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Orbital-resolved nonadiabatic tunneling ionization
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In this theoretical work, we show that both the orbital helicity (p+ vs p−) and the adiabaticity of tunneling have
a significant effect on the initial conditions of tunneling ionization. We developed a hybrid quantum (numerical
solution of the time-dependent Schrödinger equation) and classical (back propagation of trajectories) approach
to extract orbital-specific initial conditions of electrons at the tunneling exit. Clear physical insight connecting
these initial conditions with the final momentum and deflection angles of electrons are presented. Moreover, the
adiabaticity of tunneling ionization is characterized by comparing the initial conditions with those with a static
field. Significant nonadiabatic tunneling is found to persist beyond a Keldysh parameter of less than 0.5.
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I. INTRODUCTION

Tunneling ionization is the most fundamental process
in strong-field atomic and molecular physics, in which the
binding potential is strongly suppressed by the laser electric
field and the electrons gain a nonzero probability of escaping
(tunneling) to the continuum. The understanding of electron
tunneling has laid the foundations for the rapidly growing
field of attosecond science [1], because it is the first step of
many important phenomena, such as high harmonic genera-
tion (attosecond pulse production) and nonsequential double
ionization.

Because tunneling is a quantum phenomenon and has no
direct classical analog, the determination of the tunneling
exit, the initial momentum and the time is intensely debated.
However, it has been shown that it is reasonable to classicalize
the wave function when the electron has tunneled into the
continuum. By assuming classical initial exits and distributions
of velocities [2–4], many strong-field ionization experiments
[4–6] have been qualitatively interpreted, even though the
adopted tunneling initial conditions are far from being un-
ambiguous. Some recent experiments arrived at different
conclusions for the initial conditions [7–9]. Furthermore,
nonadiabaticity plays a crucial role. For example, in the
attoclock experiment, the ionization time can be mapped
to the final angle of the momentum vector in the plane of
polarization of the nearly circularly polarized driven laser
fields [10,11] if assuming a zero initial momentum p(ti) = 0 at
the exit as in an adiabatic approximation. However, if the initial
momentum is nonzero due to nonadiabatic dynamics, the offset
angle will be different and so is the retrieved tunneling time.
How much nonadiabaticity has to be included in such studies
remains unresolved. Conventionally, the Keldysh parameter
γ = ω

√
(2Ip)/E is used for distinguishing the ionization

regime with small γ � 1 for tunneling and large γ � 1
for multiphoton ionization; here, ω is the carrier angular
frequency, Ip the ionization potential, and E the field strength.
At the crossover regime of γ ∼ 1, some experiments indicated
[12] that tunneling ionization starts to deviate from the
adiabatic limit to nonadiabatic dynamics, which also manifests
itself on different tunneling initial conditions. Quantitatively,
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the Keldysh parameter is not useful for evaluating the
adiabaticity of tunneling. Several theoretical pictures have
been put forward based on a semiclassical model [10,11,13],
including the electron under-the-barrier motion with complex
saddle time [14–16], and using an analytical R matrix method
[17,18], to interpret the attoclock experiment, but the results on
the adiabaticity of tunneling are still inconclusive. Moreover,
recent experiments, by measuring the ionization rate, the
spin polarization of an ionized electron, and the bicircular
high-harmonic spectroscopy in different atomic species [19–
21], suggested that the tunneling probability and velocity are
sensitive to the initial quantum states [22–24]. It should be
noted that in the original adiabatic Ammosov-Delone-Krainov
(ADK) and nonadiabatic Perelomov-Popov-Terentev (PPT)
theories [25–28], orbital helicity was not explicitly treated.
Considering that most of the experiments were performed
on atoms with different contributing orbitals and with laser
intensities and wavelengths far away from the pure adiabatic
regime (static field), a full account of both the orbital-specific
dynamics and the adiabaticity of tunneling is of paramount
importance for resolving the discrepancy between different
theoretical and/or experimental approaches.

