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Nonadiabatic losses from radio-frequency-dressed cold-atom traps:
Beyond the Landau-Zener model
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Nonadiabatic decay rates for a radio-frequency-dressed magnetic trap are calculated using Fermi’s golden
rule: that is, we examine the probability for a single atom to make transitions out of the dressed trap and into
a continuum in the adiabatic limit, where perturbation theory can be applied. This approach can be compared
to the semiclassical Landau-Zener theory of a resonant dressed atom trap, and it is found that, when carefully
implemented, the Landau-Zener theory overestimates the rate of nonadiabatic spin-flip transitions in the adiabatic
limit. This indicates that care is needed when determining requirements on trap Rabi frequency and magnetic-field
gradient in practical atom traps.
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I. INTRODUCTION

The control of ultracold atomic systems holds great promise
for applications in quantum technology such as sensors for
gravity, magnetism, and motion. Magnetic trapping is one
of the ways of both trapping and controlling the atoms.
However, by introducing radio-frequency (rf) fields [1,2] we
can form adiabatic, or dressed, potentials, which offer a high
degree of control over trapping topology and hold promise
for becoming a standard tool for manipulating atoms and
atom interferometry. This particular type of cold-atom trap
was suggested by Zobay and Garraway in 2001 [3] and first
experimentally achieved in Paris in 2003 [4,5]. The trapping
potential is created by the atomic interaction with applied
magnetic and rf fields such that the potential depends on the
atomic Zeeman state.

However, atoms may be completely lost from the trap if
they undergo a transition from a spin state associated with
a trapping adiabatic potential to an untrapped spin state. In
general, this can happen because an atom travels “too fast”
so that the normal adiabatic following cannot take place. A
moving atom could experience a rapid change in the local
magnetic field amplitude or direction as its position changes.
Or the atom could similarly experience a rapid change in the
rf amplitude or polarization as it moves. This is motivated by
experiments [5,6] and the need for a greater understanding of
nonadiabatic losses as the technique of adiabatic potentials is
used in ways that require working to the limits of adiabaticity.
In particular, we will present full quantum calculations, but
because of the complexity of the problem we make a one-
dimensional model. Our full problem has gravity present, and
so the 1D model is presented for two different orientations
which relate to experiments (i.e., horizontal [7,8] and vertical
orientations [5]). We then benchmark the 1D model to the
much simpler and widely known Landau-Zener model [9,10],
which presents a semiclassical approach.

In the related case of static magnetic-field traps, loss rates
have been calculated previously [11,12]. However, in the
present paper a theory is presented for the rate of nonadiabatic
transitions between dressed spin states for rf-dressed cold-
atom traps. In the following Sec. II we will recall the principle

of rf-dressed magnetic traps and then we give the predictions
of Landau-Zener theory in Sec. III. Section IV presents the
quantum treatment of nonadiabatic losses from the trap, which
is compared to the predictions of Landau-Zener theory in
Sec. V. Finally, we conclude the paper in Sec. VI.

II. BASICS OF ADIABATIC POTENTIALS

A single nonrelativistic atom with mass M is trapped in the
z direction by an adiabatic potential arising from its interaction
with two fields: a static magnetic field and an rf field. The total
Hamiltonian describing this problem is given by [1,2,13]

Ĥtot = p̂2
z

2M
+ gF

μB

h̄
F · B(ẑ) + gF

μB

h̄
F · Brf(t) + Mgẑ.

(1)

This forms the 1D model which we study. The first term in
the Hamiltonian (1) is the atom’s kinetic energy, where p̂z

is the momentum operator in the z direction. The second
term describes how the atom responds to a static magnetic
field B(z). The total angular momentum of the atom is F in
multiples of h̄, μB is the Bohr magneton, and gF is the Landé
factor. The third term in Eq. (1) represents the corresponding
interaction with a uniform rf field, and the last term is the
gravitational potential of the atom where g is the gravitational
acceleration. This last term may be present, or not, depending
on the orientation of the direction of 1D trapping with respect to
local gravity. We will consider two particular cases: in the case
where the trapping direction is perpendicular to local gravity
we will refer to a horizontal trapping model, where g = 0 in
Eq. (1); otherwise, we refer to a vertical trapping model (where
the direction of motion will still be z). By considering a purely
one-dimensional model we will be neglecting the possibility
for a change in orbital angular momentum in the trap, which
could be possible if motion in other directions is also included
(for the pure magnetic trap case, see Refs. [11,12]).

An rf-dressed adiabatic potential results from the Hamilto-
nian of Eq. (1) when either the static or the rf field (or both)
vary with position [1–3,14]. In this paper we consider a static
magnetic field of the form B(z) = B(z)ez, which can be found,
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for example, on axis in a quadrupole field. The direction of this
field is fixed, but the variation of the magnitude of the field with
z plays a crucial role in this paper. We take the radio-frequency
(rf) magnetic field to have the form Brf (t) = Brf cos(ωrf t)ex ,
which gives maximal coupling for a linearly polarized field.
Other polarizations are possible without significant change to
the details below [2]. The applied rf field induces the atoms
to undergo transitions between the different Zeeman states
within a single hyperfine spin manifold such that the atoms
are confined and forced to oscillate near the location where
the frequency of the applied rf field matches the frequency
splitting of the Zeeman sublevels [1,2].

In the analysis here the rf field is treated classically and Brf

is position independent (which is suitable for rf fields generated
by macroscopic coils, but not generally suitable for atom chip
cases where the rf field is generated “on chip” [6,15]). To obtain
the adiabatic potentials we first utilize a unitary transformation

Û1 = exp

(
−is

ωrft

h̄
F̂z

)
, (2)

where the quantity s represents the sign of gF , i.e.,

s = gF

|gF | . (3)

Using this spin rotation to change our basis we obtain a
transformed Hamiltonian via Ĥ ′

tot = Û
†
1 ĤtotÛ1 − ih̄Û

†
1∂t Û1.

Then, after also making the rotating wave approximation
(RWA) we find [1,2]

Ĥ ′
tot = p̂2

z

2M
+ ĤRWA + Mgẑ, (4)

where

ĤRWA = s[−δ(ẑ)F̂z + �0F̂x]. (5)

We note that, in anticipation of Sec. IV, the unitary transfor-
mation Û1 commutes with the momentum operator p̂z, which
leaves the kinetic operator unchanged in Eq. (4). The Rabi
frequency �0 is used as a measure of the strength of the
coupling between the rf field and the atom and is given by
�0 = |gF |μB

2h̄
Brf . The detuning, i.e., the frequency difference

between the Zeeman split energy levels at z and the rf field
frequency of oscillation, is given by

δ(z) = ωrf − |gF μBB(z)|
h̄

. (6)

We will pay attention to the kinetic term in Eq. (4) in
Sec. IV A. If we, for now, neglect the kinetic term, and consider
the absence of any coupling, i.e., �0 −→ 0, we obtain from
Eq. (4) the uncoupled or “bare” potentials,

−mF sh̄δ(z) + Mgz. (7)

In the presence of a coupling �0, but still neglecting the kinetic
term, the Hamiltonian (4) can be diagonalized at any given
position z. We use a time-independent spin rotation Û2 about
the y axis with an angle θ , so that [2]

Û2 = exp(−iθ (ẑ)F̂y/h̄), (8)

where

θ (z) = arccos

⎛
⎝− δ(z)√

δ(z)2 + �2
0

⎞
⎠+ s − 1

2
π (9)

and s is the sign introduced in Eq. (3). Thus we obtain for the
Hamiltonian in the adiabatic approximation

Ĥeff = Û
†
2 ĤRWAÛ2 + Mgẑ

=
√

δ(ẑ)2 + �2
0 F̂z + Mgẑ, (10)

which leads to the adiabatic potentials

Vm′
F
(z) = m′

F h̄

√
δ2(z) + �2

0 + Mgz, (11)

which are trapping potentials for m′
F > 0. These potentials

form our underlying atom trap, and are illustrated in Fig. 1 for
an example with δ varying linearly in space. To understand
the process of decay from these traps we must account for
the kinetic term neglected to reach Eq. (11). We will do this
in Sec. IV. However, we will first look at the semiclassical
Landau-Zener analysis of the situation.

