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Coulomb-corrected quantum interference in above-threshold ionization:
Working towards multitrajectory electron holography
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Using the recently developed Coulomb quantum orbit strong-field approximation, we perform a systematic
analysis of several features encountered in above-threshold ionization photoelectron angle-resolved distributions,
such as side lobes and intra- and intercycle interference patterns. The latter include not only the well-known
intracycle rings and the near-threshold fan-shaped structure, but also previously overlooked patterns. We provide
a direct account of how the Coulomb potential distorts different types of interfering trajectories and changes the
corresponding phase differences, and show that these patterns may be viewed as generalized holographic structures
formed by up to three types of trajectories. We also derive analytical interference conditions and estimates valid
in the presence or absence of the residual potential, and assess the range of validity of Coulomb-corrected
interference conditions provided in the literature.
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I. INTRODUCTION

Orbits and quantum interference play a vital role in
phenomena that occur when matter interacts with laser fields
of intensities I � 1014 W/cm2. The archetypal description
of such phenomena relies on an electron undergoing tunnel
or multiphoton ionization, propagating in the continuum and
either interacting with its parent ion via recollision, or reaching
the detector directly [1]. For a given final electron momentum,
there are usually many paths that the active electron may
follow. Thus, the related probability amplitudes interfere.

For a qualitative description of strong-field dynamics, it
often suffices to neglect the binding potential in the electron
propagation and approximate the continuum by field-dressed
plane waves. This is a key idea behind the strong-field
approximation (SFA), which is one of the most widespread
approaches in strong-field and attosecond physics. Since
the mid-2000s, however, many features stemming from the
interplay between the residual binding potential and the laser
field have been identified in experiments. Examples are (i)
the low-energy enhancements in above-threshold ionization
(ATI) spectra [2–12], (ii) the fan-shaped structure in angular
resolved ATI electron momentum distributions [13–15], and
(iii) the species dependency in nonsequential double ionization
(NSDI) with circularly polarized fields [16].

While examples (i) and (iii) may be explained by classical
methods [3–7,9–11,16], example (ii) is a quantum-interference
effect that occurs near the ionization threshold. Studies of
near-threshold ATI using the SFA [17,18] have shown that the
interference of events separated by at most half a cycle leads
to nearly vertical fringes, whose distortion by the Coulomb
potential leads to the fan-shaped structure. This relationship
has been investigated by modifying the final electron scattering
state [17,19], comparing the full solution of the time-dependent
Schrödinger equation (TDSE) for short- and long-range poten-
tials [19], and performing classical-trajectory computations
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which relate the fringes to laser-dressed Kepler hyperbolae
with neighboring angular momenta [20,21]. One should also
note that, in strong-field photodetachment of negative ions,
i.e., for short-range binding potentials, there is a very good
agreement between the SFA and the full solution of the TDSE
[22–24] and experimental results [25], with approximately
vertical fringes instead of a fan.

In a previous publication [26], we have performed a
direct analysis of how this pattern forms using the Coulomb
quantum orbit strong-field approximation (CQSFA) [27]. We
have shown that the fan-shaped structure may be viewed
as a holographic feature caused by the interference of the
trajectories that reach the detector directly, with those that are
deflected by the binding potential, but do not undergo hard
collisions. The phase difference between the two interfering
types of trajectories is dependent on the electron scattering
angle. This causes distortions in the intracycle fringes obtained
from the SFA, which then form the fan-shaped pattern. The
above-mentioned work, however, left several open questions.
First, in addition to the fan-shaped structure, there may be
other types of intracycle interference, and one should clarify
how the Coulomb potential distorts such patterns. Second, in
photoelectron holographic structures, there are usually two
types of orbits which act as probe and reference signal.
Could one generalize photoelectron holography in order to
incorporate additional types of orbits?

Other structures are exemplified by the ATI rings, caused
by the interference of events separated by a full number of
cycles, the carpetlike patterns observed in ATI angular distri-
butions for electron emission perpendicular to the driving-field
polarization [28], and a myriad of holographic structures that
occur due to the interference between direct electrons and those
undergoing hard collisions [15,29–35]. Analytic conditions
have been derived for many such structures. The overwhelming
majority of these conditions, however, neglect the Coulomb
potential in the electron propagation. They are either based on
the SFA, or on its classical counterpart.

Nonetheless, studies employing the Coulomb-corrected
SFA [36] show that the Coulomb potential introduces phase
shifts and thus modifies interference patterns in ATI. Therein,
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analytic interference conditions are provided for electron emis-
sion parallel and perpendicular to the laser-field polarization,
and the low-frequency limit. These conditions however are
based on a series of assumptions, whose validity should be
examined more closely. First, it is postulated that only two
main types of orbits contribute to the interference patterns:
those that leave in the direction and from the opposite side of
the detector, known as orbits type 1 and 2, respectively. This
is the case in the SFA, but the Coulomb potential modifies
the topology of the problem by introducing two more types
of orbits [27,37]. Second, one assumes that the transition
amplitudes related to orbits 1 and 2 have the same absolute
values for intracycle events, and that momenta associated with
different orbits populate the same region. There is, however,
no evidence that these assumptions hold in the presence of the
Coulomb potential.

In the present article, we perform a direct, quantum-orbit
analysis of how the Coulomb potential influences ATI photo-
electron distributions. This includes the side lobes and inter-
and intracycle interference. We provide analytic estimates for
interference maxima and minima, and investigate to what
extent the assumptions in Ref. [36] hold. We also assess how
specific patterns form, and whether one must go beyond only
two types of orbits.

This article is organized as follows. In Sec. II, we review
the strong-field approximation and the CQSFA developed in
[27], and give recent improvements in the latter. Subsequently,
in Sec. III, we analyze near-threshold patterns in ATI, starting
from those occurring in the SFA (Sec. III A). We then study
the main types of orbits in the CQSFA (Sec. III B 1), provide
analytic estimates for the PAD sidelobes (Sec. III B 2) and
intercycle interference (Sec. III B 3), and link different types
of orbits to several intracycle holographic structures (Sec.
III B 4). Finally, in Sec. IV we state our main conclusions.

II. BACKGROUND

Our starting point is the time-dependent Schrödinger
equation in atomic units,

i∂t |ψ(t)〉 = H (t)|ψ(t)〉, (1)

which describes the evolution of an electron under the
influence of the binding potential and the external field. The
Hamiltonian H (t) may be split into H (t) = Ha + HI (t), where

Ha = p̂2

2
+ V (r̂) (2)

gives the field-free one-electron atomic Hamiltonian and r̂ and
p̂ denote the position and momentum operators, respectively.
We choose V (r̂) to be a Coulomb-type potential,

V (r̂) = − C√
r̂ · r̂

, (3)

where 0 � C � 1 is an effective coupling, and HI (t) gives
the interaction with the external field. In the length and ve-
locity gauge, HI (t) = −r̂ · E(t) and HI (t) = p̂ · A(t) + A2/2,
respectively, where E(t) = −dA(t)/dt is the electric field of
the external laser field and A(t) is the corresponding vector
potential. Equation (1) can also be written in an integral form
if we consider time evolution operators. This leads to the Dyson

equation

U (t,t0) = Ua(t,t0) − i

∫ t

t0

U (t,t ′)HI (t ′)Ua(t ′,t0)dt ′, (4)

where Ua(t,t0) = exp[iHa(t − t0)] is the time evolution oper-
ator associated with the field-free Hamiltonian, and the time
evolution operator

U (t,t0) = T exp

[
i

∫ t

t0

H (t ′)dt ′
]
, (5)

where T denotes time ordering, relates to the full Hamiltonian
H (t) evolving from an initial time t0 to a final time t .

In ionization, the quantity of interest is the transition
amplitude 〈ψp(t)|U (t,t0)|ψ0〉 from a bound state |ψ0〉 to a
final continuum state |ψp(t)〉 with momentum p, which can be
written in integral form using Eq. (4). This gives the formally
exact ionization amplitude

M(p) = −i lim
t→∞

∫ t

−∞
dt ′
〈
ψp(t)|U (t,t ′)HI (t ′)|ψ0(t ′)

〉
, (6)

with |ψ0(t ′)〉 = exp[iIpt ′]|ψ0〉, where Ip is the ionization
potential. Throughout, we will employ the length gauge, as
it gives better results for ATI within the SFA [38].