One popular approach is to solve the time-dependent
Schrödinger equation (TDSE) for exact solutions [29]. How-
ever, it is difficul to extract classical physical insight from such
calculations alone. Recently, a virtual detector (VD) technique
was proposed to link the time-dependent quantum probability
flux to the classical position and momentum [30,31]. For this,
one needs to convert the the wave function �(r,t) to the local
momentum through (atomic units are used throughout this
paper):

p(r,t) = J(r,t)
|�(r,t)|2 , (1)

where J(r,t) = i
2 [�(r,t)∇�(r,t)∗ − c.c.] is the probability

flux. By locating the VD at the tunnel exit, the electron’s time
of arrival at the tunnel exit as well as its exit momentum was
determined [32–34]. However, the extracted ionization times
are sensitively dependent on how the tunnel exits are chosen,
which is not known for nonadiabatic tunneling.

In this work, we introduce a model, which combines the ad-
vantages of both TDSE and classical methods, as schematically
shown in Fig. 1, to extract the initial conditions of tunneled
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FIG. 1. Schematic representation of the TDSE-CFP and the
TDSE-CBP. The TDSE launches an electron wave packet (EWP)
in a combined Coulomb potential and laser electric field. The ionized
outgoing electron wave packet registers at VDs and then is converted
into classical electrons. These electrons are propagated forwards to
achieve consistent results with the TDSE, or they are propagated
backwards to obtain the tunneling initial conditions.

electrons and to probe the adiabaticity of tunneling ionization.
In our method, the outgoing electron wave packet calculated
by numerical integration of the TDSE is converted into local
momentum p(rd,t) at a circle of radius rd , and the VDs are
evenly arranged on this circle. The local momentum is then
propagated forwards to the end of the laser pulse classically
for reaching an asymptotic state, or it is propagated backwards
to search for tunneling initial conditions. The propagation is
preformed under the same Hamiltonian of the TDSE and thus
automatically accounts for the Coulomb correction. Moreover,
the full quantum treatment before the transformation by VDs
enables us to start the calculation from different initial orbitals,
without any specific approximations. We term these TDSE
based classical forward and backward propagation approaches
as TDSE-CFP and TDSE-CBP, respectively. For the forward
propagation, the final momentum distribution is achieved by
binning electrons with similar momenta, whose probability is
summed by the relative weight of each electron’s trajectory. For
the back propagation, the classical trajectories are terminated
with the criterion that the electron has tunneled at time t0 if the
electron’s displacement in the instantaneous field direction is a
minimum [35]. This criterion is justified because the potential
barrier becomes impenetrable for classical particles beyond
the tunneling exit when the particles are back propagated from
the position of the VD toward the nuclei. Once the tunneling
exits are found, the initial momentum as well as the tunneling
time can be quantified. The nonadiabatic effect is automatically
included in this approach through accurate TDSE calculations
and can be characterized by comparing the initial conditions
at different wavelengths, as we will show later. Classical
back propagation from asymptotic TDSE momentum has
been applied previously to resolve the tunneling time [35].
One important advantage of adopting the VD method is the
improved computing efficiency, which allows us to calculate
the ionizations driven by long wavelength lasers.

II. RESULTS AND DISCUSSION

We first calculate ionized electron momentum distributions
of argon atoms using the TDSE-CFP. For argon in the
ground-state electron configuration, there are three degenerate
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FIG. 2. (a) Illustration of the p orbitals of argon. The three initial
orbitals prepared for solving the TDSE are p+ = (px + ipy)/

√
2,

p− = (px − ipy)/
√

2, and p0 approximated by an isotropic s orbital
with the same eigenenergy, respectively. The electron ring current
of the p+ (p−) orbital is clockwise (counterclockwise). (b) Radial
distributions of momenta calculated by the TDSE-CFP with p+, p0,
and p− orbitals.