III. LANDAU-ZENER THEORY

The original Landau-Zener model [9,10] is a two-level
time-dependent model in which the coupling between the
two levels is constant and the time-dependent bare potentials
change linearly in time. We can apply it to the simplified
situation of Fig. 1 by assuming that the spatial potential h̄δ(z)
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FIG. 1. Bare and adiabatic potentials V as a function of atomic
position z for an atom with total angular momentum F = 1 in an
rf-dressed cold-atom trap. The gravitational potential is included and
results in the slope of the coincident potentials labeled mF = 0 and
m′

F = 0. Blue dashed lines show the potentials given in Eq. (7), with
the crossing point necessary for Landau-Zener theory, and labeled
mF = −1,0,1. The solid black lines show the adiabatic potentials in
the dressed state basis given by Eq. (11) and labeled m′

F = −1,0,1.
To give a concrete example, we use values taken from Ref. [16],
i.e., for a 87Rb atom and a magnetic-field gradient of B ′ = 1.1 T/m
resulting in a detuning which varies linearly with position. The Rabi
frequency is set to �0/2π = 8 kHz for this graph.
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is linearized about the resonance location at z = 0 so that

δ(z) ∼ δ′(0)z = ±αz, (12)

where the prime indicates differentiation with respect to z and
the “±” is to account for a different sign of the gradient of δ(z)
while keeping the magnitude of the gradient, α, positive so
that α = |δ′(0)|. A constant gradient is, for example, exactly
the situation on axis in a quadrupole trap [13,16] where α =
|gF μBB ′|/h̄, with B ′ = ∂B

∂z
being the magnetic-field gradient

in the z direction.
The Landau-Zener model assumes that the atom travels at

constant speed on a linear potential, at least for the duration
of the crucial region around δ = 0 (the “crossing point” of
the “bare” states in Fig. 1 where there is magnetic resonance).
These are very crude approximations, but the model then yields
the probability for an atom to make a transition out of the
adiabatic state it would be following when it is away from the
resonance location. The Landau-Zener model is commonly
used to estimate the significance of nonadiabatic losses from
rf-dressed cold-atom traps [14,17] by combining the transition
probability with the number of crossings per unit time due to
the atom oscillating in the adiabatic trap. For the Landau-Zener
model, we again neglect the kinetic term in Eq. (4) and taking
F = 1

2 , together with a speed v such that z(t) ∼ vt , we obtain

HLZ = h̄

2

(
αvt �0

�0 −αvt

)
+ Mgvt. (13)

Following the Landau-Zener model [1,9,10,18–22], the prob-
ability for remaining in the adiabatic state is given by

PLZ(v) = 1 − exp

(
−π�2

0

2αv

)
. (14)

Gravity does not play a role in this Landau-Zener model as it
is assumed that the atom passes through the crossing point at
z = 0 and the factor Mgvt just introduces a global phase factor.
In the original two-level model there is also an assumption that
the atom does not return through the crossing. If it does, there
can be interference effects due to the differing phase factors at
the crossing [23,24]. As we will be working in the adiabatic
limit, we will neglect these phase factors, even though the atom
will be, in reality, oscillating in the adiabatic potential. The
work in Refs. [23,24] shows that the Landau-Zener probability
PLZ still plays a key role.

The standard Landau-Zener model only considers crossings
between two energy levels; however, Vitanov and Suominen
[25] have extended the model to account for a crossing
involving 2F + 1 energy levels. If we consider first a single
pass of the atom through the crossing region, the probability
that an atom remains in the initial extremal adiabatic state
is given by P F

LZ(v) = [PLZ(v)]2F [25]. We now repeat the
argument: every time the atom traverses the crossing, the
probability of being lost from the initial adiabatic state is
1 − P F

LZ. Thus, to obtain an estimate of the decay rate, it is
necessary only to consider how many times the atom will
“pass” the crossing region per unit of time, taking into account
that the atom transverses the crossing region twice per period.
The decay rate from the Landau-Zener model as a function of

atomic speed v is then given by

	LZ(v) = ωz

π

[
1 −

[
1 − exp

(
−π�2

0

2αv

)]2F
]
, (15)

where ωz is the oscillation frequency in the dressed trap. This
can be estimated from the classical motion of a particle in the
potential. For a trap which already has a sufficiently strong
coupling to be approximately adiabatic, the exponential term
is very small and we then obtain the very small decay rate

	LZ(v) ≈ 2ωzF

π
exp

(
−π�2

0

2αv

)
. (16)

Noting that the speed v in Eq. (13) is defined on the bare
potentials, we can write Eq. (16) in terms of the approximate
total energy E = 1

2Mv2 of the atom in the bare state referenced
to zero potential at the crossing, i.e., as

	LZ(E) ≈ 2ωzF

π
exp

(
−π�2

0

2α

√
M

2E

)
. (17)

This suggests that for adiabatic trapping a strong Rabi
frequency �0 is desirable, as is a low gradient α and low
energies E.

IV. QUANTUM DYNAMICS IN THE 1D TRAP

To perform a quantum-mechanical analysis of the Hamil-
tonian (4) and decay from the adiabatic trap we again
approximately diagonalize Eq. (4), this time including the
kinetic term. We again use the rotation Û2, Eq. (8), and we
note that the position dependence of the angle θ (z), Eq. (9),
prevents the unitary transformation Û2 from commuting with
the momentum operator. The origin of this is the spatial
dependence of the static field amplitude B(z). Thus, to
determine the effect of the unitary transformation Û2 on the
Hamiltonian (4), we will need to use the relation Û

†
2 p̂zÛ2 =

p̂z − θ ′(ẑ)F̂y . As a result, we find that the Hamiltonian for a
single atom, already loaded into an rf-dressed cold-atom trap,
can be expressed by

Ĥ = p̂2
z

2M
+ V̂AF̂y + V̂BF̂ 2

y +
√

�2
0 + δ(ẑ)2F̂z + Mgẑ,

(18)

where

V̂A = − 1

2M
(2θ̂ ′p̂z − ih̄θ̂ ′′) → ih̄

2M

(
2θ ′ ∂

∂z
+ θ ′′

)

= ih̄

2M

[
2δδ′2�0(
�2

0 + δ2
)2 − δ′′�0

�2
0 + δ2

− 2δ′�0

�2
0 + δ2

∂

∂z

]
(19)

and

V̂B = (θ̂ ′)2

2M
→ 1

2M

δ′2�2
0(

�2
0 + δ2

)2 , (20)

with a prime indicating differentiation by z and with θ̂ ′ ≡ θ ′(ẑ).
The gauge potential terms given by V̂AF̂y and V̂BF̂ 2

y are
often neglected to consider the Hamiltonian in the adiabatic
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approximation. Here we shall use the nonadiabatic Hamilto-
nian to model the losses from an rf-dressed trap caused by
transitions between dressed spin states. Equation (18) applies
for general δ(z), but in the case where δ(z) is linearized,
as in Eq. (12), the first-order derivative is constant and the
second-order δ′′ is zero. In this case we can see from Eqs. (19)
and (20) that V̂A is an odd function of z and V̂B is an even
function of z. As a result, in the treatment below, V̂A will
couple states of opposite parity and V̂B will couple states of
the same parity. Expressing the Hamiltonian as