A. Strong-field approximation

The strong-field approximation is obtained if the full time
evolution operator is replaced by the Volkov time evolution
operator U (V )(t,t ′) in Eq. (6). More detail is provided in
[39,40] and in the review article [41]. The main advantage is
that this operator can be computed analytically. This however
approximates the continuum by field-dressed plane waves, and
thus eliminates the influence of the binding potential in the
electron propagation.

Within the SFA, the transition amplitude for direct ATI from
the initial bound state |ψ0〉 to a final Volkov state with drift
momentum p is given by [42–44]

Md (p) = −i

∫ ∞

−∞
dt ′〈p + A(t ′)|HI (t ′)|ψ0〉eiSd (p,t ′), (7)

where

Sd (p,t ′) = −1

2

∫ ∞

t ′
[p + A(τ )]2dτ + Ipt ′ (8)

is the semiclassical action, which describes the propagation of
an electron from the ionization time t ′ to the end of the pulse,
which is taken to be infinitely long. The electron’s continuum
state |p + A(t ′)〉 is a field-dressed plane wave with momentum
p + A(t ′), obtained by back propagating the final state |ψp(t)〉
from t to t ′ with U (V )(t ′,t). In Eqs. (7) and (8), Ip denotes the
ionization potential. We use the length gauge Hamiltonian, and
employ the steepest descent method. This means that we seek
t ′ for which Eq. (8) is stationary, which gives the saddle-point
equation

∂S(t ′)
∂t ′

= [p + A(t ′)]2

2
+ Ip = 0. (9)

Physically, Eq. (9) ensures the conservation of energy
upon tunneling ionization at time t ′ for the electron. Because
tunneling has no classical counterpart, this equation has only
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complex solutions. In terms of the solutions ts of Eq. (9), the
transition amplitude (9) can be approximated by

Md (p) =
∑

s

C(ts)e
iSd (p,ts ), (10)

where

C(ts) =
√

2πi

∂2S(p,ts)/∂t2
s

〈p + A(ts)|HI (ts)|ψ0〉. (11)

The prefactor C(ts) is expected to vary much more slowly than
the action at each saddle for the saddle-point approximation to
hold [45]. According to Eq. (10), there are in principle many
orbits along which the electron may be freed. This means that,
for the same final momentum, the corresponding transition
amplitudes will interfere.

B. Coulomb quantum-orbit strong-field approximation

We will now insert the closure relation
∫

dp̃0|p̃0〉〈p̃0| = 1
in Eq. (6). This gives

M(pf )=−i lim
t→∞

∫ t

−∞
dt ′
∫

dp̃0〈p̃f (t)|U (t,t ′)|p̃0〉

× 〈p̃0|HI (t ′)|ψ0(t ′)〉, (12)

where |p̃f (t)〉 = |ψp(t)〉. The variables p̃0 = p0 + A(t ′) and
p̃f (t) = pf + A(t) give the initial and final velocity of the elec-
tron at the times t ′ and t , respectively. This specific formulation
is very convenient, as 〈p̃f (t)|U (t,t ′)|p̃0〉 can be computed
using path-integral methods [46,47]. One should note that
the bound states of the system have been neglected in the
above-stated closure relation, which, physically, corresponds
to ignoring transitions between bound states.

The CQSFA transition amplitude then becomes

M(pf ) = −i lim
t→∞

∫ t

−∞
dt ′
∫

dp̃0

∫ p̃f (t)

p̃0

D′p̃
∫ Dr

(2π )3

×eiS(p̃,r,t,t ′)〈p̃0|HI (t ′)|ψ0〉, (13)

where D′ p and Dr are the integration measures for the
path integrals [27,46], and the prime indicates a restriction.
These represent a sum over all possible paths in position and
momentum, that the electron can take, between its start and
end points. The action in Eq. (13) is given by

S(p̃,r,t,t ′) = Ipt ′ −
∫ t

t ′
[ṗ(τ ) · r(τ ) + H (r(τ ),p(τ ),τ )]dτ,

(14)

and

H (r(τ ),p(τ ),τ ) = 1
2 [p(τ ) + A(τ )]2 + V (r(τ )). (15)

We compute the action along a two-pronged contour, and
perform a series of approximations. The first part of the contour
is taken to be parallel to the imaginary-time axis, going from
t ′ = t ′r + it ′i to t ′r . The second part of the contour is chosen to
be along the real time axis, from t ′r to t . Physically, the former
and the latter arm of the contour describe tunnel ionization
and the continuum propagation, respectively. The action then

reads

S(p̃,r,t,t ′) = S tun(p̃,r,t ′r ,t
′) + Sprop(p̃,r,t,t ′r ), (16)

where S tun(p̃,r,t ′r ,t
′) and Sprop(p̃,r,t,t ′r ) give the action along

the first and second part of the contour, respectively. This
type of contour has been widely used in the literature [36,48–
50]. We assume the electron momentum to be approximately
constant in the first arm of the contour. The explicit expressions
for S tun and Sprop are

S tun(p̃,r,t ′r ,t
′) = Ip(it ′i ) − 1

2

∫ t ′r

t ′
[p0 + A(τ )]2dτ

−
∫ t ′r

t ′
V (r0(τ ))dτ, (17)

where r0 is defined by

r0(τ ) =
∫ τ

t ′
(p0 + A(τ ′))dτ ′, (18)

and

Sprop(p̃,r,t,t ′r ) = Ip(t ′r ) − 1

2

∫ t

t ′r
[p(τ ) + A(τ )]2dτ

−
∫ t

t ′r
[ṗ · r + V(r(τ ))]dτ, (19)

respectively. The contour for S tun(p̃,r,t ′r ,t
′) inside the barrier

will be computed from the origin until the tunnel exit, which
is chosen as

z0 = Re[r0z(t
′
r )] (20)

as given in [51]. It should be noted that in Eq. (17) the path
r0(τ ) approaches zero at τ = t ′. Hence, the singular potential
will diverge. This divergence will be treated numerically by
integrating ε away from t ′, where ε � Im[t ′]. An analytical
treatment of the divergence is discussed in Appendix B.

The above-stated equation will be solved by the stationary-
phase method. In the CQSFA, we must seek solutions not
only for the ionization time t ′ but also for the intermediate
position and momentum r(τ ) and p(τ ) so that the action given
by Eq. (14) is stationary. This gives the equation

[p(t ′) + A(t ′)]2

2
+ V (r(t ′)) = −Ip, (21)

related to the energy conservation upon tunnel ionization, and

∇rS(p̃,r,t,t ′) = 0 ⇒ ṗ = −∇rV (r(τ )), (22)

∇pS(p̃,r,t,t ′) = 0 ⇒ ṙ = p + A(τ ), (23)

which describe the dynamics of the electron in the continuum
from t ′r to t . Given V (r) = −C/r we find

r · ṗ = −r · ∇rV (r) = V (r). (24)

Hence, Eq. (24) can be substituted into Eq. (19) to simplify it.
This yields

Sprop(p̃,r,t,t ′r ) = Ip(tr ) − 1

2

∫ t

t ′r
[p(τ ) + A(τ )]2dτ

− 2
∫ t

t ′r
V (r(τ ))dτ. (25)
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This resembles the virial theorem, for which an analogous
relationship between kinetic and potential energy can be
derived. A similar result was obtained in [52].

In Eq. (17), we have approximated the momentum to be
fixed. We can thus neglect the binding potential in Eq. (21)
which gives the ionization time. This leads to

1
2 [p0 + A(t ′)]2 + Ip = 0. (26)

The potential is however included in the equations of motion
(22) and (23) and in the action (19), which are solved for a
specific final momentum pf and t → ∞. The initial momenta
are computed by solving Eqs. (22) and (23), with the tunnel exit
as an initial position and the final momenta as a final “limit”
condition. In order to implement the limit on the momenta
we solve the problem iteratively, starting from the SFA and
increasing the influence of the Coulomb potential. This method
does not explicitly parametrize the initial momenta in terms
of the final, but enables each orbit’s initial momentum to be
calculated for any given final momentum. This makes it much
easier to see the momentum distributions for each orbit, which
gives a unique insight into the dynamics.

