,16] and Cheng et al. [17] considered the FSL correction
introduced by the change in the effective wave vector of Raman
pulses during the frequency-chirp process, Dimopoulos et al.
[18,19] analyzed the FSL correction resulting from the time
delay due to the propagation of light, and we presented [20,21]
the FSL correction related to the coupling between the time
delay and the change in the effective wave vector. The above
results can be well summed up by [20]

gmeasured = −
�k0 · �g
|�k0|

[
1 + 3�vπ · �n1

c
− α1 − α2

�k0 · �g
2�vπ · �n1

c

+ α1�n1 − α2�n2

�k0 · �g · 2�vπ

c

]
, (1)

with �k0 being the effective wave vector of the Raman beams
at the π pulse, �vπ being the velocity of atoms at the π pulse,
c being the speed of light, and (α1, α2) and (�n1, �n2) being
the frequency chirps and directions of the two Raman beams,
respectively. To make the FSL effect well understood, we
further study this effect in this paper and attempt to make
some key issues related to the FSL effect clear.
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Generally speaking, the FSL effect in atom gravimeters
arises from the FSL time delay. Similar to the pulse time
delay achieved by controlling the Raman-pulse timing directly,
the FSL time delay also changes the interferometer pulse
separations and further contributes a correction to the gravity
measurement. Therefore, with the same influencing mecha-
nism, if the two time delays are equal, they should theoretically
present equal corrections to the g measurement. For a typical
20-cm-long atom gravimeter, in which the velocity of atoms
at the π pulse is about 0.06 m/s, the FSL time delay is about
several nanoseconds, introducing the FSL effect, a bias of
about 0.4 μGal in the g measurement; however, a pulse time
delay of several microseconds has a negligible effect. This is
an interesting phenomenon, which motivates us to make clear
what the FSL effect and the difference between the FSL time
delay and pulse time delay are.

The outline of this paper is as follows: in Sec. II, we
show the space-time diagram of an atom gravimeter with the
FSL time delay and the pulse time delay. In Sec. III, with
the frequently used continuous chirp of Raman pulses, we
calculate phase shifts introduced by the FSL effect and the
pulse time delay, where the detuning for Raman pulses is also
considered. Here, we make clear what results in the FSL effect
in atom gravimeters and what the difference between the two
time delays is. In Sec. IV, we present a simple discussion
of the stepped-chirp mode (that is, the continuous chirp is
approximated by switching between three fixed frequencies)
and find this chirp mode may have the advantage of enlarging
the effect of the pulse time delay in the g measurement, which
has been verified experimentally [15,16]. Finally, the paper is
concluded in Sec. V.

II. SPACE-TIME DIAGRAM OF AN ATOM GRAVIMETER
WITH A PULSE TIME DELAY AND A FSL TIME DELAY

High-sensitivity atom interferometry plays a significant
role in many precision-measurement experiments [22–29], on
the basis of which atom gravimeters are being developed
rapidly. The work principle of atom gravimeters based on
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FIG. 1. A schematic of the interaction between atoms and Raman
beams, with the “control light” reflected by a mirror oriented upward.
The blue dot represents atoms.

two-photon stimulated Raman transitions can be described
as follows [30]: it measures g with an interferometer in which
atoms follow free-fall trajectories. In the measurement process,
a π/2-π -π/2 Raman-pulse sequence is usually applied to
coherently split, reflect, and combine the atomic wave packet
and, finally, produce the interference. Then, one can obtain the
gravity acceleration from the interference signal.

Figure 1 is a typical schematic describing the interaction
between atoms and Raman pulses. Two laser beams with
respective wave numbers k1 and k2 start from the top of the
experimental setup; then the two counterpropagating lights, the
k2 beam and the reflected k1 beam, form the Raman pulse. Note
that due to the FSL, the �k1 beam reflected by the retroreflecting
mirror will reach atoms with a delay compared with the �k2

beam. As the stimulated Raman transitions occur only when
the two Raman beams interact with atoms simultaneously,
the �k2 beam can be considered a “background light,” and the
�k1 beam can be considered a “control light,” determining the
change in the atom’s internal state. Therefore, we can simplify
the model of atom gravimeters as the control light tracking
the atoms, described by Fig. 2. Assume that the directions
of the control light, the �k1 beam, and the �k2 beam in atom
gravimeters are respectively denoted by unit vectors �ec, �n1,
and �n2. In the configuration shown in Fig. 1, the control light
is upward, �ec = �n1. Actually, the orientation of the control light
can be adjusted upward or downward, depending on whether
the mirror is set at the bottom or top of the experimental setup.