Ĥ = p̂2
z

2M
+
√

�2
0 + δ(ẑ)2F̂z + Mgẑ + V̂A

2i
(F̂+ − F̂−)

+ V̂B

2

(
F̂ 2 − F̂ 2

z

)− V̂B

4
(F̂ 2

+ + F̂ 2
−), (21)

where F̂± = F̂x ± iF̂y and F̂ 2 = F̂ 2
x + F̂ 2

y + F̂ 2
z , it can be

seen that V̂A gives the coupling between states with |
m′
F | = 1

and V̂B gives both an energy shift and the coupling between
states with |
m′

F | = 2. For an F = 1 system, as displayed in
Fig. 1 with the trapping potential defined as the case m′

F = 1,
the V̂A coupling then induces transitions to the m′

F = 0 spin
state and the V̂B coupling induces transitions to the m′

F = −1
spin state. Once in the m′

F = 0 or m′
F = −1 states, the atoms

are highly likely to travel out of the trapping region and be
permanently lost from the trap.

A. Quantum-mechanical nonadiabatic decay rates

In this section formulas for the rate of nonadiabatic spin
“flips” out of a rf-dressed cold-atom trap are obtained using
Fermi’s golden rule. This is justified in the situation where
the nonadiabatic effects act as a perturbation on the adiabatic
states.

In the following development we consider two cases:
first the horizontal trapping model (Sec. IV B), where the
orientation of the motion, perpendicular to gravity, ensures that
gravity plays no role in the dynamics. Secondly, we consider
in Sec. IV C a vertical trapping model where gravity acts to
pull atoms out of the region of rf resonance and to modify their
oscillation frequency. Interactions between the atoms are not
considered, making this analysis unsuitable for Bose-Einstein
condensates but reasonable for dilute atomic clouds comprised
of thermal atoms. In the following analytic development, for
simplicity, we also neglect the V̂B coupling term as numerical
investigations have shown it to have a small effect for the
parameters of interest. However, some of the numerical results
presented do include a contribution to the m′

F = 0,1 potentials
from the V̂B term: this contribution, a nonadiabatic potential,
is described in the Appendix.

We consider a trapped atom with F = 1 and calculate decay
rates for the rate of transitions from the m′

F = 1 dressed spin
state to the m′

F = 0 dressed spin state. With these assumptions
we use perturbation theory to derive equations which model the
rate of transitions between dressed spin states in an rf-dressed
cold-atom trap. Our analysis can be extended to other spin
systems, but note that for F > 1 transitions from the extremal
trapping potential (m′

F = F ) would not be to a continuum, as
in the case F = 1, but to m′

F = F − 1 which will have discrete
states.

Thus the unperturbed Hamiltonian for the system is taken
to be

Ĥ0 = p̂2
z

2M
+
√

�2
0 + δ(ẑ)2F̂z + Mgẑ,

with the perturbing term given by 
Ĥ = V̂AF̂y . The initial
trapping potential is then given by Vi(z) = h̄

√
�2

0 + δ(z)2+Mgz

(where g = 0 in the horizontal trapping model). For the
untrapped m′

F = 0 dressed spin state the final adiabatic
potential will be set to Vf (z) = Mgz (where again g = 0 in
the horizontal trapping model). The origin of the z axis is the
resonance location, with δ(z = 0) = 0.

For the next sections we define the following notation
where we use the product state |F = 1,m′

F = 1〉 · |�n〉 for
the nth eigenfunction of a trapped atom which is composed
of spin states |F = 1,m′

F = 1〉 and spatial states |�n〉 such
that the spatial wave function �n(z) is given by �n(z) =
〈z|�n〉. Similarly, for the untrapped spin state we will use the
product state |F = 1,m′

F = 0〉 · |�k〉 where the label k will be
associated with the outgoing momentum of the escaping atom
and the wave function �k(z) will be given by �k(z) = 〈z|�k〉.

B. Horizontal trapping model

We first consider a situation where there is in effect no
gravitational potential, such as when the trapping is in the
horizontal direction. This is the case in a ring trap [7,8] where
rf adiabatic potentials provide horizontal confinement and
optical light shifts provide vertical confinement. The situation
could also arise in a microgravity environment, or when gravity
is compensated with other fields.

A harmonic approximation of the potential h̄
√
δ(z)2 + �2

0
for the trapped m′

F = 1 state can be obtained by Taylor
expansion to give

Vi(z) = h̄�0 + 1
2Mω2

zz
2, (22)

with a trapping frequency

ωz = α

√
h̄

M�0
. (23)

Here we have used Eq. (12), δ(z) = ±αz, with positive α, and
we expect the expansion to be valid in the region |z| 	 w,
where w characterizes the range of the rf interaction and is
given by w = �0/α. The nth wave function for an atom in
the initial trapped m′

F = 1 spin state is given by the usual
harmonic-oscillator wave function

�n(z) = Hn(z/az)√
n!2naz

√
π

e−z2/(2a2
z ), (24)

with the associated energy En = (n + 1
2 )h̄ωz + h̄�0. Hn is

the Hermite polynomial of degree n and the variable az =√
h̄/(Mωz) is the standard length scale associated with the

harmonic-oscillator frequency ωz.
For our untrapped m′

F = 0 state, in the absence of gravity
the potential for the atoms is zero, i.e.,

Vf (z) = 0. (25)

However, to allow a calculation of the density of states,
we consider the system to be confined to a region
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−L/2 < z < L/2, later taking L → ∞. Starting from the
harmonic state |�n〉, with a parity (−1)n set by the index
n of the harmonic-oscillator eigenfunction, the wave function
�k(z) of the final state is then given by

�k(z) = 1√
2L

[eikz − (−1)ne−ikz], (26)

where k stands for k(n) and depends on the initial state. The
factor (−1)n ensures that the final state and the initial state
coupled by the operator V̂A have opposite parity as discussed in
Sec. IV. When we apply Fermi’s golden rule the energy Ek(n) =
h̄2k2(n)/(2M) must match the harmonic-oscillator energy of
the initial state, i.e., En = (n + 1

2 )h̄ωz + h̄�0. Thus we have

k(n)az =
√

1 + 2n + 2�0/ωz, (27)

where n corresponds to the index of the initial state |�n〉. In
the following we introduce q(n), a scaled momentum, which

stands for

q(n) = k(n)az =
√

1 + 2n + 2η2, (28)

with the dimensionless variable η = w/az being the Landau-
Zener crossing length scale w scaled to the harmonic-oscillator
length scale az. Its expression as a function of �0 and α reads

η =
(

M

h̄

)1/4
�

3/4
0

α1/2
. (29)