occupied p orbitals, the p+ (m = 1), the p− (m = −1),
and the p0 orbitals (m = 0), as shown in Fig. 2(a). The
quantum number m = 1 (m = −1) refers to the projec-
tion of the angular momentum in the quantization axis (z
axis, light propagation direction), which is 1 (−1), which
means the electron ring currents in the polarization plane
(xy plane) are counter-rotating (corotating) with respect
to the helicity of the driving laser field. We exposed the
orbital-specific argon atoms to the left elliptically polar-
ized (LEP) laser field with E(t) = 1√

1+ε2 E0fe(t)cos(ωt +
φCEP)x̂ + ε√

1+ε2 E0fe(t)sin(ωt + φCEP) ŷ, where ε = 0.89 is
the ellipticity, E0 is the amplitude and corresponds to a laser
peak intensity of 1.2 × 1014 W/cm2 (γ ∼ 1), the envelope
fe(t) = sin2(π t

τ
) determines the 30-fs laser pulse duration, ω is

the angular frequency refers to a 0.79 μm central wavelength,
and φCEP is the carrier envelope phase (CEP) of the laser field.
The TDSE i ∂�(r,t)

∂t
= [−∇2

2 + VC(r) + VE(r,t)]�(r,t) for the
argon atoms is integrated in a two-dimensional grid using the
single-active-electron (SAE) approximation. In the equation,
the potential terms are given by a time-independent part
VC(r) = − [1+Aexp(−r2)]√

r2+B
accounting for the Coulomb potential

and a time-dependent interaction part VE(r,t) = r · E(t),
which describes the dipole potential in the external laser field.
The potential is similar to the empirical three-dimensional
potential in [36,37], but due to the lower dimensionality
the coefficients of the exponential function are modified for
correctly reproducing the eigenenergy of 0.579 a.u. for argon.
The basis set of px and py is obtained via propagation of
the TDSE in imaginary time (time step iδt) and additional
orthogonalization procedures at each step. In analogy to the
a raising or lowering operator, known as ladder operators,
the two degenerate p orbitals of argon can be defined by
p+ = (px + ipy)/

√
2 and p− = (px − ipy)/

√
2 [38]. Starting

from the obtained initial orbitals, we then used the split-step
Fourier method to numerically solve the TDSE. The ionized
two-dimensional wave function �(r =

√
x2 + y2,t) is saved

at the fixed radius rd , where the virtual detectors are evenly
located. The rd is chosen to be large enough (more than 1.5
times the electron quiver radius in the laser field) to suppress
multiple visits of electrons to the VDs, the influence from
highly lying states, and any other near-field effects. We also
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check that the results do not change if the VDs are located
at larger radii, but more computing resources are required.
The linear density of VDs defined by N/2πrd is set to
1.6 per arc length for keeping sufficient precision, where
N is the number of adopted VDs. We emphasize that the
wave packet does not stop at VDs but is propagated beyond
VDs continuously until it reaches an absorbing potential
to prevent reflection. The absorbing function fabs is in a
form of fabs(r) = {cos[(r − rd)/(π/2ra)]}1/8, where ra = 20
represents the range of absorbing function [39]. For each
spatial dimension, the grid on which the TDSE is solved
should be fine enough to include the detailed evolution of
the electron wave packet (δx = δy = 0.1 a.u. in this work).
In principle, the gird size should be quite large (thousands
of a.u.) because of the outgoing motion of emitted electrons
but this has proven to be too resource demanding. However,
using the VDs in combination with the absorbing function, it
is possible to implement a precise conversion of the wave
function to the local momentum at VDs within a range
of 2|rd + ra|. This method is more efficient, especially for
investigating the problem with long-wavelength driving lasers,
which can propagate the electrons to tens of thousands of a.u.
away from the ion due to the huge ponderomotive energy.
By integrating the momentum distribution over the angle, as
shown in Fig. 2(b), the momentum spectra of p+, p0, and
p− orbitals predicted by TDSE-CFP shows peaks at different
momenta. Another interesting feature is that the integrated
spectral intensity of the p+ orbital is several times higher
than that of the p− orbital, which agrees well with previous
experimental and theoretical results [19,20,22]. The p0 orbital
has a node in the polarization plane of the electric field, and
therefore its contribution to ionization is much lower.