After a series of manipulations, the Coulomb-corrected
transition amplitude becomes

M(pf ) ∝ −i lim
t→∞

∑
s

{
det

[
∂ps(t)

∂rs(ts)

]}−1/2

C(ts)e
iS(p̃s ,rs ,t,ts ),

(27)

where ts , ps , and rs are determined by Eqs. (22)–(26) and
C(ts) is given by Eq. (11). In practice, we employ the stability
factor ∂ps(t)/∂ps(ts), which is obtained using a Legendre
transformation. The action will remain the same as long as the
electron starts from the origin. Equation (27) is normalized
so that the SFA transition amplitude is obtained in the limit
of vanishing binding potential. Throughout, we consider the
electron to be initially bound in a 1s state. For details we refer
to [27].

III. QUANTUM-INTERFERENCE EFFECTS

All the different orbits that reach the detector with the
same final momenta will contribute to the interference patterns.
These orbits and the corresponding patterns will be the main
topic of this section, in the SFA and CQSFA. For simplicity,
in the results that follow, we will consider a linearly polarized
monochromatic field

E(t) = E0 sin(ωt)êz. (28)

This corresponds to the vector potential

A(t) = 2
√

Up cos(ωt)êz, (29)

where êz gives the unit vector in the direction of the driving-
field polarization and Up is the ponderomotive energy. In
our studies, we will focus on the action as it plays the
most important role in determining phase differences between
quantum orbits. The prefactors vary much more slowly, and
will only play a secondary role. Under this approximation, the
probability distribution considering Nc cycles of the driving

field and a number ne of relevant events per cycle is given by

�(pf ) =
∣∣∣∣∣

ne∑
e=1

Nc∑
c=1

exp[iSec]

∣∣∣∣∣
2

, (30)

where Sec is the action associated to the eth event in the cth
cycle and pf the momentum at the detector. Here the single
sum over s in Eq. (27) has been replaced by a double sum in
the indices e and c.

For a monochromatic field we find that the difference

Sec′ − Sec = 2πi(c′ − c)

ω

(
Ip + Up + 1

2
p2

f

)
(31)

between the actions related to the same type of orbit but a
different cycle is independent of the orbit. This renders Eq. (30)
factorizable and given by

�(pf ) = �ne
(pf )�Nc

(pf ), (32)

where �ne
(pf ) is the probability associated with intracycle

interference and

�Nc
(pf ) = cos

[ 2πNc

ω

(
Ip + Up + 1

2 p2
f

)]− 1

cos
[

2π
ω

(
Ip + Up + 1

2 p2
f

)]− 1
(33)

is the probability related to intercycle interference. Details
about Eqs. (30)–(33) are provided in Appendix A. In the limit
of infinitely long pulses, Eq. (33) describes a Dirac δ comb,
whose peaks are unequally spaced, and remains the same for
the SFA and CQSFA. This condition agrees with the expression
in [17].

The number ne of relevant orbits per cycle will depend on
the approach, and will not exceed 3 in this work. Hence, we can
write an expression for intracycle interference that is general
enough to encapsulate all the effects discussed. Explicitly,

�ne
(pf ) = e−2 Im[S1c]

∣∣1 + e−
SIm
12 ei
SRe

12 + e−
SIm
13 ei
SRe

13
∣∣2.

(34)

Here 
SRe
1j = Re[Sjc − S1c] and 
SIm

1j = Im[Sjc − S1c] with
j = 2,3. This is valid for all cycles c. The term e−2 Im[S1c]

shapes the momentum distribution, and gives rise to the side
lobes identified in ATI photoelectron momentum distributions
[15]. The real parts of 
Sij lead to the interference fringes
seen in ATI, while Im[
Sij ] switch interference on or off. If
Im[
Sij ] is small, then interference is on, whereas for large
Im[
Sij ] interference is off and one of the orbits prevails.

We will next write the action for the monochromatic fields
(28) and (29). The tunneling and propagation parts of the action
in the CQSFA given in Eq. (17) and (25), respectively, can be
rewritten as

S tun(p̃,r,t ′r ,t
′) = i

(
Ip + 1

2
p2

0 + Up

)
t ′i −

∫ t ′r

t ′
V (r0(τ ))dτ

+ 2
√

Upp0z

ω
[sin(ωt ′) − sin(ωt ′r )]

+ Up

2ω
[sin(2ωt ′) − sin(2ωt ′r )] (35)
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and

Sprop(p̃,r,t,t ′r )

=
(

Ip + 1

2
p2

f + Up

)
t ′r + 2

√
Uppf z

ω
sin(ωt ′r )

+Up

2ω
sin(2ωt ′r ) − 1

2

∫ t

t ′r
PPP(τ ) · [PPP(τ ) + 2pf ]dτ

−2
√

Up

∫ t

t ′r
Pz(τ ) cos(ωτ )dτ − 2

∫ t

t ′r
V (r(τ ))dτ,

(36)

where pjz, with j = 0,f , correspond to the electron momen-
tum components parallel to the laser-field polarization and

p(τ ) = PPP(τ ) + pf . (37)

This has been chosen so that all the integrands go to zero for
large τ . Equations (35) and (36) can be combined to give an
explicit form of the action,

S(p̃,r,t,t ′)

= (Ip + Up)t ′ + 1

2
p2

f t ′r + i

2
p2

0t
′
i + Up

2ω
sin(2ωt ′)

+2
√

Up

ω
[p0z sin(ωt ′) − (p0z − pf z) sin(ωt ′r )]

−
∫ t ′r

t ′
V (r0(τ ))dτ − 1

2

∫ t

t ′r
PPP(τ )

·[PPP(τ ) + 2pf + 2A(τ )]dτ − 2
∫ t

t ′r
V (r(τ ))dτ.

(38)

This equation can be considered general in that we will recover
the SFA if the Coulomb coupling is reduced to zero, i.e., in the
limit C → 0. Then V (r) → 0, pf → p0 → p, and PPP → 0,
which leaves us with the SFA action given in Eq. (39).

A. Strong-field approximation

For the SFA, Eq. (38) gives an explicit form of the action,
if the above limits are taken,

Sd (p,t ′) =
(

p2
z + p2

x

2
+ Ip + Up

)
t ′

+ 2pz

√
Up

ω
sin[ωt ′] + Up

2ω
sin[2ωt ′], (39)

where pz and px correspond to the momentum components
parallel and perpendicular to the laser-field polarization, which
remain constant throughout (i.e., p0 = pf = p). The saddle-
point equation (9) can be solved analytically for the ionization
time tec related to an event e occurring in a cycle c. This gives

tec = 2πn

ω
± 1

ω
arccos

(
−pz ∓ i

√
2Ip + p2

x

2
√

Up

)
, (40)

where n is any integer. Convergent solutions require that
Im[tec] > 0. This parametrization has been used in [53].

1. Interference condition

Within the SFA, the dominant types of interference are
determined by two ionization events, occurring at the times
tec and te′c′ . The number of events in a cycle is restricted to
e = 1,2 so that they relate to orbits 1 and 2, respectively. The
dominant interference patterns occur for the condition

Re[tec] ± Re[te′c′] = 2π/ω. (41)

If e = e′, c �= c′, and the negative sign is chosen, Eq. (41)
describes the dominant intercycle interference contributions.
One should note, however, that there are also secondary
events separated by more than a cycle, which can be obtained
by considering 2ncπ/ω, nc > 1, on the right-hand side of
Eq. (41). For intracycle interference, one must take e �= e′, c =
c′, and the positive sign in Eq. (41). Furthermore,

Im[tec] = Im[te′c′], (42)

which, physically, reflects the fact that, in the SFA, the potential
barrier is determined solely by the driving field.

The quantity of interest is

�(p) = |eiSec (1 + ei
S)|2, (43)

where Sec = S(tec) is the SFA action (39) associated with
each of the interfering events and 
S = Se′c′ − Sec is the
corresponding phase difference. The real part of 
S gives
the interference fringes, while its imaginary part determines
the contrast of the patterns. Equation (42) guarantees sharp
fringes as Im[
S] = 0.