Like for classical gravimeters that monitor the position of
a freely falling retroreflector using laser interferometers, we

FIG. 2. A simplified model of Fig. 1 For atom gravimeters
measuring g. Here, the control light �k1 is upward oriented.

FIG. 3. The space-time diagram of a light-pulse atom interferom-
eter (a) before and (b) after the average-path treatment.

can simplify the model of atom gravimeters to the control
light tracking the atoms, which is described by Fig. 2. When
the �k1 beam interacts with the atoms, the states of the atoms
change, which is shown in Fig. 3(a) (the interactions between
the laser and atoms are reflected by points A,C,D,B1, B2),
in which the horizontal axis and the vertical axis represent
time and displacement, respectively. A detailed description of
the space-time diagram can be found in [20,21]. Here, we
consider that the timing of the third pulse has been artificially
controlled to produce a time delay of �T , making the two
pulse separations T and T + �T , respectively. This pulse time
delay is just adjusted at some point close to the location of the
phase-locked photodiode. Because of the FSL, the pulses also
take a certain amount of time to propagate to the actual location
of the moving atom, which is the FSL time delay. We denote
the FSL time delays of two pulse separations by δT1 and δT2.
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Since the two moving paths for atoms are very close to each
other, we can ignore the recoiling effect and regard the atoms as
moving along the average path. Then, the space-time diagram
in Fig. 3(a) can be simplified with the average-path method as
in Fig. 3(b). Here, pulse separations T1 and T2 can be written
as

T1 = T + δT1, T2 = T + �T + δT2. (2)

Assuming that �r(0) = 0 and �v0 respectively represent the initial
displacement and velocity of the atom, we can derive the
trajectory of the atom as �r(t) = �v0t + �gt2/2. Therefore, the
FSL time delays can be written as

δT1 = �r(T ) · �ec

c
=

(�v0T + 1
2 �gT 2

) · �ec

c
, (3)

with c being the speed of light and

δT2 = �r(2T + �T ) · �ec

c
− δT1 ≈

(�v0T + 3
2 �gT 2

) · �ec

c
. (4)

Here, we have kept the expression to the term of 1/c and
omitted the small coupling term between �T and 1/c. In the
following, we analyze the FSL effect and pulse time-delay
effect in the average-path method, where the total interference
phase is approximately contributed by the three Raman light
pulses and the mass-difference effect of atoms.

III. PULSE TIME-DELAY EFFECT AND FSL EFFECT
IN ATOM GRAVIMETERS WITH THE CONTINUOUS

CHIRP OF RAMAN PULSES

In this section, we calculate the phase shifts due to the pulse
time delay and FSL in atom gravimeters and focus on making
clear what causes the FSL effect and explaining the interesting
phenomenon that although the pulse time delay is adjusted
to about several thousand times the FSL time delay, the FSL
effect introduces a significant bias in the g measurement, while
the pulse time delay contributes a negligible effect.

To derive the contribution of the pulse time delay and the
FSL effect in atom gravimeters, we should calculate the final
interference phase shift after the two pulse separations, which
is approximately contributed by the three Raman light pulses
and the mass-difference effect of atoms. As the Doppler shift
is produced by the atom moving, frequency chirps are usually
applied to Raman lasers to compensate the Doppler shift. Thus,
the effects related to the frequency chirps should also be taken
into account.

