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M. Chovancova,1 H. Agueny,1 J. J. Rørstad,2 and J. P. Hansen1

1Department of Physics and Technology, Allegt. 55, University of Bergen, N-5007 Bergen, Norway
2Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark

(Received 19 April 2017; revised manuscript received 12 July 2017; published 25 August 2017)

Excited atoms, or nanotip surfaces, exposed to strong single-cycle terahertz radiation emit electrons with
energies strongly dependent on the characteristics of the initial state. Here we consider scaling properties of the
ionization probability and electron momenta of H(nd) atoms exposed to a single-cycle pulse of duration 0.5–5 ps,
with n = 9,12,15. Results from three-dimensional quantum and classical calculations are in good agreement for
long pulse lengths, independent of pulse strength. However, differences appear when the two approaches are
compared at the most detailed level of density distributions. For the longest pulse lengths a mixed power law,
n-scaling relation, αn−4 + (1 − α)n−3 is shown to hold. Our quantum calculations show that the scaling relation
puts its imprint on the momentum distribution of the ionized electrons as well: By multiplying the emitted electron
momenta of varying initial n level with the appropriate scaling factor the spectra fall onto a common momentum
range. Furthermore, the characteristic momenta of emitted electrons from a fixed n level are proportional to the
pulse strength of the driving field.
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I. INTRODUCTION

Terahertz (THz) radiation technologies are at present
advancing with promising perspectives in a wide range of
scientific fields, from fundamental science to real-world
applications [1]. Owing to the properties of THz radiation
based on low photon energies, the emerging technology has
been suggested as a useful source for medical imaging and
security [2,3]. In recent years, investigation of single- and
half-cycle THz pulses for driving nonlinear phenomena has
become possible [4,5], which has exposed new phenomena.
For instance, recently, it has been demonstrated experimentally
that a strong single-cycle THz pulse applied to excited
atoms [6] has led to electron emission with higher energies
from tightly bound Rydberg states and with increasing pulse
strength. Furthermore, a novel n−3 (where n is the quantum
number) scaling has been found for the field strength required
to attain 10% ionization probability, which later was shown to
be valid for arbitrary ionization probability [7]. A similar phe-
nomenon has been discovered for nanosized solid tips exposed
to THz pulses: Increasingly narrow tips result in a spectrum
of increasingly fast electrons [8]. Studies of the response of
solid-state systems to THz radiation is in its infancy. In this
context it is relevant to understand the detailed nature of the
single atom response to THz radiation in order to separate
potential collective phenomena from single atom effects.

On the theoretical side, for single-atom interactions, an
empirical scaling relation for 10% ionization probability was
put forward by Yang and Robichaux [9], which was shown to
be valid for a wide pulse strength and duration range. It gives
n−4 scaling for pulse durations larger than the classical orbit
period of the Rydberg atom (Tn) and a n2 scaling behavior
for short pulses. In that work the quantum calculations are
restricted to the initial n = 15, l = 2 states only while classical
trajectory Monte Carlo (CTMC) calculations are the basis of
the majority of their work. The dynamics of electron ionization
from n = 15 levels was further considered in great detail
based on time-dependent Schrödinger equation (TDSE) and

CTMC calculations in parallel [10]. Here they found excellent
agreement between the two approaches and showed that
electron emission is strongly favoured along an axis pointing in
the opposite direction of the electric polarization vector in the
second half-cycle of the pulse. None of these calculations were
compared directly with the experimental results of Ref. [6].

In this work we therefore analyze the degree of scaling of
the ionization of hydrogen for arbitrary ionization probability
from the initial n = 9,12,15 d states based on a full three-
dimensional (3D) solution of the TDSE and CTMC method.
We compare the results for pulses with various strengths
and durations. In particular, we compare our results directly
with the calculations in [10] and to the experiment in [6].
Furthermore, we explore the characteristics of the emitted
electrons for different field ionization. We arrive at three main
conclusions and results: First, the 3D quantum calculations,
which are in agreement with Ref. [10], support a different
scaling than the experimental results of Ref. [6]. Second, even
though our CTMC and TDSE results in general agree well
at the total probability level, clear discrepancies appear when
the two methods are compared at the differential level. In
Ref. [10] almost perfect agreement was reported for kinetic
emission in the forward or backward direction. Third, we
show that application of scaling to the momenta of the emitted
electrons puts the spectra on almost the same momentum
range. In the next section we describe the applied numerical
procedures. Then we present and discuss the main results.
Finally, concluding remarks are provided in the last section.
Atomic units are used throughout unless otherwise stated.