For intercycle interference, condition (41) gives


S
(SFA)
inter =

(
p2

z + p2
x

2
+ Ip + Up

)
2ncπ

ω
. (44)

Interference extrema requires that

p2
z + p2

x = n

nc

ω − 2Up − 2Ip, (45)

where even and odd n give maxima and minima, respectively.
This condition describes a circle centered at (pz,px) = (0,0),
and it is exact within the SFA framework. For the radius
in Eq. (45) to be real, nω � 2nc(Up + Ip). The dominant
processes correspond to the shortest time difference, i.e.,
nc = 1. For nc > 1, the fringes will be much finer and start at a
higher value of n. For a coherent superposition of all intercycle
processes, the interference condition follows Eq. (33).

For intracycle interference, we use the specific solutions

t1c = 1

ω
arccos

(
−pz − i

√
2Ip + p2

x

2
√

Up

)
, (46)

t2c = 2π

ω
− 1

ω
arccos

(
−pz + i

√
2Ip + p2

x

2
√

Up

)
, (47)

which are both in the upper complex half plane. For pz > 0,
Eqs. (46) and (47) are related to orbits 1 and 2. For orbit 1, the
electron is released in the direction of the detector and for orbit
2 it is released in the opposite direction, which is subsequently
changed by the field. For pz < 0, the situation is reversed and
the solutions are shifted in half a cycle [27,37].
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FIG. 1. Real part of the ionization times tec and actions Sec

as functions of the electron momentum component pz parallel to
the driving-field polarization [panels (a) and (b), respectively]. In
panel (a), from top to bottom, we see the real parts of the solutions
t11, t21, t12, and t22, respectively, while panel (b) displays the real parts
of the actions S11, S21, S12, and S22. The circles (squares) indicate the
interfering parts of the orbits for which 
t is less than (greater than)
half a cycle, which lead to type A (type B) intracycle interference.
We have taken the perpendicular momentum component px to be
vanishing and renormalized pz in terms of

√
Up .

Applying conditions (41) and (42) parametrizing ωt1c =
arccos ξ according to Eq. (46) gives


S
(SFA)
intra =

(
Ip + Up + 1

2
p2

x + 1

2
p2

z

)

×
(

2π

ω
− 2Re[arccos(ξ )]

ω

)

+ 4pz

√
Up

ω
Re[
√

1 − ξ 2] + 2Up

ω
Re[ξ

√
1 − ξ 2].

(48)

Interference maxima and minima require 
S
(SFA)
intra = nπ , for

n even and odd, respectively. Equation (48) can be used to
describe two types of interference patterns. If Re[t2c − t1c]
is smaller (greater) than half a cycle, we will refer to type
A (type B) intracycle interference, respectively. A schematic
representation of orbits 1 and 2, together with the correspond-
ing actions, is provided in Fig. 1. Type-A interference has been
extensively studied in the literature, while type-B interference
has been overlooked. This type of interference bears some
analogy to that leading to the rhombi interference in Ref. [10],
possibly due to the fact that the times follow similar constraints
to those discussed here. The structures in [10], however, occur
for rescattered ATI and thus are different.

It is helpful to derive approximate intracycle conditions
by expanding Re[t1c] and Re[t2c] around two consecutive
field extrema. To zeroth order, Re[t1c] = π/(2ω) + nπ/ω and
Re[t2c] = (2n + 3)π/(2ω). In this case, the electron reaches
the continuum with vanishing momentum, i.e., pz = px = 0.
This gives ξ0 = i

√
Ip/(2Up), which, if inserted in Eq. (48)

leads to(
pz − 4

√
Up

π

)2

+ p2
x = 2nω − 2Up − 2Ip +

(
4
√

Up

π

)2

,

(49)

for 
S
(SFA)
intra = nπ , which is the equation of a circle centered

at (pz,px) = (4
√

Up/π,0).
For both types of intracycle interference, the approximate

condition (49) works well around the origin, but worsens for
increasing momentum components, while Eq. (48) is exact
within the SFA framework. We access the negative momentum
regions by considering pz → −pz in both equations, which
corresponds to a shift of half a cycle in the solutions tec. This
gives another circle centered at (pz,px) = (−4

√
Up/π,0).

Using Eq. (49), one may determine a range for the interference
order n, within which type-A interference may occur. The
condition that the radius in Eq. (49) must be positive gives the
lower bound nω > Up + Ip − 8Up/π2 for n. Furthermore, if
the electron leaves at a field crest, one may set pz = px = 0
in Eq. (49). This yields the upper bound n � Ip + Up. One
should note that, for type-B interference, the latter expression
constitutes an approximate lower bound for n.

2. Interference patterns

Figure 2 displays photoelectron angular distributions
(PADs) constructed so that specific types of inter- and
intracycle interference are isolated. In Fig. 2(a), we show
ring-shaped patterns from a coherent superposition of type-1
orbits within three field cycles. The rings are modulated and
follow Eq. (33) with Nc = 3, which suggests a coherent
superposition of two types of rings. This is confirmed by
considering only the first and the second cycle, for which
nc = 1 in Eq. (45) [Fig. 2(b)], or the first and the third cycle,
for which nc = 2 [Fig. 2(c)]. For larger nc, the fringes start at
higher momentum and are finer, as expected from Eq. (45).

The remaining panels display intracycle interference. In
Fig. 2(d), we plot type-A intracycle interference, using the
pairs of orbits marked by the circles in Fig. 1. Note that, for
different signs of pz, the chosen solutions have been shifted by
half a cycle. This leads to symmetric patterns with regard to
pz → −pz. As the momentum pz increases in absolute value,
the corresponding ionization times move from two consecutive
field extrema (
t = π/ω) towards the same field crossing
(
t = 0). For that reason, the phase difference 
S decreases
[see black circles in Fig. 1(b)], which leads to broader fringes in
the angle-resolved spectra as |pz| increases. Figure 2(e) depicts
type-B intracycle interference, using the orbits indicated by
the rectangles in Fig. 1. In this case, the real parts of the
ionization times move from two consecutive field extrema
towards different field crossings as |pz| increases. Thus, 
S

increases and the fringes become finer. If one follows a specific
pair of solutions from negative to positive pz relaxing the above
constraints upon 
t , this results in the momentum distribution
presented in Fig. 2(f). The smooth decrease in 
S leads to a
gradual transition from finer to thicker interference fringes.

A real pulse is however composed of at least a few cycles, so
that all types of interference will be present. Figure 3 provides
three examples of angle-resolved photoelectron distributions
computed over two cycles of the fundamental driving field.
Overall, we see the intercycle interference rings in the
momentum maps, but the shapes of the intracycle fringes
are determined by the dominant events. In Figs. 3(a) and
3(b), we construct the patterns such that type-A or type-B
intracycle interference prevails, respectively. For that reason,
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FIG. 2. Electron momentum distributions computed with the SFA for hydrogen (Ip = 0.5 a.u.) in a driving field of intensity I = 2 ×
1014 W/cm2 and frequency ω = 0.057 a.u. In panels (a)–(c), we display intercycle interference patterns obtained using orbit 1. In panel (a), we
consider the ionization times t11, t12, and t13. In panel (b) we take only events within the first two cycles, i.e., the times t11 and t12, while panel
(c) was computed using only t11 and t13. The solid white lines superimposed to the fringes in panel (a) give the analytic condition in Eq. (33)
with Nc = 3, and those in panels (b) and (c) follow Eq. (45) with nc = 1 and nc = 2, respectively. In panels (d)–(f), we present intracycle
interference patterns computed using the times t11 and t21. Panels (d) and (e) exhibit type-A and -B intracycle interference, for which 
t is
less than or greater than half a cycle, respectively. Panel (f) was computed following the solutions t11 and t21 from negative to positive parallel
momenta without imposing any restriction upon the time difference. This gives type-A intracycle interference for pz > 0 and type-B intracycle
interference for pz < 0. The solid and dashed white lines superimposed to the fringes give the exact and approximate SFA conditions for
intracycle interference [Eqs. (48) and (49)], respectively.

in Fig. 3(a) the outward curves at either side of pz = 0
dominate, while in Fig. 3(b) the intracycle fringes become
finer and turn inward near pz = 0. In Fig. 3(c) both types
of interference are included on equal footing. This leads to
straight vertical lines at either side of pz = 0 as the curvatures
of the type-A and -B interference outweigh each other. A long
enough pulse leads to approximately symmetric distributions.
However, exact symmetry only occurs for an infinitely long,
monochromatic wave.