First, we consider the phase of the effective Raman light
field with the frequently used continuous chirps of the Raman
pulses. We define tr as the reference point of frequency chirps,
ω10 (ω20) as the frequency of the �k1 (�k2) light at t = tr , and
α1 (α2) and �n1 (�n2) as the frequency chirp and propagating
direction of Raman beam �k1 (�k2), respectively. In this paper,
we choose the reference point of frequency chirps at the π

pulse, i.e., tr = T1 = T + δT1. The phases of the two Raman
lights can be described as [20]

�1(t,�r) ≈ �k1(t) · �r −
∫

ω1(t)dt

= ω10 + α1(t − tr )

c
�n1 · �r

−
[
ω10(t − tr ) + 1

2
α1(t − tr )2

]
(5)

and

�2(t,�r) ≈ �k2(t) · �r −
∫

ω2(t)dt

= ω20 + α2(t − tr )

c
�n2 · �r

−
[
ω20(t − tr ) + 1

2
α2(t − tr )2

]
, (6)

where we have ignored the initial phases and kept the
expressions to the term of 1/c. Therefore, the phase for the
effective light field is

ϕlaser(t,�r) = �1(t,�r) − �2(t,�r)

≈ ω10�n1 − ω20�n2 + (α1�n1 − α2�n2)(t − tr )

c
· �r

−
[

(ω10 − ω20)(t − tr ) + 1

2
(α1 − α2)(t − tr )2

]
,

(7)

with the effective wave vector

�keff(t) ≡ �k1(t) − �k2(t)

= ω10�n1 − ω20�n2 + (α1�n1 − α2�n2)(t − tr )

c
. (8)

Therefore, inserting Eqs. (2), (3), and (4) into Eq. (7), we can
derive the phase shift introduced by three Raman pulses as

�φlaser = 2ϕlaser[T1,�r(T1)] − ϕlaser[0,�r(0)] − ϕlaser[T2 + T1,�r(T2 + T1)]

≈ −�k0 · �gT 2 + (α1 − α2)T 2 − �k0 · �vπ�T − [�k0 · �g − (α1 − α2)]T �T − 1

2
[�k0 · �g − (α1 − α2)]�T 2

− �k0 · �gT 2 3�vπ · �ec

c
− (α1�n1 − α2�n2)T 2 · 2�vπ

c
+ (α1 − α2)T 2 2�vπ · �ec

c

+ (ω10 − ω20)�T + ω10 − ω20

c
�gT 2 · �ec, (9)

which has been kept to second order in �T and first
order in 1/c. Note that we also ignored the coupling term

between �T and 1/c since it is so tiny. Here, �k0 = (ω10�n1 −
ω20�n2)/c and �vπ = �v0 + �g(T + δT1) represent the effective
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wave vector and the velocity of atoms at the π pulse,
respectively.

In nature, atoms in different states possess different internal-
state energies, which contributes a mass-difference effect to the
gravity measurement. Denoting the internal energy of the two
hyperfine energy states for atoms by h̄ωe and h̄ωg , we can
write the mass-difference effect as

�φm = −(ωe − ωg)�T − ωe − ωg

c
�gT 2 · �ec. (10)

The detailed calculation can be found in our previous work
(see Sec. III C 4 in [20]). When a detuning δ from the exact
Raman resonance condition for the Raman pulse at the top of
the atom fountain is considered, the following relation can be
derived:

ω10 − ω20 = ωe − ωg + δ + �k0 · �vπ . (11)

Then, combining Eqs. (9), (10), and (11), we can approxi-
mately obtain the total interference phase shifts as

��total ≈ �φlaser + �φm

≈ −�k0 · �gT 2 + (α1 − α2)T 2 − �k0 · �vπ�T − [�k0 · �g − (α1 − α2)]T �T − 1

2
[�k0 · �g − (α1 − α2)]�T 2

− �k0 · �gT 2 3�vπ · �ec

c
− (α1�n1 − α2�n2)T 2 · 2�vπ

c
+ (α1 − α2)T 2 2�vπ · �ec

c
+ δ�T + δ

�gT 2 · �ec

c

≡ −�k0 · �gmeasuredT
2 + (α1 − α2)T 2. (12)