II. THEORETICAL MODEL

A. TDSE

Within the semiclassical (strong-field) approximation we
solve the TDSE,[

He(�r,t) − i
∂

∂t

]
ψ(�r,t) = 0, (1)
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where the electronic Hamiltonian contains the field-free
Hamiltonian and the time-dependent interaction part given
in the length gauge with electric field along the z direction,
�E(t) = E(t)�ez. To validate the results we first compare with
the results in [10] where an exponential expression was used
for the electric field,

E(t) = −E0C0t

tw
exp

[
−

(
t

tw

)2

− 0.1

(
t

tw

)4]
. (2)

Here E0 is the maximum pulse strength, and C0,tw are
constants given in [10]. The remaining calculations are
performed with a much simpler expression for the electric
field,

E(t) =
⎧⎨
⎩

−E0 sin(ωt) if − T < t < 0
−E0β sin(βωt) if T/β > t > 0
0 otherwise,

(3)

with β ∼ 1.5. This equation grasps the main feature of a
single-cycle THz pulse related to the experiments [6,8]; a first
positive half-cycle of duration T and a shorter negative and
more intense half-cycle of duration T/β. The pulse strength
refers to the maximum value of the electric field, i.e., E0(n) =
E0β, where n refers to the initial principal quantum number.
There are two additional technical advantages of the field
expressed by Eq. (3) as well: It can be integrated giving simple
analytical expressions for the vector field A = − ∫

E(t ′)dt ′
and the free-field displacement α = − ∫

A(t ′)dt ′. Secondly,
the pulse has a well defined start (−T ) and end time (T/β).
We obtain very similar results for the fields of Eqs. (3) and (2)
for β = 1, but with a factor of 2 shorter simulation time.

Two major numerical challenges with strong THz pulses
are related to the long integration times in addition to the
required sizes of the numerical grids. Even if techniques
have been developed to calculate differential quantities in
special situations [11], the full wave function in general
needs to be kept on the grid to allow for extraction of
all measurable quantities accurately. In the present case at
the strongest pulse strength, for example, the wave function
initially propagates along the negative z axis and opposite in
the final half-cycle. If the grid size is too small, a part of
the wave function is absorbed in the first half-cycle and by
that the dynamics in the second phase of the field becomes
restricted.

The TDSE is integrated using the split-step Fleck-Hermann
method [12]. The initial (hydrogen) Rydberg states considered
throughout the investigation are analytically known. When
put on the grid they are completely stable in absence of
electric fields. Here, we need only to consider states with
the m = 0 component of the magnetic quantum number due
to the field polarization. The time-dependent wave function
is then expanded in spherical harmonics in the θ and r

coordinates as

�(ri,θj ,t) =
Lmax∑
l=0

fl(ri,t)Yl,0(r̂j ), (4)

where r̂j = θj . For general polarizations the sum runs over
m-quantum numbers as well and the present formalism is
perfectly valid in that case [13]. Then r̂ describes the two
spherical angles, dr̂ describes integration over both and we

keep this more general notation in the following. We track
the wave function up to radii up to rmax from where an
absorbing mask prohibits reflections. Numerical parameters
applied (rmax,	r,Lmax,	t) are given in the figure captions.
Once the time-dependent wave function is determined, on a
sufficiently large grid containing the entire density, the wave
function in momentum space is calculated using the same basis
of spherical harmonics as in Eq. (4). We define the Fourier
transform

〈p|�〉 = �̃( �p,t) =
∫

d3r e−i �p·�r�(�r,t) (5)

and the plane wave expansion

ei �p·�r = 4π

∞∑
L,M=0

iLjL(pr)Y ∗
L,M (r̂)YL,M (p̂). (6)

Here r̂ ,p̂ denotes the spherical angles and jL(x) is defined
by the spherical Bessel function, Jn(x), jl(x) = 1√

x
Jl+0.5(x).