Furthermore, from the calculation, we noted that the
angular offsets θ , each of which is defined as the angle
between the minor axis (y axis) and the peak angle of
photoelectron distributions, are orbital specific, as shown in
Fig. 3. By integrating the momentum distribution over the
radial direction, we have identified the difference between the
offset angles contributed by the laser peak for p+ and p−
orbitals is ≈9.2 deg, as shown in Fig. 3. Similar results were
obtained by Smirnova and co-workers in the pioneering work
of extending PPT theory to include long-range interaction
[22,23]. It is widely accepted that Coulomb attraction is the
most important factor that deflects the outgoing electrons,
which has been observed as an offset angle between the
maximum of the momentum distribution and the minor axes
of the polarization ellipse. When the Coulomb potential is
turned off, the final direction of both electrons from p+ and
p− orbitals show almost no deflection. On the other hand, the
12.9◦ and 22.1◦ offset angles are observed for the two orbitals
if we turn on the Coulomb potential, as shown in Figs. 3(a)
and 3(b). One possible and intuitive explanation attributes
the disparity to the different tunneling initial velocities. The
counter-rotating electron (ionized from the p+ orbital) escapes
from the barrier with a smaller transverse velocity, moves away
slower, and is strongly affected by the Coulomb field. The
faster corotating electron (ionized from the p− orbital) weakly
interacts with the Coulomb field and is therefore deflected
weaker [23,40]. However, previous work predicted a different
variation of the two orbitals’ offset angle (�φoff). The �φoff

FIG. 3. Classical electron trajectories after tunneling ionization;
the electrons are launched by the peak of the elliptically polarized
laser. In the left side, (a) and (b) depict one typical trajectory for
an electron ionized from p+ and p− orbitals, respectively. The
solid (dashed) line represents the electron motion with (without)
the Coulomb force. The arrows indicate the final direction of the
electron momentum after the laser pulse. The right side show the
final momentum distribution of electrons ionized within an interval
of a 0.1 optical cycle around the laser peak for (c) p+ and (d) p−
orbitals.

is 2.5◦ for argon at a laser intensity of 1.2 × 1014 W/cm2 in
Ref. [23], while it is 12.5◦ for neon at 1.4 × 1014 W/cm2 in
Ref. [40]. This disparity prompted us to investigate further into
the origin of ionization for a better understanding.

Though the TDSE-CFP calculations provide us reliable
results for final momentum distributions, which are consistent
with the TDSE solution, the interpretation of them, such
as the deviation of the photoelectron distribution maximum
and momentum spread, has to rely on the tunneling initial
conditions. To reconstruct these initial conditions, the TDSE-
CBP was developed.

In the TDSE-CFP, the electron trajectories start from the
time when the electrons are registered at VDs (tVD) as shown in
Fig. 4(a). The electrons are propagated backwards classically,
again with the same Hamiltonian as in the TDSE. But when
do we terminate the trajectories and can we find true tunneling
exits? Indeed, in classical mechanics, a particle of energy
less than the height of a barrier could not penetrate: the
region inside the barrier is classically forbidden and this
provides a natural termination point (tunneling exit) for the
back-propagated classical electrons. For the j th electron, the
candidate of the tunneling exit rj (t) meets r//,j (t) = 0, where
r//,j describes the displacement along the instantaneous laser
field direction. In Fig. 4(b), we show a typical back-propagated
trajectory, in which the electron is “bounced” by the barrier
and the tunneling exit is identified. More specifically, the
electron first departs from the VD and moves toward the ion
core under the reversed laser field. At the very beginning, the
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FIG. 4. (a) Evolution of the laser field with time. The zero time
corresponds to the laser peak. tVD indicates the instant that an electron
is captured by the VDs, and te denotes the reconstructed ionization
time via the TDSE-CBP. (b) An example shows how a tunneling
ionized electron is reflected by the barrier during the CBP, in the
energy-distance coordinate system.