To apply Fermi’s golden rule we need the density of states
D(E) = ∂N

∂E
which is given by

D(E) = 1

2

L

πh̄

√
M

2E
= ML

2πh̄2k(n)
, (30)

where a factor of one-half arises because we only select states
with appropriate parity. Then, putting this all together, the
Fermi’s golden rule decay rate for an atom with initial state
|�n〉 with energy En in the horizontal trapping model is

	n = |〈m′
F =1|F̂y |m′

F =0〉|2 lim
L→∞

ML

2πh̄2k

2π

h̄

∣∣∣∣∣
∫ L

2

− L
2

�∗
n(z)V̂A�k(z)dz

∣∣∣∣∣
2

= ωz

w2az

2n+2n!k
√

π

∣∣∣∣∣∣
⎧⎨
⎩
∫ ∞

−∞

zHn(z/az)e
− z2

2a2
z

(z2 + w2)2 [eikz + (−1)n+1e−ikz]dz

− ik

∫ ∞

−∞

Hn(z/az)e
− z2

2a2
z

z2 + w2
[eikz + (−1)ne−ikz]dz

⎫⎬
⎭
∣∣∣∣∣∣
2

, (31)

where we have used |〈m′
F =1|F̂y |m′

F =0〉|2 = h̄2/2. In Eq. (31) k stands for k(n). Equation (31) is written using the dimensionless
parameters q and η as

	n = ωz

η2

2n+2n!q
√

π

∣∣∣∣
∫ ∞

−∞
duHn(u)e−u2/2

[
u(eiqu + (−1)n+1e−iqu)

(u2 + η2)2
− i

q(eiqu + (−1)ne−iqu)

u2 + η2

]∣∣∣∣
2

, (32)

where q stands for q(n), as given in Eq. (28). Numerical results obtained from Eq. (32) are presented on Fig. 2 (and also on Fig. 4
which will be discussed in the next Sec. IV C).

An analytical solution for the ground-state case with n = 0 can be found where [H0(u) = 1]. To accomplish this we use the
integrals 3.954.1 and 3.954.2 from Gradshteyn and Ryzhik [26] to find

	0 = ωz

π
3
2

16q0
eη2

{
e−ηq0 (q0 + η) erfc

[−1√
2

(q0 − η)

]
+ eηq0 (q0 − η) erfc

[
1√
2

(q0 + η)

]}2

, (33)

which is expressed in terms of “erfc,” the complementary error
function [27], the dimensionless variable η, and the scaled
dimensionless momentum q0 = k(n=0)az =

√
2η2 + 1. We see

that q0 depends on η and that q0 > η.
For higher-energy trapped atoms with n � 1 the integrals

contained within Eq. (32) can be approximated in the region
η � 5 by calculating the residue of a pole found within
them. This leads to an analytic expression for the decay rates
provided by Fermi’s golden rule for any n state [28]:

	n ≈ ωz

π
3
2

2n+2n!q
exp(η2 − 2ηq)

× |2nHn−1(iη) − i(q + η)Hn(iη)|2, (34)

where, again, q stands for q(n) = k(n)az, Eq. (28), which does
depend on η. Results from this expression are shown for a
specific example in Fig. 2 where good agreement is seen with
the numerical evaluation of Eq. (32) (solid line in that figure).

It is useful to find the �0 → ∞ and B ′ → 0 (or equivalently
α → 0) limits of Eq. (34), as it is in these regimes that cold-
atom traps favorably operate as the losses due to nonadiabatic
effects are low there. Since 	n/ωz depends only on η and n

in Eq. (34), and since η ∝ �
3/4
0 /α1/2, see Eq. (29), both limits

are found from η → ∞. The limiting behavior, valid for states
n such that n 	 η2, is then

	n/ωz ∼
η→∞

2n

n!
η2n+1e−√

2(n+ 1
2 )e−(2

√
2−1)η2

. (35)
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FIG. 2. Scaled decay rate 	n/ωz is shown as a function of the
harmonic-oscillator label n for different models. The solid line with
circles shows the result for the horizontal trapping model (h) as given
by Eq. (32). The dashed line with asterisks indicates the scaled vertical
trapping decay rates (v) as given by Eq. (47). These vertical trapping
decay rates are not a smooth function of n. We can also include
nonadiabatic potentials based on including part of V̂B and resulting in
modified parameters given in the Appendix. For the vertical trapping
model, the effect is a shift of the location of the “dips” (dotted line).
However, in the case of the horizontal trapping model, the inclusion of
these corrections produces no visible change to the solid (h) line and
is not shown. The chained lines (LZh and LZv) indicate the result of a
Landau-Zener calculation given by Eq. (51) (with ε set to zero in the
“h” case). For the parameters used (i.e., from Fig. 1) the trap frequency
was ωz/2π = 0.93 kHz for the horizontal trapping model [Eq. (23)]
and corresponding Landau-Zener model. For the case of the vertical
trapping model and its corresponding Landau-Zener curve, the trap
frequency is found from Eq. (39) to be ωz/2π = 0.87 kHz. The points
marked with small squares are given by the analytic approximation
Eq. (34). The calculations are done for the F = 1 hyperfine ground
state of 87Rb with the parameters given in Fig. 1. This corresponds
to η = �0/(αaz) ∼ 2.9 for the horizontal trapping model and, for
the vertical trapping model, η ∼ 2.8 [Eq. (49)] and ε = Mg/(h̄α) =
0.28.

We will see in Sec. V that this behavior agrees qualitatively
with our semiclassical interpretation (Sec. III). The trap
frequency (23) is increased for high magnetic-field gradient
or low Rabi frequency which raises the energy of the nth
oscillator level and increases crossing speed. Additionally,
tighter trapping potentials lead to the orientation of the local
effective magnetic-field direction changing more rapidly over
a given distance. Both of these factors result in a greater
probability for an atom to become misaligned from the local
effective magnetic-field vector, leading to greater nonadiabatic
losses as �0 → 0 or B ′ → ∞. Equation (35) is useful for
specifying the main dependence of nonadiabatic decay rates
on �0 and B ′, additionally indicating that the process is more
sensitive to Rabi frequency than magnetic-field gradient since
η2 ∝ �

3/2
0 /B ′.

C. Vertical trapping model

In the case where the z axis is oriented vertically we can
no longer neglect the effect of gravity on the location of the

equilibrium position of the atoms in the adiabatic potential.
This time the harmonic expansion yields an initial trapping
potential

Vi(z) = V0 + 1
2Mωz

2(z − z0)2, (36)

where, because of gravity, the center of the harmonic oscillator
is shifted from the origin (where there is resonance) to a point

z0 = − ε�0

α
√

1 − ε2
(37)

below the origin. The parameter ε = Mg/h̄α is introduced as
the ratio of the gravitational force to the force applied by the
magnetic-field gradient. The approximate harmonic potential
now has a modified energy offset [compared to Eq. (22)]

V0 = h̄�0

√
1 − ε2 (38)

and a modified trap frequency [16]

ωz = α

√
h̄

M�0
(1 − ε2)

3
4 . (39)

We see that if ε = 0 we recover the horizontal trapping model
result Eq. (23), and also that there is no trap unless ε < 1.
This condition is equivalent to gravity compensation by the
magnetic force in the underlying static magnetic trap, namely
h̄α > Mg.