Inserting this expansion into the Fourier transform we find that
the radial expansion of Eq. (4) can be expressed in momentum
space as

�̃( �p,t) =
Lmax∑
l=0

f̃l(p,t)Yl,0(p̂). (7)

After the pulse, the continuum part of �̃ spans the basis
describing ionization, �̃c(�r,t) = �̃ − �̃bound,

�̃c( �p,t) =
Lmax∑
l=0

f̃ c
l (p,tf )Yl,0(p̂). (8)

The momentum functions f̃ c
l become the Fourier transform

of the continuum part of the radial functions. These are ob-
tained by projecting and subtracting all populated hydrogenic
bound states at tf . The differential scattering cross section for
emission of an electron with momentum |pn|, integrated over
angles, can now be calculated from �̃c,

dσ

dpn

=
∫

dp̂ p2|〈p|�(�r,tf )〉|2 =
Lmax∑
l=0

∣∣pnf̃
c
l (pn,tf )

∣∣2
. (9)

The angular resolved cross section requires additional
multiplication of phases connected to the long-range property
of the Coulomb potential. To achieve the correct expression it
is convenient to start from a conventional basis state expansion
of the time-dependent wave function,

�(�r,tf ) =
∑
m

am(tf )�m(�r) +
∑

n

bn(tf )�c
n(�r). (10)

Here, the sum over m(n) runs over all bound (discretized
continuum) states inside a sphere with radius rmax. The basis
functions are the product of radial and angular states, �k(�r) =
φk(r)Yl,0(r̂), and the grid is assumed to span the entire wave
function after the pulse, 1 = ∑

m |am(tf )|2 + ∑
n |bn(tf )|2.

The connection between the set �n and the correct outgoing
scattering states of the Coulomb problem is obtained when
expressing the latter in terms of the discretized basis defined
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FIG. 1. Ionization probabilities as a function of pulse strength
for the symmetric pulse, Eq. (2), sketched in the inset and applied
in [10]. The black dashed line is the TDSE results and the dots
are the CTMC results from [10]. The red (dark-gray) bulleted curve
displays the present TDSE results and the red (dark-gray) dashed line
the CTMC results. Parameters for the TDSE computations: rmax =
4000, 	r = 0.2441, Lmax = 128, 	t = 0.05 and pulse parameters:
tw = 2.067 069 × 104, C0 = 2.385 525 5.

above,

�C(�r) = 1

p

∞∑
l=0

∑
n

ileiδl φc
n,l(r; pn)Y ∗

l,0(p̂)Yl,0(r̂), (11)

where the Coulomb phase shift is δl = arg[�(l + 1 + i/p)]
[14]. The projection of the numerical basis of Eq. (10) then
becomes

〈�C |�〉 = 1

p

Lmax∑
l=0

∑
n

(−i)le−iδl bn(tf )Yl,0(p̂). (12)

The differential angular cross section for emission of an
electron with any energy in the direction dp̂ then becomes

dσ

dp̂
=

∫
dp p2|〈�C |�〉|2

=
∑

n

∣∣∣∣∣
Lmax∑
l=0

(−i)le−iδl bn(tf )Yl,0(p̂)

∣∣∣∣∣
2

. (13)

Note that amplitudes of the numerical simulation have to be
augmented by the Coulombic phase factors before integration.
The same procedure must be carried through for the grid
expansion of Eq. (4). Starting again with the projection on
the Coulomb functions,

〈�C |�〉 =
∫

d3r〈�̃C |�r〉〈�r|�〉 =
Lmax∑
l=0

(−i)le−iδl f̃ C
l (p)Yl,0(p̂).