Further, the complete vectorial expression for the measured gravitational acceleration can be derived as

�gmeasured · �ek ≈ �g · �ek

[
1 +

�k0 · �g − (α1 − α2)
�k0 · �g

�T

T
+ 1

2

�k0 · �g − (α1 − α2)
�k0 · �g

(
�T

T

)2

− δ

�k0 · �gT 2
�T

+ 2�vπ · �ec

c
− α1 − α2

�k0 · �g
2�vπ · �ec

c
+ α1�n1 − α2�n2

�k0 · �g · 2�vπ

c
− δ

�k0·�gT 2

�gT 2 · �ec

c

]
, (13)

with �ek = (�n1 − �n2)/|�n1 − �n2| being the direction of the
effective wave vector.

For Eq. (13), the first-line corrective terms are related to
the pulse time delay �T , and the second-line corrective terms
belong to the FSL effect. Usually, the measured g is determined
by finding the chirp rate at which a continuous chirp of the
Raman frequency exactly cancels the gravity-induced Doppler
shift, i.e., α1 − α2 = �k0 · �g. Therefore, the pulse time delay
affects the gravity measurement mainly via the coupling
term between the detuning δ and �T ; however, the FSL
effect influences the gravity measurement mainly through the
corrective term related to α1�n1 − α2�n2 and the coupling term
between the detuning δ and the FSL time delay (δT1 and
δT2). In general, the detuning of the Raman pulse is extremely
small since the resonance of the Raman pulse can be located
accurately with the velocity preselection of atoms. Therefore,
although the pulse time delay is about several thousand times
the FSL time delay, the FSL effect introduces a significant
bias in the g measurement, which is mainly contributed by
the FSL corrective term related to α1�n1 − α2�n2, while the
pulse time delay contributes a negligible effect δ�T . In

addition, from Eq. (13), the δ-independent FSL correction
can be eliminated by making the interferometer symmetric
(the π Raman pulse is exactly at the top of the atomic
fountain) to make υπ = 0, which is similar to the situation
mentioned in [31], where the FSL correction cancels with
other relativistic corrections when appropriate pulse times are
used. The δ-dependent FSL correction can be compensated by
appropriately adjusting the pulse times.

Based on the above analysis, one may want to make clear
two questions: first, what is the FSL effect, and second, can
the FSL time delay and the pulse time delay be regarded as
quantitatively equivalent? Furthermore, how to experimentally
verify the FSL effect and pulse time-delay effect is also
extremely important to explore.

A. What is the FSL effect in atom gravimeters?

In this section, we discuss the physical origins of the FSL
effect in atom gravimeters. Take the phase of the effective
light field at the third Raman pulse, for example. According to
Eq. (7), we can derive

ϕlaser[T1 + T2,�r(T1 + T2)] =
[
�k0 + (α1�n1 − α2�n2)T

c

]
·
{

�vπ [T + �T + (δT2 − δT1)] + 1

2
�g[T + �T + (δT2 − δT1)]2

}

−
{

(ω10 − ω20)[T + �T + (δT2 − δT1)] + 1

2
(α1 − α2)[T + �T + (δT2 − δT1)]2

}
. (14)
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Based on Eq. (11), δ and �k0 · �vπ can be separated from ω10 − ω20. Then, comparing Eqs. (13) and (14), we can well understand
the origins of relative FSL corrective terms in Eq. (13):

2�vπ · �ec

c
← the coupling of �k0 and (�vπ + �gT )(δT2 − δT1) and the coupling of �k0 · �vπ and δT2 − δT1,

−α1 − α2

�k0 · �g
2�vπ · �ec

c
← the coupling of α1 − α2 and δT2 − δT1,

α1�n1 − α2�n2

�k0 · �g · 2�vπ

c
← the contribution of the changes in the Raman wave vector

(α1�n1 − α2�n2)T

c
,

− δ

�k0 · �gT 2

�gT 2 · �ec

c
← the coupling of δ and δT2 − δT1, (15)

From Eq. (15), the FSL effect in atom gravimeters is caused not
only by the retardation effects (δT1 and δT2) due to the finite
speed of light but also by the changes in the Raman wave
vector (α1�n1 − α2�n2)T /c. Therefore, the FSL effect cannot be
simply called the FSL time-delay effect. In fact, the changes
in the Raman wave vector (α1�n1 − α2�n2)T /c are somewhere
close to the location of the phase-locked photodiode and will
also take some time to propagate to the actual location of the
atom because of the finite speed of light. However, this coupled
delay effect is so tiny that it can be absolutely ignored.