The wave function for an atom in the initial trapped m′
F = 1

state is now a displaced harmonic-oscillator wave function,

�n(z) = Hn[(z − z0)/az]√
n!2naz

√
π

e−(z−z0)2/(2a2
z ), (40)

where az = √
h̄/Mωz should be used with the appropriate

trap frequency ωz, Eq. (39), and n is a positive integer which
selects the energy of the trapped atom from the allowed discrete
harmonic-oscillator energy levels given by the relevant En =
(n + 1

2 )h̄ωz + V0.
The potential for an untrapped atom (m′

F = 0) is now
simply

Vf (z) =
{∞, z � −L,

Mgz, z > −L.
(41)

To assist with the calculation we have introduced a distance
L to a (single) hard wall of the potential, see Fig. 3, similar
to the distance L in Sec. IV B. Later we will also let L → ∞.
The corresponding stationary Schrödinger equation in the final
state m′

F = 0 is given by

Eκ�κ (z) = − h̄2

2M

d2�κ (z)

dz2
+ Mgz�κ (z), (42)

where κ is an index labeling the final state. Equation (42) can be
written in terms of a second-order partial differential equation
for a spatially shifted Airy function, d2

dζ 2 Ai(ζ ) = ζAi(ζ ), where
the argument ζ is given by ζ = z̃ − z̃κ and we use the scaled
distance z̃ = z/�. The characteristic length of the Airy function
is linked to the atom mass and gravity through

� =
(

h̄2

2M2g

)1/3

(43)
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mF = 0

z

V(z)

z0

E0

z

Trap potential
Model potential
Trapped atom (n = 0) wave function
Untrapped atom wave function

FIG. 3. Schematic diagram showing the key wave functions and potentials Vi,f (z) in the vertical trapping model. The wave functions are
scaled to equal maximum height for comparison. The ground-state wave function of the harmonic oscillator is shown centered at z0, Eq. (37), in
its potential Vi(z), Eq. (36). The energy of the ground state is E0, as given by V0 + h̄ωz/2, Eqs. (38),(39). An energy resonant Airy function is
shown, which is an eigenstate of the linear potential Vf (z), Eq. (41). The potential “wall” on the left is located at z → −∞ in the calculations.
The eigenstate is associated with a turning point at zκ . The parameters for this figure are as in Fig. 1.

and the turning point for a classical particle is at zκ =
Eκ/Mg = z̃κ�. Fermi’s golden rule will require energy match-
ing of the m′

F = 0 and m′
F = 1 states as seen for n = 0 in

Fig. 3. In terms of z, the solution of the stationary Schrödinger
equation for the untrapped state is then [27,29]

�κ (z) = CAi[(z − zκ )/�], (44)

where C is a normalization constant and Ai is the Airy function
of the first kind.

The normalization constant C for the untrapped state
wave function can be determined from the condition that
|C|2 ∫∞

−L
|Ai[(z − zκ )/�]|2dz = 1. If the Airy function Ai(ζ )

is approximated in the ζ → −∞ limit by [27] Ai(ζ ) ≈
1√

π(−ζ )
1
4

sin [ 2
3 (−ζ )

3
2 + π

4 ], this leads to an approximate nor-

malization constant for the untrapped state wave function
given by |C|2 ≈ π/

√
�L. In the continuum limit, and to apply

Fermi’s golden rule, we need the density of states. To determine
this we note that the potential wall at z = −L creates a
boundary condition for the wave function as �κ (−L) = 0.
The asymptotic form of the Airy function can be used to
express this condition as a quantization condition since the
argument of the sine function should be a multiple of π .
Specifying the multiple by the integer nκ , we have the
condition nκπ = 2

3 [(zκ + L)/�]
3
2 + π

4 . Differentiation of this
quantization condition, together with Eκ = Mgzκ , leads to an
equation for the density of states,

D(Eκ ) = ∂nκ

∂Eκ

= 1

π (Mg�)3/2

√
Eκ + MgL

�
L→∞

1

πMg�

√
L

�
. (45)

It is noteworthy that the L dependence cancels in the product
|C|2 · D(Eκ ) = 1/(Mg�2) such that there are no issues when
taking the L → ∞ limit.

The interaction matrix element associated with the nonadi-
abatic coupling is given by

√
2h̄

2i

∫ ∞

−∞
�∗

n(z)V̂A�κ (z)dz, (46)

where, as in the horizontal trapping model, the factor 2i arises
from the component of F̂− in F̂y [see Eq. (18)] and the factor√

2h̄ comes from the matrix element of F̂− between m′
F = 1

and m′
F = 0. In evaluating this integral the wave functions will

be given by Eqs. (40) and (44).
All the components necessary for use of Fermi’s golden

rule are now known, and putting this together we find the
decay rate for the nth oscillator state in the vertical trapping
model

	n = ωz

2
√

πη2

n!2nβ

×
∣∣∣∣∣
∫ ∞

−∞

(u + u0)Hn(u)e− u2

2

[(u + u0)2 + η2]2 Ai[β(u + u0 − uκ )]du

− β

∫ ∞

−∞

Hn(u)e− u2

2

(u + u0)2 + η2
Ai′[β(u + u0 − uκ )]du

∣∣∣∣∣
2

,

(47)

where we integrate over u = (z − z0)/az and we have de-
fined u0 = z0/az, uκ = zκ/az = Eκ/(Mgaz), Eκ = En, β =
az/�, and η = �0/(αaz). (Note that η, ωz, and az differ from
the expressions of Sec. IV B.) The function Ai′ is the usual
derivative of the Airy function with respect to its argument.
This result for 	n/ωz can be expressed solely in terms of n, η,
and ε, since the integrals in (47) depend only on n, η, β, u0,
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FIG. 4. Scaled decay rates 	n/ωz as a function of the parameter
η for the ground state (	0/ωz, top), the first excited state (	1/ωz,
middle), and the fifth excited state (	5/ωz, bottom) of the initial
harmonic trap. The prediction of the vertical trapping model, Eq. (47),
solid line, is shown with the predictions of the horizontal trapping
model, Eq. (32), dashed line, and the Landau-Zener model, Eq. (51),
chained line. The dotted lines indicate the effect of nonadiabatic
potentials which produce corrections to ωz from Eq. (A9) and to 	n

as described in Appendix 2 and in Fig. 2. The calculations are done
for the F = 1 hyperfine ground state of 87Rb with ε ∼ 0.20 in the
vertical trapping model case.

and uκ , and with the above definitions it can be shown that

β3 = (az/�)3 = 2ηε(1 − ε2)−3/2,

u0 = z0/az = −ηε(1 − ε2)−1/2,

uκ = V0 + (n + 1/2)h̄ωz

Mgaz

= η

ε
(1 − ε2)1/2

[
1 + 1 − ε2

η2

(
n + 1

2

)]
. (48)

Gravitational effects are very weak if ε is small (ε 	 1) and
we see in Sec. V that the adiabatic limit is reached if η is large
(η � 1).

Figures 2 and 4 show numerical results obtained from
Eq. (47) for the scaled decay rate 	n/ωz as a function of

the initial quantum number n in the harmonic trap and of the
parameter η given in the general case by

η =
(

M�3
0

h̄α2

)1/4

(1 − ε2)3/8. (49)

We note that we have approximately η ∝ �
3/4
0 B ′−1/2 when

ε stays small (as in the horizontal trapping case). The
parameter η thus remains more sensitive to the Rabi frequency,
proportional to the amplitude of the dressing field, than to the
magnetic gradient.

In contrast to the predictions of the horizontal trapping
model, the vertical trapping model displays in Fig. 4 a clear
oscillatory behavior in the decay rate variation with η, or
equivalently when varying Rabi frequency or magnetic-field
gradient. Additionally, in contrast to the semiclassical interpre-
tation of nonadiabatic losses, there is not a monotonic increase
of the decay rate with atomic energy or vibrational level n,
with some high n states being sheltered from nonadiabatic
losses.