(14)

By comparing this expression with Eq. (8) we identify
f̃ C

l (p) = f̃ c
l (p) and we note that Coulomb phase shifts need to

be augmented precisely as in the case of eigenstate expansions,
Eqs. (13) and (12). The differential cross sections for emission
of an electron with momentum pn along the direction dp̂ then
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FIG. 2. Ionization probabilities as a function of scaled pulse
strength for a pulse shape comparable to the experiment of [6]
(cf. inset in the lower panel). Pulse parameters from Eq. (3) are
T = 124 020 a.u. (ω = 2.533 13 × 10−5 a.u.), β = 1.5. Probabilities
are shown as a function of scaled pulse strength. The upper (middle)
panel shows the experimental and computational results based on a
n−3 (n−4) scaling. The lower panel shows the results for the mixed
scaling Eq. (20), with α = 0.2. Color coding is according to the initial
n state with n = 15 as red (dark-gray) lines, n = 12 as green (gray)
lines, and n = 9 as blue (light-gray) lines. Full curves are TDSE
results, broken curves are CTMC results, and bullets are experimental
data from [6] with the same color coding. Parameters of the TDSE
computations: rmax = 4000, 	r = 0.2441, Lmax = 128, 	t = 0.05.
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FIG. 3. Ionization probabilities as a function of scaled pulse
strength for a pulse shape of Eq. (3), comparable in length to the
pulse in Fig. 1. Results are plotted in terms of the mixed scaling
Eq. (20), with α = 0.2. Pulse parameters are T = 33 073.0 a.u.
(ω = 9.498 96 × 10−5 a.u.), β = 1.5. Color coding is according to
the initial n state with n = 15 as red (dark-gray) lines, n = 12 as
green (gray) lines, and n = 9 as blue (light-gray) lines and full
curves are TDSE results. Parameters of the TDSE computations:
rmax = 4000, 	r = 0.2441, Lmax = 128, 	t = 0.05.

becomes
dσ

dpndp̂
= p2

n|〈�C |�〉|2

=
∣∣∣∣∣
Lmax∑
l=0

(−i)le−iδl pnf̃
c
l (pn,tf )Yl,0(p̂)

∣∣∣∣∣
2

. (15)

Thus, the differential cross sections can be computed
directly based on the available radial (momentum) basis f c

l (r)
[f̃ c

l (p)] without explicit knowledge of the continuum basis
function φn of Eq. (12). For ionization from the n = 15 initial
state the final lowest electron momenta are relatively small, in
fact of similar magnitude as the strength of the potential energy.
Therefore the quantum angular scattering can be affected by
the Coulomb phase shifts as well. The differential cross section
for electron emission in the forward direction is obtained
by integrating over angles corresponding to a positive [θ ∈
(0,π/2)] or negative [θ ∈ (π/2,π ] pz momentum component,

dP forward

dpn

=
∫ π/2

0

∫ 2π

0
dp̂

dσ

dpndp̂
,

dP backward

dpn

=
∫ π

π/2

∫ 2π

0
dp̂

dσ

dpndp̂
. (16)

These quantities will be discussed at the end of the next
section and compared with (phase-free) classical scattering.

B. CTMC

In the CTMC method, Newton’s equations are propagated
for a large number of the initial conditions describing some
main characteristics of an initial quantum probability density.
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FIG. 4. Ionization probabilities as a function of scaled pulse
strength, Eq. (20), for a pulse shape of Eq. (3), with duration only 10%
of the pulse in Fig. 2, T = 12 402.0 a.u. (ω = 2.533 13 × 10−4 a.u.),
β = 1.5. Color coding is according to the initial n state with
n = 15 as red (dark-gray) lines, n = 12 as green (gray) lines,
and n = 9 as blue (light-gray) lines and full curves are TDSE
results. Parameters of the TDSE computations: rmax = 4000, 	r =
0.2441, Lmax = 128, 	t = 0.05.

This approach has been applied for decades within heavy
particle collisions [15,16] before it was adopted in the study of
atoms interacting with strong laser fields [17,18]. A variety of
possibilities exist to select the initial distributions [19]. When
ionization via tunneling is important an initial distribution
of the initial electron position and momenta after tunneling
is useful [20]. After propagating the electron positions and
momenta according to a given time-dependent interaction,
quantum phases may even be added in the final statistics [21].