In addition, from Eq. (15), we find the FSL time delay (δT1

and δT2) has the same influencing mechanism as the pulse
time delay (�T ) on the gravity measurement. Therefore, the
FSL time delay and the pulse time delay can be regarded as
quantitatively equivalent.

B. Characteristics of the FSL effect in atom gravimeters

In this section, we analyze the characteristics of the FSL
effect in atom gravimeters. We analyzed the FSL effect in atom
gravimeters in our previous work [20] with the special case
δ = −�k0 · �vπ (Raman lights are resonant at the π pulse) and
�ec = �n1 (the �k1 light is the control light). According to Eq. (13),
we obtain a more complete expression for the measured gravity
acceleration including the FSL correction as

(�gmeasured · �ek)FSL ≈ �g · �ek

[
1 + 2�vπ · �ec

c
− α1 − α2

�k0 · �g
2�vπ · �ec

c

+ α1�n1 − α2�n2

�k0 · �g · 2�vπ

c
− δ

�k0·�g
�g · �ec

c

]
.

(16)

Based on Eq. (16), the FSL effect in atom gravimeters depends
on the directions of not only the two Raman lights �n1 and �n2

but the control light �ec. Combined with the experimental setup,
the direction of the control light �ec is decided by the position
configuration of the reflecting mirror (see the discussion in
Sec. II), and the directions �n1 and �n2 of the two Raman lights
are related to the orientation of the effective wave vector �k0.
Thus, one can modulate the propagating directions of the lights
involved in the measurement process, which can be achieved
by changing the experimental configuration.

With the condition α1 − α2 = �k0 · �g, Eq. (16) can be further
simplified as

gFSL ≈ g

[
1 + α1�n1 − α2�n2

�k0 · �g · 2�vπ

c
− δ

�k0·�g
�g · �ec

c

]
, (17)

where gFSL ≡ (�gmeasured · �ek)FSL and g ≡ �g · �ek . In the fol-
lowing, we study the FSL effect with different experimental
configurations, where we use the following conventions: the
direction of vπ is upward, α1 − α2 = �k0 · �g, the symbol ↑
(↓) denotes that the orientation of the effective wave vector
�k0 = �k1(T1) − �k2(T1) is upward (downward), and “bottom”
(“top”) denotes the reflecting mirror is at the bottom (top)
of the device.

1. FSL effect in the configuration with the reflecting mirror
at the bottom of the device

In this section, we discuss the FSL effect in the configura-
tion where the reflecting mirror is at the bottom of the device.
As shown in Fig. 4, the direction �ec of the control light (�k1) in

FIG. 4. Configurations for the reflecting mirror in an atom
gravimeter being at the bottom of the device. The orientation of
the effective wave vector �k0 is upward in (a) and downward in (b).
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this configuration is upward. Next, we consider the FSL effect
with different orientations of the effective wave vector �k0.

When the orientation of �k0 is upward [see Fig. 4(a)], the
gravitational acceleration including the FSL effect can be
written as

(gFSL)↑bottom ≈ g

[
1 + 2

vπ

c

(
α1 + α2

α1 − α2

)
↑

+ gδ

c(α1 − α2)↑

]
.

(18)

Similarly, when the orientation of �k0 is downward [see
Fig. 4(b)], the gravitational acceleration including the FSL
effect can be written as

(gFSL)↓bottom ≈ g

[
1 + 2

vπ

c

(
−α1 + α2

α1 − α2

)
↓

+ gδ

c(α1 − α2)↓

]
.