To help understand the origin of the oscillatory behavior
of the decay rates, Fig. 5 shows the shape of the trapped
and untrapped state wave functions for two different Rabi
frequencies. The vertical lines marked z0 are nearly coincident
in Fig. 5 indicating that the center of the harmonic oscillator

z ( m)
-4 -3 -2 -1 0 1 2 3 4

S
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0
/(2 )= 6.0 kHz

0
/(2 )= 6.8 kHz

FIG. 5. Examination of the sensitivity of the wave functions in
the vertical trapping model. The trapped harmonic-oscillator ground-
state wave function �n(z), associated with m′

F = 1, is displayed with
dashed lines for two different Rabi frequencies: �0/(2π ) = 6.0 kHz
and 6.8 kHz. Other parameters are fixed and are the same as in
Fig. 1. Also shown are the two Airy functions associated with m′

F = 0
eigenstates matching the energies of the corresponding harmonic-
oscillator ground states. We see that there is a substantial shift in the
peaks of the Airy functions between the two Rabi frequencies shown,
whilst the change in the location of the oscillator ground state, z0,
is very small. This shows how the overlap integral Eq. (46) can be
sensitive to parameters. The wave functions have been scaled so that
they reach a value of unity at the maximum height.
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hardly shifts when the Rabi frequency is changed. However,
the energy of the untrapped state is set to match that of
the trapped atom as needed to satisfy Fermi’s golden rule.
This means that changing the harmonic-oscillator energy-level
structure (for example, by changing the Rabi frequency) affects
the Airy wave function. Thus, when the Rabi frequency
is changed, we see that although the displacement in the
minimum z0 is weakly affected, the oscillations of the relevant
Airy function are significantly displaced. It is this progression
of the Airy function peaks which leads to the oscillatory
behavior in the decay rates obtained as a function of η

(and ε) and seen in Fig. 4. (This oscillatory dependence
on η can also be found equivalently as a function of the
unscaled parameters �0 or B ′.) In other words, for the case
of horizontal trapping, the phase of a plane wave can always
be set to match the location of the atom, but in the case of
vertical trapping, the oscillatory phase of the Airy function
is restricted by the energy of the initial state. For vertical
trapping, the behavior of 	n as a function of n is not smooth
as there is a dramatic change in the harmonic-oscillator wave
function (�n) with the quantum number n, which affects the
interaction matrix element and leads to the results seen in
Fig. 2.

V. COMPARISON OF QUANTUM DYNAMICS WITH THE
LANDAU-ZENER MODEL

In this section we compare the quantum decay rates
obtained in Sec. IV to the Landau-Zener model introduced
in Sec. III. Returning to Eq. (15), we note that the concept of
atomic speed relies on the idea of a classical trajectory. We
stress here that the classical trajectory in the bare (uncoupled)
potential should be used to compute the transition rate [20].
Although the trajectory is described classically, for a more
direct comparison with our quantum mechanical decay rates
it is beneficial to describe the Landau-Zener decay rate in
terms of the atomic energy level denoted by the quantum
number n. By considering energy conservation of an atom
at the resonance location, the expression 1

2Mv2 = En = V0 +
h̄ωz(n + 1

2 ) is obtained, which leads to

v =
√

2V0

M
+ (2n + 1) ω2

za
2
z (50)

for the atomic speed through the resonance location. Therefore,
the Landau-Zener decay rate (16) for an F = 1 atom in the
nth harmonic-oscillator energy level is

	LZ
n = ωz

π

⎧⎪⎨
⎪⎩1 −

⎡
⎣1 − exp

⎛
⎝− πη2

2
√

2(1 − ε2)
√

1 + 1
η2

(
n + 1

2

)
(1 − ε2)

⎞
⎠
⎤
⎦

2
⎫⎪⎬
⎪⎭. (51)

In the limit ε → 0 we obtain the result for horizontal trapping,
that is

	LZ
n = ωz

π

⎧⎪⎨
⎪⎩1 −

⎡
⎣1 − exp

⎛
⎝− πη2

2
√

2
√

1 + 1
η2

(
n + 1

2

)
⎞
⎠
⎤
⎦

2
⎫⎪⎬
⎪⎭.

(52)

To simplify the expression further we note that for the lowest
harmonic levels, where the harmonic approximation for the
adiabatic potential is valid (n 	 η2 and η � 1), we obtain

	LZ
n � 2ωz

π
e(2n+1)π/(8

√
2) exp

(
− πη2

2
√

2

)
. (53)

Comparison of Eq. (35) with the Landau-Zener model limiting
behavior given in Eq. (53) shows some structural similarity,
but also clear differences between our model and the Landau-
Zener model in the low decay regime. The similarity is the
exponential dependence on η2 with a slight difference in
the multiplying factors, i.e., a factor of π/(2

√
2) � 1.1 in

the Landau-Zener case, and a factor of approximately 1.8 in
the case of Eq. (35). For large η, the desired limit for trap
operation, this exponential dependence is the most dominating
aspect and leads to an overestimation of the decay rate by the
Landau-Zener model. Another difference between the results,
which is more relevant at lower η, is that the polynomial
prefactor, with its power-law dependence η2n+1, is absent in
the Landau-Zener model.

The overestimation of the Landau-Zener model is seen in
Fig. 2. In particular, it is most clearly seen for the vibrational
ground state (n = 0), and lower n values, which are often
dominantly populated at the low temperatures necessary for
ultracold atom traps. The Landau-Zener result improves in
comparison with the higher n values of the horizontal model
in Fig. 2; however, when comparing it to the vertical model
there are the irregular oscillations in the decay rate as discussed
in Sec. IV C. These kinds of oscillations cannot be obtained
from the simple application of the Landau-Zener model to a
single crossing. However, although the Landau-Zener model
generally overestimates the decay rate, there are a few points,
at higher n, where the oscillatory vertical trapping model decay
rate slightly exceeds the Landau-Zener result.

Figure 6 shows how the Fermi golden rule decay rates
imply less stringent requirements on trap Rabi frequency and
magnetic-field gradient in comparison to the Landau-Zener
model prediction for a given ground-state lifetime. Here
we use the direct experimental parameters �0 and B ′ to
clearly indicate the practical consequences of the results for
87Rb. We see that the Landau-Zener model provides useful
guidance: given the logarithmic scales of the figure, the power-
law dependence of Landau-Zener result on the parameters
is approximately correct, with a consistent margin. When
adiabaticity is reduced below the Landau-Zener boundary in
Fig. 6 the oscillatory structures of the vertical trapping model
appear. The details of these are sensitive to phase shifts from
nonadiabatic corrections to the potentials, as seen from the
dotted lines.
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FIG. 6. Ground-state decay rate contours for different models
as a function of Rabi frequency and field gradient. The contours
show where the scaled decay rate 	0/ωz = 10−3, i.e., where decay
takes place after about 160 oscillations in the trap. The decay rates
generally increase towards the top left of the figure. The solid contour
line (v) shows the result from the vertical trapping model, as given
by Eq. (47). The dotted contour line shows the effect of including
the nonadiabatic potentials from V̂B in the vertical trapping model
case (see Appendix 2). The dashed contour line corresponds to the
ground-state decay rate from the horizontal trapping model (h), as
given by Eq. (32). It is a suitable approximation to the boundary
displayed by the vertical trapping model. The effect of including the
nonadiabatic potentials is not shown for the horizontal trapping model
as there is no visible difference from the dashed contour line. The
chained contour line corresponds to the Landau-Zener decay rate,
Eq. (51), with a trap frequency calculated using Eq. (39). The results
presented in this figure are for 87Rb and F = 1.