B. Coulomb-corrected approach

1. Quantum orbits

In the following we will have a closer look at the orbits
that exist in the CQSFA. In Coulomb-corrected models of ATI
there are four types of orbits for any given momenta. Their
standard characterization is based on the tunnel exit z0 and
the initial transverse momenta p0x with regard to the final
parallel and transverse momenta pf z and pf x , respectively
[37]. For orbit 1, z0 and the electron’s final momentum pf z

point in the same direction, i.e., z0pf z > 0, and its initial and
final transverse momenta have the same sign, i.e., p0xpf x > 0.
Orbits 2 and 3 have their tunnel exit on the opposite side, so that
z0pf z < 0. Orbit 2 has its initial transverse momentum in the
same direction as the final momentum (p0xpf x > 0), while
for orbit 3 these momentum components point in opposite
directions (p0xpf x < 0). Finally, orbit 4 has its tunnel exit
on the same side as pf z, but the initial and final transverse
momenta are in opposite directions, i.e., p0xpf x < 0. The

transition amplitude related to orbit 4 is small, hence we will
not consider it any further [27]. This characterization differs
from that employed in Sec. II A, as the solutions tec associated
with each orbit are not kept continuous for all momenta.
Keeping tec continuous would change the behavior of the orbits
according to this classification, which we would like to avoid.

One of the main differences between the SFA and CQSFA
is that momenta do not remain constant in the latter. Hence,
one can no longer assume that two orbits with the same initial
momenta will interfere, as they may reach the detector with
different final momenta.

The ionization times, like in the SFA, can be explicitly
parametrized in terms of the initial momenta. This leads to an
orbit-dependent version of Eq. (40), with the SFA momentum
p replaced by the initial CQSFA momentum p0. For pf z > 0,
the times t1c associated with orbit 1 are given by Eq. (46), with
p replaced by p(1)

0 , while those related to orbits 2 and 3 are
given by Eq. (47), with p replaced by p(2)

0 or p(3)
0 , respectively.

Differences between the times t2c and t3c for orbit 2 and 3
come from the fact that they have different initial momenta.
For pf z < 0, the situation reverses, i.e., t1c is given by Eq. (47)
and the remaining times by Eq. (46).

In Fig. 4(a), we display the real parts of the ionization times
as functions of the electron’s final momentum pf z parallel
to the laser-field polarization, which are associated to the
classical trajectories of an electron in the field. We can see
from Fig. 4(a) that the real part of the time of ionization for
the CQSFA is quite similar to the SFA but is shifted down.
Physically, this can be understood as follows: For orbit 1, the
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FIG. 3. Momentum distributions computed with the SFA using
the same field and atomic parameters as in Fig. 2, for at least two
cycles of the fundamental driving field. Panel (a) was constructed
using orbits 1 and 2 for pz > 0 and symmetrization with regard to
the origin, which allows for type-A and -B intracycle interference
occurring twice and once, respectively. This implies choosing the
times t11, t21, and t12 for pz > 0 and symmetrizing with regard to
pz = 0. Physically, this symmetrization entails shifting the unit cells
in half a cycle for pz < 0. In panel (b), we allow for type-A and -B
intracycle interference to occur once and twice, respectively. This can
be achieved by shifting the times used in panel (a) by half a cycle, i.e.,
employing t21, t12, and t22 for pz > 0 and symmetrizing with regard
to pz = 0. In panel (c) we consider two consecutive orbits 1 and only
one orbit 2 over 2.5 cycles, which gives an equal number of times
for type-A or -B interference occurring. In all three plots intercycle
interference rings appear. This is because more than one cycle is
considered, which introduces interference between consecutive orbits
1 and 2.

electron is decelerated by the Coulomb potential, so that it will
need a higher momentum p0 to escape and reach the detector
with a specific momentum pf . This means that the driving
field must compensate the above-mentioned deceleration and
that the electron’s release time t1c must move away from the
field extremum towards the crossing. In contrast, for orbits
2 and 3 the binding potential accelerates the electron and it
must acquire less energy from the field to achieve a final
momentum pf . Thus, the electron is released with a lower
momentum and its release times must approach the previous
field extremum. As |pf z| increases, all three times tend to their
SFA counterparts, but reach this limit in different ways. The
time t1c tends monotonically towards the SFA value, while
the ionization times t2c and t3c first deviate from their SFA
counterparts. This is because an electron along orbit 1 may
escape with vanishing transverse momentum p0x = 0, while
for orbits 2 and 3 this would either trap the electron or lead to
a hard rescattering with the core in case the p0z is low.

In Fig. 4(b), we show the imaginary parts Im[tec], with
e = 1,2,3, of these solutions. An overall feature is that they
are no longer identical, so that Eq. (42) breaks down for
intracycle events. This is expected, as Im[tec] is roughly related
to the width of the effective potential barrier through which the

electron tunnels [54]. The Coulomb potential will make this
barrier different for orbits 1, 2, and 3, while in the SFA it is
determined solely by the field. Qualitatively, Im[t1c] behaves in
the same way for the SFA and CQSFA, with a clear minimum
at pf z = 0. This is not surprising, as the topology of orbit
1 is similar in both cases. In contrast, for orbit 2, Im[t2c]
exhibits a maximum at pf z = 0 and two symmetric minima
at nonvanishing momenta. This effect is quite robust, and
contributes to the appearance of side lobes in the PADs. For
orbit 3, Im[t3c] is much flatter and smaller than for the other
two orbits, which indicates a high escape probability over a
large momentum range. This is consistent with the electron
being accelerated for a longer time, in comparison to orbit 2.
Similarly to what occurs for orbit 2, Im[t3c] exhibits a local
maximum for pf z = 0 and two symmetric minima at pf z �= 0.
There is however a sharp increase in Im[t] for higher parallel
momenta, as hard collisions with the core start to take place
[see Fig. 4(f)]. This regime is outside the scope of this work,
and will not be addressed here.

In Fig. 4(c), we plot the initial parallel momenta as functions
of the final perpendicular momentum. For orbit 1, if the
electron escapes along the polarization axis, it will need
an initial momentum corresponding to the classical escape
velocity

√
2C/|z0|, determined by setting |V (z0)| = v2

0z/2. For
nonvanishing transverse momentum, analytical estimates for
the escape velocity are nontrivial. Still, the figure clearly shows
a monotonic decrease in p

(1)
0z . Orbits 2 and 3, on the other hand,

need a much lower momentum to escape and reach the detector
along the polarization axis. Thus, p0z eventually increases with
final transverse momentum.

Similar features are observed in Fig. 4(d), where p
(e)
0z , e =

1,2,3 are displayed as functions of pf z. Importantly, orbit 1
never crosses the pf z axis. This is because the electron starts
with the atomic potential directly behind it. Hence, it must have
a large enough initial parallel velocity to be able to escape.
Furthermore, for orbits 2 and 3, the SFA solution p0z = pf z is
approached from below, while for orbit 1 it is approached from
above. This is a consequence of the electron being accelerated
by the potential along the two former orbits, and decelerated
along the latter. The acceleration is more significant for orbit
3, in agreement with the previous plots. The critical behavior
of this orbit is also shown in Fig. 4(e) in which p0x is plotted
as a function of its final value pf x . For orbits 1 and 2, the SFA
value is reached when the momentum increases, but this does
not happen for orbit 3.