electron’s energy Ee(r,t) = VC(r) + VE(r,t) + p(r,t)2/2 is
much higher than the barrier tail, and therefore it is a free
particle, where p(r,t)2/2 denotes its kinetic energy. When
the electron is approaching ion core, Ee(r,t) gradually drops
until it’s lower than the barrier top, and it then becomes
impossible to move any closer to the ion core. At this instant,
the electron is stopped along the laser field and then reflected.
The turning point is identified as the tunneling exit. The CBP
approach for seeking the tunneling exit requires sufficiently
thick tunneling barriers, restricting available laser intensities to
<2 × 1014 W/cm2, for the slightly elliptically polarized field
used in the current study (argon atom). Higher intensities lead
to electron dynamics close to or even over the barrier, which
is beyond tunneling ionization. Furthermore, the nonadiabatic
dynamics increase the energy of tunneled electrons, which
also limits the available laser intensity for performing such
calculations.

With TDSE-CBP calculations we can now investigate the
origins of orbital specific deviation angles by reconstructing
the initial conditions of tunneling ionization. We first recon-
structed the initial transverse tunneling momentum, shown in
Fig. 5(a), which reads as −0.24, −0.18, and −0.12 a.u. for
p+, p0, and p− orbitals, respectively. Even though the binding
electrons in p+ and p− orbitals have opposite helicities,
once they are ionized, they will have the same corotating

FIG. 5. (a) The reconstructed normalized initial transverse mo-
mentum distribution for p+, p0, and p− orbitals. (b) The initial ioniza-
tion position calculated with the TDSE-CBP method (density plot),
and Landau’s effective potential theory (dashed white), launched from
the p0 orbital. (c) The comparison of the ionization position for p+,
p0, and p− orbitals and the Landau model (solid green), along the
vector direction of the laser peak.
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FIG. 6. The comparison of electrons’ classical trajectories and
angles of deviation for different tunneling initial positions ri(xi,yi)
and velocities vi(vxi,vyi). The noted p+ or p− in brackets denotes
that the ri or vi is adopted from the corresponding orbital.

initial momentum with the laser field. The same sign of the
initial momentum shows momentum (energy) has to be gained
during the tunneling process, i.e., a nonadiabatic effect. In the
semiclassical model such as in [15], the nonadiabatic tunneling
dynamics is accompanied by a shift of the tunneling exit
towards the ionic core, as a consequence of the absorption
of energy from the laser field. In Fig. 5(b), we confirm this
is indeed the case by reconstructing the tunneling exits by
the TDSE-CBP method for the p0 orbital as an example. The
tunneling exit is located closer to the ionic core, compared to
the predictions by Landau’s effective potential theory in the
adiabatic regime [41]. More interestingly, we found different
tunneling exit locations for p+, p0, and p− along the laser
peak vector (negative x axis) in Fig. 5(c), even though the
ionization potentials and laser parameters are exactly the same
for all three orbitals. This result turns out to be the major
reason for the orbital-dependent offset angles: the closer to
nucleus the electron is born, the stronger Coulomb interaction
there is, thus a stronger deflection for the p+ orbital; see
Fig. 6.