The basic (standard) CTMC method which we will apply
here is based on the selection of initial states which have a
fixed energy identical to the initial quantum state in question.
The simplest assumption that otherwise the probability density
is a constant D is then in N -dimensional space,

DdNrdNpδ[E(�r, �p) − E0]. (17)

This is referred to as the microcanonical distribution [22],
which is based on the formal similarity with the concept of
the microcanonical ensemble in statistical physics. There is
no proof that this method should model well the quantum
probability densities and the field-induced dynamics other
than the results. And indeed, fine details related to differential
quantities often display discrepancies with full quantum
treatments [17,23].

In this approach the energy delta function limits the 2N -
dimensional space to 2N − 1 dimensions, with the necessity to
find the 2N − 1 uniformly distributed variables. In 3D (N = 3)
space with two sets of spherical coordinates, the four angles
are treated in the standard way of covering uniformly the two
spheres in r and p. The remaining radial r and p must be
described by only one uniformly distributed variable usually
denoted w. This is obtained by transforming p2dpr2dr −→
dEdw and pdp → μdE so that the energy delta function can
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FIG. 5. Probability density distributions at the end of the pulse of the continuum part of the quantum wave function in position space,
|�c[r, cos(θ ),tf ]|2 (upper left) and momentum space |�̃c[p, cos(θp),tf ]|2 (upper right) for an initial 15d state with a pulse strength corresponding
to 20% ionization probability (E0 = 18 kV/cm) in Fig. 3. The lower panels show the corresponding densities from CTMC calculations. Pulse
parameters from Eq. (3) are as in Fig. 2: T = 124 020 a.u. (ω = 2.533 13 × 10−5 a.u.), β = 1.5. Parameters of the TDSE computations:
rmax = 16 000, 	r = 0.2441, Lmax = 128, 	t = 0.05.

be integrated over dE. The variable w can then be found from
these requirements.

w(r) = μ

∫ r

0
p(r ′) ′2dr ′ = μ

∫ r

0

√
2μ[E0 − V (r ′)] r ′2dr ′.

(18)

In this equation E0 is the fixed initial energy and μ is the
reduced mass. For more details, see Ref. [22].

In addition, to mimicking the initial Yl=2,m=0 character
of the quantum initial state, we select only classical initial
conditions with angular momentum l, 1.5 < l < 2.5, and
|lz| < 0.5. No sensitivity on the results to other limits for
l ∼ 2, lz ∼ 0 is found. Newton’s equations are then propagated
with up to 500 000 initial states using the adaptive integration
method of Shampine and Gordon [24] and carefully checked
by the ODE45 routine in MATLAB. In both cases an absolute
(relative) error tolerance below 10−7 (10−9) has been applied.

III. RESULTS AND DISCUSSION

In the remainder of this paper, scaling laws will be discussed
in connection with the ionization probabilities and their
momentum distributions from TDSE and CTMC calculations.
The angular distributions, which show distinct differences, will
be additionally discussed at the end.

We start out by comparing the results of our methods
with the results of Ref. [10]. Here, we restrict ourselves to
the ionization probabilities as a function of the peak field
for the hydrogen 15d state, but test calculations with the
initial 15s show the same degree of agreement. The quantum
probabilities are computed by subtracting from unity all
bound-state probabilities pertaining to a sphere of a given
radius (see Fig. 1 caption). The classical probabilities are
obtained by the fraction of final states with positive energy
after the pulse and the results from both approaches are
plotted in Fig. 1. In the same figure the quantum and classical
probabilities of [10] are shown. Results are shown for a
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FIG. 6. Momentum distributions of the ionized electron based on the TDSE approach (upper) Eq. (9) and CTMC (lower), for initial states nd

with n = 15 as red curves (dark-gray), n = 12 as green curves (gray), and n = 9 as blue (light-gray) curves and for pulse strengths leading to 20%
ionization probability from each initial n state (E0 = 18 kV/cm for initial n = 15, E0 = 36 kV/cm for initial n = 12, E0 = 104 kV/cm for initial
n = 9). The right column shows the same distributions except that the n = 12 and n = 9 momentum distributions have been scaled according to
the mixed scaling relation, Eq. (20), with α = 0.2. Pulse parameters from Eq. (3) are as in Fig. 2: T = 124 020 a.u. (ω = 2.533 13 × 10−5 a.u.),
β = 1.5. Parameters of the TDSE computations: rmax = 16 000 (rmax = 32 000 for n = 9), 	r = 0.2441, Lmax = 128, 	t = 0.05. The CTMC
results are based on 500 000 initial states.