2. Single-cycle distributions and side lobes

In Fig. 5, we plot the PADs computed using single orbits. In
the upper panels we consider only the influence of the action,
while in the lower panels we include the whole prefactor, given
by the stability factor mulitplied by C(ts) in Eq. (27). Overall,
we see the presence of side lobes for the contributions of orbits
1 and 2. They mainly stem from the imaginary part of the
action [Figs. 5(a) and 5(b)] but are enhanced by the prefactors
[Figs. 5(d) and 5(e)]. Furthermore, in Fig. 5(c), one can see
that the contributions of orbit 3 decay more slowly than those
of the two other orbits. Around 1.2 a.u. there is a sharp decay
in probability, as above a certain energy an electron leaving
along orbit 3 starts to backscatter. This prominence is however
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FIG. 4. In panels (a) and (b), we plot the real and imaginary part of the ionization times obtained for the CQSFA orbits 1, 2, and 3, as
functions of the final momentum component pf z parallel to the laser-field polarization, compared with their SFA counterpart (black and gray
lines in the figure). Panels (c) and (d) show the initial perpendicular and parallel momentum components p0x and p0z for the CQSFA orbits 1–3,
respectively, as functions of the final parallel momentum pf z. In panels (a)–(d), the final perpendicular momentum was chosen as pf x = 0.25
a.u. Panel (e) presents the initial perpendicular momentum p0x as a function of the final perpendicular momenta p

(i)
f x, i = 1,2,3, for a fixed

value of pf z = 0.25 a.u. For reference, from panels (c)–(e) the SFA solution is provided as the black dotted-dashed line. Panel (f) shows orbit 3
for two values of the initial perpendicular momentum. For a final momentum (pf x,pf z) = (1.082 a.u.,0.668 a.u.) and an initial momentum of
(p0x,p0z) = (−0.043 a.u.,0.563 a.u.) (solid orange line), the electron deflected by the potential, while for (pf x,pf z) = (1.144 a.u.,0.672 a.u.)
and an initial momentum of (p0x,p0z) = (−0.041 a.u.,2.713 a.u.) (dashed blue line), the electron undergoes a hard collision with the core. The
black circle in the figure marks the region for which the collision occurs. The field and atomic parameters are the same as in Figs. 2 and 3.

obfuscated by the influence of the prefactor, which causes a
huge suppression of the probability density away from the pf z

axis [Figs. 5(f)]. This led to us neglect this orbit in previous
work [26].
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FIG. 5. Single-orbit angle-resolved probability distributions plot-
ted in arbitrary units and computed for the same field and atomic
parameters as in the previous figures. The left, middle, and right
columns correspond to orbits 1, 2, and 3, respectively. The upper
and panels have been computed using solely the actions, while in the
lower panels we have included the prefactors. The upper panels have
been multiplied by 103 in order to facilitate a comparison with the
lower ones.

In the CQSFA, the imaginary part of the action reads

SIm(t ′,p,r) =
(

Ip + Up + 1

2
p2

0

)
t ′i

+ 2p0z

√
Up cos(ωt ′r ) sinh(ωt ′i )

ω

+ Up cos(2ωt ′r ) sinh(2ωt ′i )
2ω

−
∫ t ′r

t ′
Im[V (r0(τ ))]dτ. (50)

Equation (50) is plotted in Fig. 6(a), for orbits 1, 2, and 3. In
general, its behavior mirrors that observed for the imaginary
parts of the ionization times. This includes it being much
smaller and flatter for orbit 3 and the local minima outside
the origin for orbit 2.

The mirroring behavior can be seen from Eq. (50) if one
applies the low-frequency approximation [36]. This gives
sinh(ωt ′i )  ωt ′i and sinh(2ωt ′i )  2ωt ′i , which is the dominant
term. Within the same approximation, the integral over
V (r0(τ )) leads to an algebraic term, which may be viewed
as a modified prefactor and whose influence is secondary as
far as the side lobes are concerned. It does however play an
important role in the overall shape of the distributions. The
explicit derivation of this term is presented in Appendix B.
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FIG. 6. Panel (a) shows the imaginary parts of the actions Si (i =
1,2,3) associated to the orbits 1, 2, and 3 of the CQSFA, as functions
of the final parallel momentum, computed directly from Eq. (50) for
perpendicular momentum pf x = 0.05 a.u. For comparison, the SFA
counterpart has been included. Panel (b) displays the approximate
expressions obtained for orbit 2, as functions of the final parallel
momentum, for the same perpendicular momentum as panel (a). The
dotted line, labeled 2b, corresponds to the single-orbit action without
the integral over the binding potential, and the dashed lines, labeled
2a, include this integral in the long-wavelength approximation. The
solid line gives the numerical expression for Eq. (50). Panels (c) and
(d) illustrate the PADs computed for orbit 2 without the prefactors,
with and without the integral over V (r0(τ )) in the long-wavelength
approximation, respectively. The atomic and field parameters are the
same as in the previous figures.

In Fig. 6(b), we plot the action SIm(t2c,p,r) associated with
orbit 2, including or not the integral over V (r0(τ )) in the low-
frequency approximation. In all cases, the two minima are
present. Examples of single-orbit PADs computed analytically
are provided in Figs. 6(c) and 6(d). Both figures show clear side
lobes and resemble the single-orbit distribution in Fig. 5(b),
which has been computed numerically. However, inclusion of
the integral over the binding potential in the low-frequency
approximation renders the numerical and analytical single-
orbit distributions strikingly similar. This similarity includes
the broader shape and secondary peaks.

3. Intercycle interference

In the following, we will show that the expression for
intercycle interference remains the same for the CQSFA,
provided the field is monochromatic. Using Eq. (42) and the
field periodicity, the CQSFA action difference may be written
as


Sinter = 
S
(SFA)
inter + 
Scc′ , (51)

where the first term refers to Eq. (44) with p replaced by
pf , and 
Scc′ are Coulomb corrections related to an event of
the type e occurring in cycles c and c′, so that the ionization
times satisfy t ′c′ = t ′c + 2πnc/ω. The indices e are dropped
as the condition refers to the same type of orbit. This action
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6. × 108
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FIG. 7. Photoelectron angular distributions computed in the
CQSFA for times within a single cycle of the laser field and the
same parameters as in the previous figures neglecting the prefactors.
The upper and bottom row includes orbits 1 and 2, and orbits 1 and
3 as interfering trajectories, respectively. Panels (a) and (d) show
type-A intracycle interference, panels (b) and (e) present type-B
intracycle interference, and panels (c) and (f) exhibit both types of
interference, obtained in a similar way as in Fig. 2 by not imposing
temporal constraints upon the interfering solutions. The panels have
been plotted in a logarithmic scale.

difference reads


Scc′ = 
SVT
+ 
SVC

+ 
Sp, (52)

where 
SVT
and 
SVC

are the phase differences caused by
the potential during tunneling and continuum propagation,
respectively, and 
Sp is related to the change in momentum
during the electron propagation. Explicitly,


SVT
=
∫ t ′

c′r

t ′
c′

V (rc′0(τ ))dτ −
∫ t ′cr

t ′c
V (rc0(τ ))dτ, (53)

where the subscripts r indicate the real parts of t ′c and t ′c′ and
r0c(τ ) is given by Eq. (18) with the lower bound replaced by t ′c.
For a monochromatic field, rc′0(τ ) = rc0(τ − 2πn

ω
). This may

be used to show that the first and second integrals cancel out,
so that Eq. (53) vanishes.

The action difference


SVC
= −2

∫ t

t ′
c′r

V (rc′ (τ ))dτ + 2
∫ t

t′cr

V(rc(τ ))dτ (54)

is handled in a similar way, using rc′ (τ ) = rc(τ − 2πn
ω

). This
gives


SVC
= 2

∫ t

t−2π/ω

V (rc(τ ))dτ, (55)

which vanishes in the limit of t → ∞. The same procedure,
together with the mapping pc′ (τ ) = pc(τ − 2πn

ω
), can also be

used to show that


Sp = −1

2

∫ t

t ′
c′r

PPPc′ (τ ) · [PPPc′ (τ ) + 2pf + 2A(τ )]dτ

+ 1

2

∫ t

t ′cr
PPPc(τ ) · [PPPc(τ ) + 2pf + 2A(τ )]dτ (56)

vanishes in this limit. Hence, the Coulomb potential has no
effect on the ATI rings.