In Fig. 6, we exchange the tunneling initial velocity and
position for the p− orbital to those of the p+ orbital artificially,
and then analyze the electron’s behaviors. The tunneling initial
position and velocity for the most probable electrons for
the two orbitals can be read out from Fig. 5. When only
the initial velocity of the p− orbital is replaced by that of the
p+ orbital, while the initial ionization position is maintained,
a deviation angle of 2.0◦ is observed. If we only replace the
p− orbital’s initial position by the p+ orbital’s, the deviation
angle is 6.8◦. This can be easily understood that the Coulomb
force strongly affects the electron launched at the inner
position. Finally when we change both the initial position and
velocity, a deviation angle of 9.2◦ is obtained. The comparison
of electrons’ classical trajectories and angles of deviation
stated above are shown in Fig. 6. Therefore, not only the
orbital-specific tunneling initial transverse velocity, but also
the shift of tunneling coordinates arising from nonadiabatic
dynamics, plays a important role in deflecting electrons from
p+ and p− orbitals to different angles.
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FIG. 7. The reconstructed energy distribution of electrons at the
tunneling exit for p−, p0, and p+ orbitals in (a) the quasistatic laser
field and (b) the slightly elliptically polarized laser field.

We note because the instant of ionization correlates with the
angle of photoemission through θτ = ωτ (τ is the ionization
delay time with respect to the laser peak) in the angular
streaking experiment, we need to compare the ionization times
for the three orbitals. We observed a close-to-zero tunneling
delay for all three orbitals, similar to what was previously
concluded [14,35]. Therefore, the orbital-specific offset angles
can not be attributed to the differences in the tunneling time.

Furthermore, the closest tunneling exit location for the p+
orbital means the electron acquires the most energy from the
laser field among the three orbitals. This is further confirmed by
the reconstructed energies at the tunneling exit for these three
orbitals in Fig. 7. When an atom is exposed to a laser field, it is
polarized, and its ionization potential will be affected via the
well-known Stark shift. In a static electric field F , the Stark
shift can be calculated by [42,43] Ip(F ) = Ip(0) + 1

2αNF 2,
where IP (0) = 0.579 a.u. is the field-free ionization energy of
argon, and αN = 11.1 [44] is the static atomic polarizability.
The ionic polarizability αI is absent because the potential in a
TDSE calculation does not include the core polarization effect,
leading to a slightly overestimated Stark shift. The linear Stark
shift term is not taken into account here, because the considered
argon atom has no permanent dipole moment. For comparison,
we first study the static case by adopting a 10-fs sin2 envelope
laser field without a carrier wave. The peak intensity of the
laser field is still 1.2 × 1014 W/cm2. The electron’s energies
at the tunneling exit are reconstructed for p−, p0, and p+
orbitals by performing the TDSE-CBP with this quasistatic
laser field, as shown in Fig. 7(a). We note that the most
probable energy of an electron tunneled from the p0 orbital
is −0.603 a.u., which is consistent with the results predicted
by considering the static Stark shift. On the other hand, the
electron tunneled from p− and p+ orbitals tends to gain more
energy but is still lower then Ip(0). This can be explained by the
initial transverse momentum of the p− or p+ electron shown
in Fig. 5(a). The degeneracy of the p+ and p− ionization
energy level is guaranteed by the perturbation theory. We
next turn to the case of using a slightly elliptically polarized
driving laser with the same intensity as the quasistatic case.
In Fig. 7(b), one can see that the most probable ionization
energies are raised higher then Ip(0) for all of the three
orbitals. During tunneling ionization, the electron gains energy
from the varying barrier, and it is converted to the potential
energy and kinetic energy of the electron. The additional

FIG. 8. (a) The most probable transverse momentum at the
tunneling exit p⊥ vs the Keldysh parameter. (b) The reconstructed
width of the initial transverse momentum σ⊥ as a function of
the Keldysh parameter. The transverse momentum distribution is
assumed to have the form exp(−p2

⊥/σ 2
⊥). The inset shows a zooming in

differences between the momentum width of p+ and the momentum
width of p0 and p− and p0. The laser intensity is maintained at
1.2 × 1014 W/cm2, and the corresponding γ for the wavelengths
varies from 1.06 to 0.36. The solid marks represent the quasistatic
limitation by using a 10-fs sin2 envelope laser field without a carrier
wave.