symmetric pulse with a duration of ∼2 ps, and its form is
illustrated in the inset of the Fig. 1. One can see that the
present computed TDSEs are in excellent agreement with those
reported in Ref. [10]. Our classical calculations (red dashed
lines) very slightly overestimate the ones obtained in [10],
possibly a result of different strategies to sample the initial
conditions.

In [9] an empirical scaling law was shown to be valid for
total ionization (at 10% ionization probability) for a large
parameter range of initial states, pulse lengths, and strengths.
This was based predominantly on classical calculations but
included also results from a few quantum calculations. This
scaling law implies a n2 scaling behavior for pulse durations
shorter than the classical orbit period of the Rydberg atom
(Tn ∼ n3). At long pulse lengths, their scaling law reproduces
the results of the classical over the barrier model, i.e., a n−4

scaling. In the transition region between these two extrema
any kind of power/nonpower laws may occur, including the
measured and reported n−3 scaling in [6].

Instead of testing scaling law in [9] for computations
with different initial levels and probabilities, we here aim
to investigate the possible degree of scaling at all ionization
probabilities for selected single-cycle pulses. We will consider
pulse lengths comparable to the n = 15 orbit time of ∼0.5 fs,
and upward to ∼5 fs, the experimental pulse length in [6]. In
Fig. 2 we compare our calculated results with the experimental
results directly and for various forms of scaling. In the upper
panel the experimental ionization probabilities of the initial
n = 9,12,15 states are shown on a common scaled axis defined
by (n/15)3 [7]. We observe that this scaling is excellent for
the experimental results but rather poor for the calculations.
On the other hand, TDSE and CTMC probabilities are in
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FIG. 7. Forward and backward quantum differential momentum
emission probability (black curve) for the initial state n = 15d , E0 =
18 kV/cm, Eq. (16), and compared to the momentum distribution
of Eq. (9), the red (dark-gray) curve shown in Fig. 6. Parameters
of the TDSE computations: rmax = 16 000, 	r = 0.2441, Lmax =
128, 	t = 0.05.

good agreement. The situation switches by applying over the
barrier scaling, (n/15)4 in the middle panel of Fig. 2. Now the
calculations shows a higher degree of scaling while the scaling
of the experimental results are poor.

A dynamical classical mechanism behind the observed
n−3 scaling was put forward in Ref. [6]. Interestingly, a
one-dimensional quantum tunneling mechanism provides the
same power-law dependence independent of field strength
[25]. In 3D, the weak-field adiabatic tunneling theory provides
a leading exponential term which partly scales as n−3 as well
[26]. Thus, tunneling offers a quantum-mechanical mechanism
leading to the observed scaling. The strong external field does,
however, open for over the barrier ionization as well. When
the two processes takes place at the same time a combination
of n−3 and n−4 scaling may show up in the results. A mixed
power-law scaling factor would then emerge on the form

E
sf

0 (n) = αn−4 + (1 − α)n−3, (19)

where the parameter 0 � α � 1. Given an ionization probabil-
ity for a reference n level, say n = 15, the scaled pulse strength
of ionization from other n levels at a given real pulse strength
E0(n) becomes

Escaled
0 (n) = E

sf

0 (n)

E
sf

0 (n = 15)
E0(n). (20)

If the present scaling is universally valid the ionization
probability for varying initial n levels falls on the same curve
for a fixed value of the parameter α. In the lower panel of
Fig. 2 it is interesting to observe that the computed quantum
ionization probabilities exhibit this property for α = 0.2. Even
the CTMC calculations display the same scaling property
for ionization probabilities below 50%. However, putting
the experimental results through this scaling procedure only

slightly improves the situation from the middle panel of Fig. 2.
A potential origin of the discrepancy might be related to the
fact that the experiment is performed with Na atoms and
the calculations are with H atom(s). However, the quantum
defects of the initial nd states in Na are very small and a
complete change of scaling is hardly expected between the
two atomic systems [9]. Given the agreement with independent
calculations we can only conclude that we here document an
unresolved discrepancy between theory and experiment which
calls for an iteration or independent work on the experimental
and possibly also on the computational side.