VI. CONCLUSION

Since their experimental inception in 2004 [5], rf-dressed
adiabatic potentials for cold atoms have been successfully
applied to a wide variety of situations [1]. Generally speaking,
for the trap to work effectively, one is content to ensure
that a sufficiently strong rf field is employed so that as few
atoms as possible are lost from the trap. However, if an
overstrong rf field is used the trapping frequency of the trap
itself is reduced, which is undesirable if low dimensionality
is required [30]. Furthermore, an overstrong rf field can result
in infringement of the RWA [31]. And there may be other
situations, for example, involving time-averaged adiabatic
potentials or multifrequency adiabatic potentials [1,2], where
the Rabi frequency is required to be constrained. Then the
design question arises as to how small the coupling can be
made before the trap is no longer effective.

In this paper we have tried to address this complex situation
with a number of significant approximations, but also with the
aim of obtaining some analytic results. We have had to treat
a one-dimensional quantum problem as the three-dimensional
problem is not separable due to the changing direction of
gravity and the typical change in relative orientation of the

magnetic and rf fields around the full 3D trapping surface [2].
The approximation seems reasonable for those cases where the
atom cloud is sufficiently compact. We have assumed that the
rf polarization is linear, and in a specific direction. However, in
this case the results can be generalized quite easily to the case
of other polarizations. We have also assumed that the atomic
Rabi frequency is uniform for the spatial z variation that we
consider. As discussed, this is a reasonable approximation for
some situations (macroscopic coils for rf radiation), but needs
more careful consideration in other cases such as when atom
chips are being used. We have also assumed the linear Zeeman
effect (though for a treatment of adiabatic potentials in the
nonlinear regime, see Ref. [32]). The final expressions for
decay rates have assumed a local harmonic approximation for
the adiabatic potential. This assumption places a constraint on
the excitation in the trapping degree of freedom (i.e., n 	 η2).
Of course, this constraint could be relaxed in a fully numer-
ical approach to the problem where the harmonic-oscillator
basis states are not used in the evaluation of the matrix
elements.

Fermi’s golden rule (i.e., time-dependent perturbation
theory) has been a key tool to determine the decay rates. This
relies on a weak coupling between the initial and final states
of the model and is expected to be very appropriate in the
adiabatic limit. However, in assuming that the coupling is weak
we have neglected the possibility of non-Markovian dynamics
during the decay process. This is reasonable as such dynamics
would only be expected to appear when the atom loss is very
rapid and it would be difficult to observe. We have also focused
on the case F = 1 in this paper. Aspects of the derivation can be
easily generalized to higher F ; however, it may not be possible
to use Fermi’s golden rule any more because the V̂A couplings
are no longer to a continuum when the uppermost adiabatic
state (m′

F = F,F > 1) is considered for nonadiabatic loss.
However, the good news is that it is likely that because the
transitions are now bound-bound rather than bound-continuum
the loss of atoms from the uppermost adiabatic state is expected
to be strongly inhibited; that is, you would be “unlucky” to
find a coincidence of the vibrational eigenenergies of m′

F = F

and m′
F = F − 1 because the harmonic frequencies are not

commensurate with each other and are also shifted by an
incommensurate Rabi frequency. We remark, however, that the
role of the transverse (x and y) directions, which we do not take
into account here, could compensate for this energy mismatch
and restore the losses. An additional approximation in the work
presented here is the neglect of that part of the V̂B coupling that
causes a downward change in m′

F by two. In the case of F = 1
this would add the complication of an additional density of final
states on an inverted (m′

F = −1) potential as well as possible
second-order V̂A processes that could coherently interfere with
it. Numerical work has suggested that these effects can be
neglected for the parameters we have considered here, but
the effects could become significant in other situations and it
would be good to quantify this in the future. However, the part
of the V̂B coupling that causes nonadiabatic potentials to be
added to the m′

F states has been included. These are based on
the analysis in the Appendix and included as dotted lines for
	n in Figs. 2, 4, and 6. Finally, in this recapitulation of the
approximations, we have not included consideration here of
some very practical matters such as the losses due to collisions
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with background gas atoms and molecules or the effects of
heating due to noise in the currents that may produce either
the static magnetic field or the rf magnetic field.

Despite these approximations, the results for horizontal
trapping, Eq. (34), and vertical trapping, Eq. (47), should be
able to offer some safe guidance with an appropriate estimate
for the excitation n, or with a distribution of n such as can be
found with a thermal state. To obtain the results we used both
Landau-Zener theory and Fermi’s golden rule with an F = 1
spin system in a dressed atom trap with an underlying linear
magnetic-field gradient.

The Landau-Zener model in general overestimates nonadi-
abatic transitions, particularly for the ground state. However,
for this (good result) it is essential to use the correct speed in
the Landau-Zener expression (16) as discussed in Sec. III.
For practical purposes it is satisfactory to use the simpler
Landau-Zener expressions, where possible, and be able to err
on the side of safety.

The basic results for 	/ωz can be expressed in terms
of a single dimensionless parameter η for the horizontal
trapping model, or in terms of two parameters η and ε for
the vertical trapping model. In the fuller and richer vertical
model, oscillatory behavior is seen in the Fermi golden rule
treatment for the decay rate as a function of both magnetic-field
gradient and Rabi frequency. As a result, and counter to
intuition with the Landau-Zener model, higher-energy states
do not necessarily lead to higher decay rates at all places in
the parameter space.

In conclusion, we believe that the analytic results and pro-
cedures presented here will be useful in the design and testing
of atom traps based on adiabatic potentials. In particular, the
analytic approximate expression given at Eq. (34) gives a good
estimate of the expected loss rate and is easily calculated even
for large values of η, where the exact formula Eq. (32) is
harder to compute numerically. More generally, Fig. 6 gives
an indication, in terms of laboratory-based parameters rather
than dimensionless variables, of the parameter region to avoid
based on the analysis and approximations used here when
applied to 87Rb and F = 1. The generalization to higher F

and relaxation of some of the approximations listed above
would be useful in future work.
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APPENDIX: EFFECT OF NONADIABATIC POTENTIALS

In this appendix we present again the key steps of the
development of the decay rates for horizontal and vertical
trapping, but this time we keep the effect of a small nonadi-
abatic potential which is presented as the dotted lines for 	n

in Figs. 2, 4, and 6. We start by considering the Hamiltonian
(18), which is already in the adiabatic basis. As explained

in Sec. IV this can be slightly rearranged to give Eq. (21)
with two V̂B terms: one which couples states which have a
difference in m′

F of two units (proportional to F̂ 2
+ + F̂ 2

−) and
one term which does not change m′

F and which is proportional
to F̂ 2 − F̂ 2

z . It is the effect of the latter term which we focus on
in this appendix. As it will not change m′

F the term will cause
a spatially dependent energy shift in the adiabatic potentials,
but only in the presence of nonadiabatic loss. This makes the
observation of this nonadiabatic potential very challenging
as its effects are only seen significantly when atoms are lost
quickly from an adiabatic trap. Nevertheless, similar kinds
of effects are discussed in the context of three-level Raman
systems in Ref. [33].