kinetic energy is related to the nonzero momentum observed
at the tunneling exit as indicated in Fig. 5(a). An intuitive
physical picture for the raising of energy is the shift of the
tunneling exit toward the ion core, because the ionization takes
place closer to the barrier top. Moreover, the change of the
ionization energy also implies how the ionization probability
is modified. From the point of view of the strong field
approximation (SFA) and the imaginary time under-barrier
motion, the transition rate from the ground state to a continuum
state can be represented as � = exp[−2Im(SS + SC)], where
SS = ∫ t0

ts
dt{[ p + A(t)]2 + Ip} is the classical action under

the barrier and SC = ∫ t0
ts

dtV [r(t)] is its Coulomb correction
[15,27,45]; p and A(t) are the canonical momentum and vector
potential, respectively. As pointed out in [15], this integration
for S is related to the area between the potential barrier and
the ionization energy level. Because the ionization from the
p+ orbital exhibits a bigger upshift of energy compared to
the p− orbital case, the mentioned area is therefore smaller,
which results in a higher ionization probability, providing an
alternative explanation to the experimentally observed helicity
dependent ionization rates in the nonadiabatic tunneling
regime [19]. An exception for the above explanation is the
case of the p0 orbital, because the SFA theory can not account
for the orbital structure. The nodal in the laser polarization
plane for the p0 orbital gives rise to the lowest ionization
probability.

Now we move to characterize the adiabaticity of tunneling
under different laser conditions (the Keldysh parameters γ ).
We use the central wavelengths of the driving laser as a knob
to vary γ , and then the nonadiabaticities are examined by
reconstructing the peak and width of the initial transverse
momentum. For comparison, a calculation with a quasistatic
laser field was also carried out to provide a baseline of adiabatic
tunneling (γ = 0). In principle, one can vary γ by changing the
laser intensity. However, higher intensities could lead to over-
the-barrier ionization, in which the concept of tunneling can
not apply anymore. In Fig. 8(a), we compare the peak position
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of the initial transverse momentum for p+ and p− orbitals at
different γ values. With a decreasing γ , the most probable
transverse momentums for three orbitals approach steadily
toward their own quasistatic limits (solid marks), exhibiting a
reducing nonadiabaticity. The p0 orbital shows a very similar
behavior compared with the prediction of the nonadiabatic
PPT method [27,28]. It is surprising that nonadiabaticity can
persist well beyond γ < 0.5 and a laser wavelength >1.6 μm.
It is interesting to note that even at the adiabatic limit, there
is a nonvanishing initial transverse momentum for orbitals
with a nonzero magnetic quantum number and the direction of
the initial transverse momentum matches the helicities of the
orbitals. It is also worth noting that the differences between
p+, p0, and p− orbitals at each γ are almost constant as γ

decreases, implying a similar nonadiabatic effect on the peak
value of the transverse momentum for all three orbitals. On the
other hand, it seems nonadiabatic dynamics has little effect on
the width of the initial transverse momentum distribution σ⊥
and shows the same trend as the PPT model, as shown in
Fig. 8(b).

III. CONCLUSION

We have identified the orbital effect on photoelectron
momentum distribution in nonadiabatic tunneling ionization
with the help of TDSE-CFP and TDSE-CBP methods. We
further identified the initial transverse momentum as a sensitive
probe of the adiabaticity of tunneling ionization. The improved
understanding of the nonadiabatic tunneling should help
clarify existing controversies in tunneling initial conditions
and is important for quantitative interpretation of attoclock
experiments. TDSE-CFP and TDSE-CBP methods can be
extended to more complex orbitals, and it will be interesting to
apply this approach to study tunneling dynamics in molecules
[46] and multielectron dynamics.
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