In Fig. 3 we show our results for a shorter pulse length than
the one in Fig. 2, and comparable to the one in Fig. 1. In relation
to Fig. 2 the time-dependent field now has a stronger (negative)
pulse strength in the second half-cycle as compared to the first.
We again note a sharp rise in the ionization probability at the
same pulse strength range as in Figs. 1 and 2 and that the
scaling procedure as outlined above works very well up to an
ionization probability around 70%. At that point the n = 15
ionization probability flattens out and oscillates, a mechanism
discussed in [6]. It occurs when the pulse length becomes
comparable to the classical orbit time, Tn ∝ n3. The results of
a much shorter pulse duration (∼0.5 ps) are shown in Fig. 4.
At this point the scaling procedure is only valid at smallest
ionization probabilities. At ionization probabilities exceeding
10% the results of classical and quantum calculations disagree.
This indicates that the empirical scaling relation put forward
in [9] is limited to small ionization probabilities only.

In the remaining part of this section we will study the
momentum distributions in more detail. It generally requires
much more computationally expensive calculations as the
entire wave function needs to be kept on the grid until
the electric field vanishes. The momentum and angular
distributions indeed provide a deeper understanding of the
ionization dynamics. In this context, it was found in the recent
experiment [6], by measuring the electron energy distributions
for different n states, that lower initial n gives generally higher
energies of the emitted electrons. We address here two main
questions: First, to which degree does the mixed scaling law
of Eq. (19) imprint itself on the spectrum of emitted electrons?
Second, to which extent do the CTMC and TDSE calculations
agree when the differential distribution is studied in detail?

The starting point amounts to examining the ionization
dynamics in the two-dimensional position and momentum
spaces at the end of the laser pulse. Figure 5 shows the spatial
distribution of the continuum part of the electron-probability
density (left panels) and the corresponding momentum distri-
bution (right panels) for the initial 15d state at 20% ionization
probability (see caption for further details). The distributions
are quantum (upper panels) and classical (lower panels) and
they are seen to display great differences. The spreading, the
mean position, and momentum of the outgoing distribution
differ. With a less detailed focus there are also common
features: It is seen that the electron density which is nonzero
along a limited range of (r, cos θ ) values corresponds to
ionized electrons propagating along the positive z axis and
are centered at positive z values immediately after the pulse.
This is consistent with the ionization dynamics taking part
predominantly in the final half-cycle of the pulse. In the
quantum results, we also observe the emergence of oscillatory
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FIG. 8. Upper panels: Momentum distributions from the initial n = 15d state for for three different pulse strengths E0 = 15.8 kV/cm
(full line), E0 = 18.5 kV/cm (dashed line), and E0 = 21.6 kV/cm (dashed-dotted line). Pulse parameters from Eq. (3) are as in Fig. 2:
T = 124 020 a.u. (ω = 2.533 13 × 10−5 a.u.), β = 1.5. The pulse strengths give ionization probabilities of 20%, 50%, and 73% for the TDSE
calculations. The upper right panel shows the distribution with a linearly scaled momenta [cf. Eq. (22)] and normalized to an ionization
probability of 20%. Lower panels: Corresponding spectra based on CTMC calculations with 500 000 initial states. Parameters of the TDSE
computations: rmax = 16 000, 	r = 0.2441, Lmax = 128, 	t = 0.05.

wavelike structures which do not appear in classical results.
A related phenomenon has been discussed previously in
Refs. [27] in a multicycle extreme-ultraviolet pulse, and in
studies of strong-field few-cycle ionization of the ground state
about 20 years ago [17,28].