(19)

In the experiment measuring g with atom gravimeters, the
signs of the frequency chirps applied to the two counterprop-
agating Raman lights in Figs. 4(a) and 4(b) are opposite since
the orientations of �keff in the two cases are reversed. Therefore,
we can derive the following relation:

(α1)↑ = −(α1)↓, (α2)↑ = −(α2)↓. (20)

According to Eqs. (18), (19), and (20), with the two con-
figurations of the effective wave vector �k0, the FSL effect
can be removed when calculating the averaged value ḡFSL =
1
2 [(gFSL)↑bottom + (gFSL)↓bottom]. Alternatively, this effect can be

obtained by calculating half the difference (gFSL)↑bottom −
(gFSL)↓bottom.

2. FSL effect in the configuration with the reflecting mirror
at the top of the device

Analogous to the analysis in last section, we discuss the
FSL effect in the configuration where the reflecting mirror is
at the top of the device in this section. As shown in Fig. 5,

FIG. 5. Configurations of the reflecting mirror in an atom
gravimeter being at the top of the device. The orientation of the
effective wave vector �k0 is upward in (a) and downward in (b).

the direction �ec of the control light (�k2) in this configuration is
downward. Next, we also consider the FSL effect with different
orientations of the effective wave vector �k0.

When the orientation of �k0 is upward [see Fig. 5(a)], the
gravitational acceleration can be written as

(gFSL)↑top ≈ g

[
1 + 2

vπ

c

(
α1 + α2

α1 − α2

)
↑

− gδ

c(α1 − α2)↑

]
. (21)

When the orientation of �keff is downward [see Fig. 5(b)], the
gravitational acceleration can be written as

(gFSL)↓top ≈ g

[
1 + 2

vπ

c

(
−α1 + α2

α1 − α2

)
↓

− gδ

c(α1 − α2)↓

]
.

(22)

Similarly, the FSL effect can also be removed or obtained
by performing a summation or difference between Eqs. (21)
and (22).

3. A simple discussion of the characteristics of the FSL effect
in atom gravimeters

Based on the analysis above, the FSL effect in atom
gravimeters depends on the orientations of the control light
and the effective wave vector, and each corrective term in
Eq. (17) may be measured separately by making a differential
measurement between different configurations: taking the
difference between the measurement results of Figs. 4(a)
and 5(a) or Figs. 4(b) and 5(b), one can derive the FSL
correction related to the coupling between the detuning δ

of the Raman pulse and the FSL time delay; performing
a differential measurement between Figs. 4(a) and 5(b) or
Figs. 4(b) and 5(a), one can obtain the FSL corrective term
related to the changes in the effective wave vector (this term has
been experimentally verified in [17]). Moreover, combining
the configurations in Figs. 4(a) and 4(b) or Figs. 5(a) and 5(b),
one can derive the total FSL correction.

FIG. 6. Configuration of the frequency changes of the Raman
pulses with the two frequency-chirp modes. Here, the green linear
line represents the continuous-chirp mode, and the red folded line
represents the stepped-chirp mode. t

jump
1 and t

jump
2 are the frequency-

switching moments in the stepped-chirp mode. ω10 − ω20 represents
the frequency difference of two Raman beams at the π pulse, and �ω

is the difference between the frequency differences at any adjacent
pulses.
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IV. PULSE TIME-DELAY EFFECT AND FSL EFFECT
IN ATOM GRAVIMETERS WITH THE STEPPED CHIRP

OF RAMAN PULSES

In Sec. III, we discussed the pulse time-delay effect and
the FSL effect in atom gravimeters with the continuous
chirp of Raman pulses, where we focused on interpreting
what the FSL effect is and proposing a possible experiment-
verification scheme. As the pulse time-delay effect with this
chirp mode affects the gravity measurement by the small
coupling term δ�T , it is difficult to perform the related
experimental verification. In this section, we mainly analyze

the pulse time-delay effect and the FSL effect in atom
gravimeters with the stepped chirp of Raman pulses, attempt-
ing to explore the scheme for testing the pulse time-delay
effect.