Thus, neglecting the V̂B term which changes m′
F in Eq. (21),

but keeping the V̂B energy shift term proportional to F̂ 2 − F̂ 2
z

we start with the Hamiltonian

Ĥ = p̂2
z

2M
+ V̂AF̂y + V̂B

2

(
F̂ 2 − F̂ 2

z

)+
√

�
2

0

+ δ(ẑ)2F̂z + Mgẑ, (A1)

such that the contribution to the adiabatic potentials from the
V̂B term is considered. As in Sec. IV we consider that we have a
kinetic term p̂2

z/(2M), a perturbative term V̂AF̂y , which is used
for the coupling in Fermi’s golden rule, and a remaining part
which forms the adiabatic potentials and which now includes
a V̂B term proportional to F̂ 2 − F̂ 2

z . Because of the presence
of the V̂B term in Eq. (A1) the adiabatic potentials (11) are
now replaced by

Vm′
F
(z) = h̄m′

F

√
�2

0 + δ2(z) + �
�2

0δ
′(z)2(

�2
0 + δ2(z)

)2 + Mgz,

(A2)

where in the linear regime we have a uniform gradient δ′,
Eq. (12). As in Sec. II the sign term s = gF /|gF | is absorbed
into m′

F and the dressed spin states which correspond to
trapping potentials are defined to have positive m′

F values.
We have introduced a parameter

� = h̄2
[
F (F + 1) − m′2

F

]
4M

, (A3)

which characterizes the scale of the new contribution from
V̂BF̂ 2

y to the adiabatic potentials for a particular atomic species.
The parameter � is strictly a function of m′

F (and F ), but as we
consider here the particular case F = 1 with initial m′

F = 1
and final m′

F = 0 there will be two values of � which play
a role in this appendix: �0 = h̄2/(2M) and �1 = �0/2. The
remaining part of the � term in Eq. (A2) comes from V̂B , as
given in Eq. (20). Thus the term that multiplies � in Eq. (A2)
adds a small positive contribution to all adiabatic potentials,
regardless of dressed spin state, in the vicinity of the resonance
location. The effect of this contribution can be reasonably
ignored in the limit η → ∞, the limit in which cold-atom
traps favorably operate. However, Figs. 2, 4, and 6 show that
there is a noticeable effect on the decay rates when we enter
deeply into the nonadiabatic region.
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1. Nonadiabatic potentials and the horizontal trapping model

In the horizontal trapping model we do not need to
consider the effect of gravitational potential energy and we can
express the trapping potential as a harmonic oscillator centered
around the resonant detuning location, such that the trapping
potential is given by

Vi(z) = h̄�0 + �1

w2
+ 1

2
Mω2

zz
2. (A4)

The trap frequency is altered by the V̂B contribution such that
it is now given by

ωz =
√

h̄α2

M�0
− 4�1

Mw4
, (A5)

or equivalently in terms of η = w/az and for F = 1,

ωz = �0

η2

(
1 + 1

η4

)−1/2

. (A6)

Here az = √
h̄/(Mωz) is defined using the modified trap

frequency given in Eq. (A5). The contribution of the � term
could turn the curvature of the harmonic-oscillator potential
negative setting a lower limit for acceptable Rabi frequen-
cies: �0 > [4α2�1/h̄]

1
3 . This gives �0/2π > 1.8 kHz for

B ′ = 1 T/m and �0/2π > 5.2 kHz for B ′ = 5 T/m for the
state |1,1〉 of 87Rb.

Following the same approach as in Sec. IV B the wave
function �n(z) for a trapped atom is given by Eq. (24) with the
modified az, and n selects the energy of the trapped atom from
the allowed energy levels which are given by the modified
expression En = (n + 1

2 )h̄ωz + h̄�0 + �1/w
2.

For the untrapped |F,m′
F = 0〉 state, i.e., in the absence of

gravity, the potential for the atoms is an infinite square well
which is given by

Vf (z) =

⎧⎪⎨
⎪⎩

∞, z � −L
2 ,

�0
w2 , −L

2 	 z 	 L
2 ,

∞, z � L
2 .

The wave function of the final state is given by �k(z) =
1√
2L

[eikz − (−1)ne−ikz] [as in Eq. (26)] with discrete energy

levels Ek(n) = h̄2k2(n)
2M

+ �0
w2 . The wave number k(n) is altered

by the inclusion of the V̂B contribution such that

q(n) = k(n)az =
√

1 + 2n + 2�0/ωz − 1/(2η2)

=
√

1 + 2n + 2η2 + 5/(2η2) (A7)

[which can be compared to Eq. (28)]. Then the Fermi’s golden
rule decay rate for an atom with energy En in the horizontal
trapping model is given by Eq. (32) with the replacements
described above for ωz, az, η, and q(n), which are all affected
by the inclusion of the � term in the model.

It then follows that the analytical solution for the ground-
state decay rate 	0 is given by Eq. (33) but with modified

variables q0 = q(0), η, and az and the approximate decay rate
for higher-energy trapped atoms with n > 0 is the similarly
modified Eq. (34).

2. Nonadiabatic potentials and the vertical trapping model

In the vertical trapping model case we must keep the
gravitational term in the adiabatic potential (A2) and again
make a harmonic approximation about the minimum point.
When we include the � term there is the complication of the
additional dependence on δ(z), even when δ(z) is linearized.
Thus we again take Vi(z) = V0 + 1

2Mωz
2(z − z0)2, where z0

is at the center of the displaced atom cloud which can be
determined from d

dz
Vm′

F =1(z)|z0
= 0. As a result of the new

terms in the adiabatic potential the value of z0 differs from
Eq. (37). The harmonic potential now has energy offset

V0 = h̄

√
�2

0 + δ2
0 + �1

�4
0

w2
(
�2

0 + δ2
0

)2 − h̄εδ0, (A8)

where δ0 is the detuning at the center of the displaced atom
cloud at z0. It also has a trap frequency

ωz =

√√√√√ �4
0

Mw2

⎡
⎣ h̄(

�2
0 + δ2

0

) 3
2

+ 4�1�
2
0

w2

(
5δ2

0 − �2
0

)
(
�2

0 + δ2
0

)4

⎤
⎦, (A9)

which cannot be written in terms of η and ε alone because
the value of δ0 must be found numerically as described above.
All these changes to the potential of the initial state modify
the initial wave function �n(z) used in the overlap integral
Eq. (46).

The potential for an untrapped atom is now approximated
by a modified Eq. (41):

Vf (z) =
{∞, z � −L,

�0
w2 + Mgz, z > −L.

The stationary Schrödinger equation for the untrapped state
can be written as

E′
κ �κ (z) = − h̄2

2M

d2�κ (z)

dz2
+ Mgz�κ (z), (A10)

where the E′
κ is the modified Eκ of Eq. (42) and is given by

E′
κ = Eκ − �0/w

2.
The untrapped state wave function is once again given

by �κ (z) = CAi(ζ ) = CAi[(z − zκ )/�], but where now zκ =
E′

κ/(Mg). The density of states and normalization coefficient
are calculated as before such that |C|2 · D(E′

κ ) = 1/(Mg�2).
Thus with the modified �κ (z) and the modified wave function
�n(z) described above we can obtain a modified matrix
element from Eq. (46): (

√
2h̄/(2i))

∫∞
−∞ �∗

n(z)V̂A�κ (z) dz.
Then when we apply Fermi’s golden rule we find that the
decay rate 	n is given by a modified Eq. (47), but with
the further modified parameters β = az/�, ωz, az, and z0.
These parameters were all affected by the inclusion of the
V̂B contribution to the adiabatic potentials in Eq. (A2).
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