4. Intracycle interference

Figures 7 and 8 exemplify the types of interference that
occur in the CQSFA, with and without the full prefactor,
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1. × 101
1.5 × 102
2.2 × 103
3.3 × 104
5. × 105

1. × 103
4.7 × 103
2.2 × 104
1.1 × 105
5. × 105

(a) (b) (c)

(d) (e) (f)

FIG. 8. Photoelectron angular distributions computed in the
CQSFA for times within a single cycle of the laser field and the
same parameters as in the previous figures including the prefactors.
The upper and bottom row includes orbits 1 and 2, and orbits 1 and
3 as interfering trajectories, respectively. Panels (a) and (d) show
type-A intracycle interference, panels (b) and (e) present type-B
intracycle interference, and panels (c) and (f) exhibit both types of
interference, obtained in a similar way as in Fig. 2 by not imposing
temporal constraints upon the interfering solutions. The panels have
been plotted in a logarithmic scale.

respectively. The left, middle, and right panels in both
figures refer to type-A, type-B, and type–A and B intracycle
interference, respectively, computed in a similar fashion as
for the SFA (right column in Fig. 2). The patterns obtained
are more complex than those in the SFA, as there are three
interfering types of orbits. Furthermore, since the imaginary
parts Im[tec] differ for each type of orbit, the fringes may
become blurred in specific momentum regions.

If only orbits 1 and 2 are taken (upper panels of Figs. 7
and 8), the fringes are sharp and the fringe spacing is similar
to that observed in the SFA. This is expected, as Im[t1c] and
Im[t2c] are comparable and Re[t1c] and Re[t2c] follow the SFA
solutions closely. The shapes of the distributions, however,
are different. Specifically, for type-A intracycle interference,
instead of the nearly vertical fringes in Fig. 2(b), we see a
fan-shaped structure spreading from the origin (pf z,pf x) =
(0,0) [Figs. 7(a) and 8(a)]. This structure is well known,
both theoretically and experimentally. Type-B interference,
shown in Figs. 7(b) and 8(b), exhibits sharp, nearly vertical
fringes, which resemble those observed for the SFA but also
become distorted for low-momentum regions. If both types
of interference are considered, once more the fringes become
increasingly thicker as the momenta move from the negative to
the positive pf z region. The presence of the prefactor enhances
the side lobes, but does not change these features.

The interference between orbits 1 and 3, shown in the lower
panels of Figs. 7 and 8, behaves in a different way. First,
the shapes of the fringes do not resemble the finger-shaped
structures or those from the SFA and the side lobes are absent.
Second, if the prefactors are absent (Fig. 7), they are only
sharp near the pf z axis and up to pf x  0.5. For higher
perpendicular momenta, the fringes are blurred and the PADs
acquire the shape of the single-orbit distribution in Fig. 5(c).
This is due to the high probability of an electron leaving along
orbit 3. In Fig. 8, however, one can see that the prefactor
outweighs this high probability and suppresses the contribution
of orbit 3 away from the pf z axis. If the intracycle interference
between orbits 2 and 3 is considered (Fig. 9), we observe a
set of prominent, almost horizontal fringes diverging from a
spiderlike structure near the origin. A similar structure has

2. × 103
1.1 × 104
6.3 × 104
3.6 × 105
2. × 106(a) (b)

FIG. 9. Photoelectron angular distributions computed in the
CQSFA using orbits 2 and 3 for the same parameters as in Figs. 7
and 8 without and with prefactor [panels (a) and (b), respectively].
The panels have been plotted on a logarithmic scale.

been observed in [55] using the QMTC method. The prefactor
restricts the relevance of this structure to a relatively narrow
momentum range close to the pf z axis. One should note that,
since these specific orbits leave in the same half cycle, the
classification in A- and B-type interference is not applicable.

The real parts of the actions are displayed in Fig. 10(a)
for the three CQSFA orbits as functions of pf z. The figure
shows a similar behavior as for the SFA, with type-A and
-B interference corresponding to thicker and finer fringes,
respectively. One should note that type-A interference is more
sensitive to the Coulomb potential, and that, for large positive
momentum, the action related to orbit 3 tends to that related
orbit 1. This leads to very thick fringes in this momentum
region. The real parts of 
Sij , plotted in Fig. 10 as a function
of the deflection angle, confirm the above-mentioned trends.
First, the action difference 
S12 between orbits 1 and 2
tends to the SFA for perpendicular photoelectron emission,
but deviates from it for other angles. This causes the vertical
structures in the SFA to be distorted into a fan. In contrast,
the difference 
S13 agrees with its SFA counterpart at the
polarization axis, but increases with the scattering angle. This
leads to the convergent fringes seen in Figs. 7(d) and 8(d). In
all cases, there is a decrease in 
Sij as the polarization axis
is approached, which manifests itself as thicker interference
fringes.

If all orbits are considered (Fig. 11), a more complex
pattern arises and several types of fringes are superimposed. In
Figs. 11(a) and 11(d), computed within a cycle of the driving
field, we see type-B and type-A intracycle interference for

(a)
(b)

FIG. 10. Panel (a) shows the real part of the action for all CQSFA
orbits, together with their SFA counterparts, plotted as functions of the
final momentum pf z, computed for perpendicular final momentum
of pf x = 0.25 a.u. As in Fig. 1, type-A and -B intracycle interference
is indicated by circles and squares, respectively. Panel (b) displays
the real part of the action differences 
S12 and 
S13, together with
its SFA counterpart, as functions of the deflection angle θ and energy
0.1 a.u. The remaining parameters are the same as in the previous
figures.
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FIG. 11. Photoelectron angular distributions computed in the
CQSFA (first and second row) and with the TDSE (third row) for
comparison. Calculated over one, two, and four cycles (left, middle,
and right panels, respectively). The CQSFA was calculated using
orbits 1–3 without symmetrizing with respect to the origin. The first
and second panels have been computed without and with prefactors,
respectively. The TDSE was calculated using the freely available
software QPROP [56], where a window operator was used to compute
the PADs. We considered a trapezoidal pulse with a half-cycle ramp
on and off and, from left to right, one, two, and four cycles of constant
amplitude. The remaining field and atomic parameters are the same as
in the previous figures. The panels have been plotted in a logarithmic
scale.

negative and positive parallel momentum pf z, respectively.
Particularly visible are the nearly horizontal fringes caused by
the interference of type-2 and -3 trajectories, and the structures
related to the interference of orbits 1 and 2. This holds both
in the presence and in the absence of prefactors, whose main
effect is to introduce a bias towards the pf z axis. Traces of the
patterns caused by the interference of type 1 and 3 trajectories
can also be identified, but they are much less prominent. This
is possibly caused by their contrast being poorer than that of
the other patterns [see Figs. 7(f) and 8(f)].

If more cycles are included (middle and right columns of
Fig. 11), there will be circular intercycle fringes dictated by
Eq. (33), which tend towards a Dirac δ comb as the number
of cycles increase. In addition, intracycle fringes may be
either washed out or reinforced. For instance, the convergent
structure due to the interference of orbits 1 and 3 is no
longer visible, and the nearly horizontal fringes related to the
interference of orbits 2 and 3 is weakened. In contrast, the
fan-shaped structure from the interference of orbits 1 and 2 and
the spiderlike structure near the origin from the interference of
orbits 2 and 3 are very clear, and even seem to reinforce each
other. The patterns become increasingly symmetric as more
cycles are included in the computation. This can be seen by
comparing Figs. 11(b) and 11(c), which has been computed for
two cycles, with Figs. 11(e) and 11(f), for which four cycles
have been incorporated.

When comparing the full CQSFA results with the TDSE
(bottom row of Fig. 11) we find good qualitative agreement
for near-threshold and intermediate energies. For instance,
the CQSFA reproduces the fan-shaped structure very well.
Comparing panels (f) and (i), one can see that the inner ring
at around 0.3 a.u. has the same number of fringes in both
the CQSFA and TDSE. The subsequent rings further out also
match and display a very similar structure, although the TDSE

fringes are slightly more blurred. This good agreement is
expected as there are no hard collisions or irregular behavior
for the orbits leading to this pattern.