We turn now to discuss the scaling properties in connection
with the momentum distributions of the ionized electrons. In
Fig. 6 we have integrated the distributions over all angles and
obtained the differential momentum distribution, dP/dp. In
the left panel of Fig. 6 we show the unscaled quantum (upper
panels) and classical (lower panels) distributions for three
initial n = 9,12,15 states all at ∼20% ionization probability.
The general features of quantum distributions are reflected
in the classical distributions. These are mainly manifested
by a wider distribution describing higher electron momenta
for decreasing n. By applying the mixed scaling relation,
Eq. (19), to the final state momenta, one can now see that

the quantum distributions of all three initial states fall into
a common range. To some extent the classical distributions
also exhibit this property, but here the scaled range is “less
common,” as shown in the right column of Fig. 6. This result
is consistent with the release of the electron at a narrow range
of critical pulse strengths, from which it essentially propagates
with little influence of the binding potential, as discussed in
[7,9].

The instantaneous CTMC distribution of Fig. 6 does not
change at all by letting the particles propagate an additionally
long time in the presence of the Coulumb potential only. For
the quantum distribution it is not so: The low-energy part of
the continuum waves, in particular, may be altered by the
Coulomb potential. Thus Coulomb phases need to to be added
when computing the final differential forward or backward
emission probability [cf. Eq. (15)]. This is displayed in Fig. 7
for the initial n = 15d results in Figs. 5 and 6. We observe
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that indeed the Coulomb potential plays a role and causes
the low-energy part of the emitted spectrum to be rescattered
in the opposite direction from what is seen in Fig. 5. Thus,
the forward-backward scattering asymmetry turns out to be
different for TDSE and CTMC calculations as well, notably in
disagreement with the results in [10] with other pulse shapes,
strengths, and durations.

For completeness, we address in Fig. 8 the nature of the
momentum distributions for an initial fixed n level and for
different ionization probabilities. The left panel of Fig. 8
shows results at three comparable ionization probabilities for
the initial n = 15d. Both the quantum distribution (upper
panels) and the classical one (lower panels) show increasing
momenta with increasing pulse strength. But again, the
detailed distribution differs in shape. A possible scaling in this
case can be argued for by assuming the ratio between the final
momenta and the pulse strength of any ionization probability,
x%, is almost constant,

p(20%)

E0(20%)
= p(x%)

E0(x%)
. (21)

This suggests a scaling relation of the form

pscaled(x%) = γ
E0(20%)

E0(x%)
p(x%) (22)

with γ ∼ 1 as a free fitting parameter may work. The spectra
are additionally normalized to the same total area. We observe
in Fig. 8 (right panel) that the momentum range of emitted
electrons from the quantum results scale reasonably well for
γ = 0.8, while the CTMC results differ much more, both in
shape and final scaled momentum range.

IV. CONCLUDING REMARKS

We have considered the response of H(n = 9d,12d,15d)
atoms to a single-cycle THz pulse with durations from 0.5 to

5 ps in classical and quantum-mechanical time propagation.
A scaling law has been found to be generally valid for
any ionization probability and for initial n = 9,12,15 levels
when the pulse length becomes similar to, or longer than,
the classical period of the n levels under consideration. We
further investigated the scaling behavior in connection with
the ionized momentum distribution in the long-pulse regime.
The same scaling property was here found to be valid in
quantum distributions and to a much lesser degree for the
classical approach. The Coulomb phases have been shown to
be important in the quantum scattering process as well for
the initial n = 15d state. Finally, a near linear response of the
characteristic momentum range has been found for ionization
from a fixed n state with increasing pulse strength.

Interestingly, these phenomena have a counterpart in THz
radiation from nanotips, faster electrons from narrower tips,
and a linear response for a fixed tip with increased pulse
strength [8]. Further investigations in this direction may lead
to new imaging devices where the electron spectrum from a
fixed pulse may provide structural information of the tip region
itself. Before that it seems important to further investigate the
scaling relations validity for single atoms in strong THz fields.
This applies to electron emission probabilities at the total as
well as at the differential level and to converge on parameter
ranges where ionization and scattering from classical and
quantum based approaches agree.
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