Different from the continuous-chirp mode, in which the fre-
quencies of Raman pulses linearly vary, the stepped frequency
chirp switches the frequencies of Raman pulses between three
fixed frequencies (see Fig. 6). Assuming the increments of
the frequency and the wave vector for the effective light filed
are �ω and ��k, respectively, we can write the phases of the
effective light field at three pulses as

ϕlaser[0,�r(0)] = 0,

ϕlaser[T1,�r(T1)] = �k0 · �r(T1) − (ω10 − ω20)
(
T1 − t

jump
1

) − (ω10 − ω20 − �ω)t jump
1 , (23)

ϕlaser[T1 + T2,�r(T1 + T2)] = (�k0 + ��k) · �r(T1 + T2) − (ω10 − ω20 + �ω)
(
T1 + T2 − t

jump
2

) − (ω10 − ω20)
(
t

jump
2 − T1

)
,

where we have chosen (t = 0,�r = �0) as the origin. Then, we can derive the phase shift of the Raman pulses as

�φlaser = 2ϕlaser[T1,�r(T1)] − ϕlaser[0,�r(0)] − ϕlaser[T1 + T2,�r(T1 + T2)]

≈ −�k0 · �gT 2 − �k0 · (�vπ + �gT )�T − 1

2
�k0 · �g�T 2

− �k0 · �gT 2 3�vπ · �ec

c
− ��k · 2�vπT + �ω

(
T1 + T2 − t

jump
2 + t

jump
1

)+(ω10 − ω20)(�T + δT2 − δT1). (24)

Combining Eqs. (10), (11), and (24), we can approximately obtain the total phase shift as

��total ≈ �φlaser + �φm ≈ −�k0 · �gT 2 − �k0 · �gT �T − 1

2
�k0 · �g�T 2 − �k0 · �gT 2 2�vπ · �ec

c
− ��k · 2�vπT

+�ω
(
T1 + T2 − t

jump
2 + t

jump
1

)+δ�T + δ
�gT 2 · �ec

c
. (25)

If �ω = (α1 − α2)T and ��k = (α1�e1 − α2�e2)T/c, based on ��total ≡ −�k0 · �gmeasuredT
2 + (α1 − α2)T 2, the vectorial expression

for the measured gravitational acceleration in the stepped-chirp mode can be derived as

�gmeasured · �ek ≈ �g · �ek

[
1 − α1 − α2

�k0 · �g
T − t

jump
2 + t

jump
1

T
+

�k0 · �g − (α1 − α2)
�k0 · �g

�T

T
+ 1

2

(
�T

T

)2

− δ

�k0 · �gT 2
�T

+ 2�vπ · �ec

c
− α1 − α2

�k0 · �g
2�vπ · �ec

c
+ α1�n1 − α2�n2

�k0 · �g · 2�vπ

c
− δ

�k0·�gT 2

�gT 2 · �ec

c

]
. (26)

Through comparison, the pulse time-delay effect in the
continuous-chirp mode mainly influences the g measurement
via the small coupling term δ�T [see Eq. (13)], while the
situation is slightly different when the stepped-chirp mode is
used. In this case, an additional quadratic correction [15,16]
of �T enters except for the small coupling term. Therefore,
one can modulate �T to verify the pulse time-delay effect
experimentally.

V. SUMMARY

In this paper, we focused on studying the relationship
between a time delay and the FSL effect. Based on the analysis,
the FSL effect actually affects the gravity measurement in
two ways: the time delay due to the FSL and the changes
in the effective wave vector, in which the latter usually
dominates. Furthermore, we found that the FSL time delay can
be quantitatively regarded as equivalent to the pulse time delay

since both of them actually affect the gravity measurement by
changing the two pulse separations.

In addition, we discussed possible experimental schemes
for verifying the FSL effect and the pulse time-delay effect.
Based on the characteristics of the FSL effect in atom
gravimeters, depending on the orientations of the lights in
the measurement process, each FSL corrective term can be
measured separately by making a differential or common mode
measurement for different experimental configurations. The
pulse time-delay effect can be experimentally verified with the
stepped-frequency-chirp mode.
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