The spiderlike patterns from the CQSFA and the TDSE
also match for lower values of pf z. In fact, by comparing
Figs. 11(d) and 11(g) one can see that for pzf = −0.5 the
maxima both occur at pf x = 0, 0.25, and 0.4 a.u. However,
for |pzf | > 0.8 a.u. the TDSE fringes bend upwards while the
CQSFA fringes bend slightly down. Physically, this behavior
can be understood as follows. The spiderlike structure is due
to the interference between orbits 2 and 3. Orbit 3 is a forward
scattered orbit that may interact strongly with the core. For
higher pzf the closest approach of orbit 3 gets smaller, hence
there is a larger interaction with the core. Given that the
momentum is fixed for the tunnel trajectory, the full effect of
the atomic potential is not accounted for this may be at the root
of the discrepancy. In studies using much lower frequencies
[15,29,57], the bending does not occur and the agreement with
the CQSFA improves markedly. This may be due to the tunnel
exit being further away and the electron being affected less
strongly by the core.

Additionally, soft recolliding orbits such as orbit 3 lead
to branch cuts in the corresponding transition amplitude
[58], which may also contribute to the above-mentioned
discrepancies. We have verified that these branch cuts also
occur in the high-energy regime, for which hard collisions
occur. They seem to be the cause of the cutoff region in
the CQSFA, which does not occur in the TDSE. In [58], it
was shown that a correct treatment of these branch cuts is
essential for modeling the low-energy softly recolliding orbits
that are responsible for the low-energy structure (LES) and
very low-energy structure (VLES). This is beyond the scope
of this work and hence the region |pf | < 0.1 a.u. has been left
out of the CQSFA results. In the TDSE results, a low-energy
ring at around 0.1 a.u. can be seen, which can be associated
with the VLES.

Finally, in Fig. 11(i) some faint V-shaped structures can
be made out above pf x = 0.5, which are not visible in the
CQSFA. Previously, these fringes have been associated with
interference between trajectories that may be similar to orbits
3 and 4 [10]. This suggests that orbit 4 may have some role to
play in the high-energy domain, even if it is less significant than
the other orbits. Some features in the TDSE such as the VLES
are strongly dependent on the pulse envelope used. However,
the features we focus on, namely the fan-shaped and spiderlike
fringes, do not change significantly with the pulse envelope.

IV. CONCLUSIONS

Using the Coulomb quantum-orbit strong-field approx-
imation (CQSFA) [27], we have isolated many types of
interference patterns and other qualitative features present
in ATI momentum distributions. Apart from the widely
studied near-threshold fan-shaped structure, the intercycle ATI
interference rings, and the ATI side lobes, these features
include many types of intracycle interference that have been
overlooked in the literature. We provide direct evidence
of how these patterns form, and show that they may be
viewed as holographic-type structures arising from different
types of interfering trajectories. We follow the notation in
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[26,27,36,37], which classifies the trajectories that reach the
detector directly as type-1 orbits, and those that leave from the
opposite side and are deflected by the core as type-2 and -3
orbits. Previously overlooked holographic patterns that have
been studied in this work include finer structures that arise
from the intracycle interference of events separated by more
than half a cycle, and a converging structure caused by the
interference of type-1 and -3 trajectories. Within many field
cycles, some of these structures may be weakened, washed
out, or reinforced.

We have found that orbit 3 is pivotal for many ATI features
and have provided a systematic analysis of its effects. In
previous studies [26,36] this orbit has been neglected, possibly
because the corresponding prefactor strongly reduces the
overall signal. Our studies show that, outside the pf z axis,
this counteracts the fact that ionization probability along this
orbit is quite high. However, two peaks remain located on
the pf z axis which contribute to the side lobes identified in
[15]. Interference between orbits 2 and 3 produces a spiderlike
pattern, which can be seen superimposed on the fingerlike
interference pattern that occurs due to interference between
orbits 1 and 2. The same spiderlike pattern is seen in [55,59],
in which the quantum-trajectory Monte Carlo (QTMC) model
is applied to mid-IR fields, and experimentally in [32,57],
and it is attributed to these forward scattered trajectories. The
on-axis contribution of orbit 3 to the overall PADs improves
the agreement with the time-dependent Schrödinger equation
(TDSE) [26,32,36] and with experiments [13,14,35,57], and
can be seen in Coulomb-corrected computations in which orbit
3 has been included implicitly [52,59]. It is also worth noting
that classical soft forward-scattered trajectories associated
with the LES [6] are the same type of trajectories as orbit
3. This correspondence is possible because we are solving
Newton’s equations of motion for the continuum. Hence, all
our orbits in the continuum have direct classical counterparts.
Thus, classical or quasiclassical methods may be built from
the CQSFA by performing incoherent sums over trajectories,
neglecting or approximating prefactors, and ignoring sub-
barrier corrections. For other types of trajectories see our
previous publications [60–63].

We also derive conditions for interference patterns, which
are kept as general as possible with regard to the number
of field cycles and events per cycle, and provide an analytic
expression determining the overall shapes of the distributions.
Using properties related to the field being monochromatic, we
show analytically that the intercycle interference condition
is the same for both the SFA and CQSFA. The shape of
the distributions and other features will however be affected
by the Coulomb potential. We also provide a more rigorous
discussion of the side lobes than what currently exists in the
literature, and show that they are mainly determined by the
behavior of orbits 2 and 3. In particular, the imaginary part
of the action mirrors the behavior of those of the ionization
times t2c and t3c, which exhibit minima for nonvanishing
parallel momenta. This is both verified numerically and
analytically using the long-wavelength approximation. The
sub-barrier integral over the binding potential is also computed
analytically, and is shown to exert a strong influence on the
shapes of the PADs.

Furthermore, we make a detailed assessment of intracycle
interference, and the quantum-orbit analysis in this work
strongly suggests that the conditions derived in [36] are only
valid for high momenta and orbits 1 and 2. This is because, in
[36], the imaginary parts of the times related to orbits 1 and 2
are set to be equal and their momenta at the tunnel exit is chosen
to be equal to their final momenta. These assumptions hold in
the SFA and are good approximations for high momenta, as fast
electrons are less influenced by the Coulomb potential. This
is consistent with our analysis, which shows that the initial
momenta p(1)

0 , p(2)
a and the ionization times t1c and t2c tend

to their SFA counterparts in this regime. For momenta close
to the threshold, however, these assumptions no longer hold.
Additionally, one should be careful considering interference
between orbit 1 and 2 when px0 = 0, as orbit 2 cannot have
zero initial perpendicular momenta or it will undergo a hard
collision with the parent ion. For orbit 3, the conditions in
[36] are not applicable in any momentum range, as it behaves
in a very different way. Apart from having a much larger
tunnel probability throughout, which implies a much smaller
Im[t3c], it does not tend to the SFA as the momentum increases.
Luckily, the prefactor suppresses this orbit over a wide range
of scattering angles. However, this is not the case near the
field-polarization axis.

This analysis is greatly facilitated by how the CQSFA
is implemented. While our method is similar to other ap-
proaches such as the trajectory-based Coulomb-corrected
strong-field approximation (TCSFA) [36,37] and the QMTC
model [52,55,59], there are some key differences. The TCSFA
and the QMTC method solve the forward problem. Since
it is not known what the final momentum will be given a
particular starting momentum, one must use larger initial
momentum regions in order to sample the final momentum
region of interest. Thus, many trajectories, typically 108–109,
with different initial momenta must be run before each bin
is sufficiently populated and interference patterns can be re-
solved. Furthermore, a uniform spread of initial momenta may
undersample specific types of trajectories. This is particularly
true for type-3 orbits, whose initial momenta are strongly
bunched close to the parallel momentum axis. In contrast,
the CQSFA solves the inverse problem, so that for each point
in final momentum there are three well defined orbits and
we only need to calculate as many points as the resolution
dictates.

In addition, the TCSFA has caustics that are made worse
both by including sub-barrier Coulomb corrections and when
orbit 3 or 4 are included, and which make the interference
patterns less clear [36]. This could be due to orbit 3 becoming
more chaotic for low momenta, which may be problematic if
a forward mapping is performed. The CQSFA does not suffer
from this despite considering sub-barrier Coulomb corrections
and orbit 3. The QTMC methods do not contain caustics but
are less general as they either disregard sub-barrier corrections
[52] or they use quasistatic tunneling rates [55,59], which will
not be valid for higher frequencies [26].

In the CQSFA, the momentum is approximated to be
constant in the sub-barrier part of the contour, as originally
done in [36,37]. One of the main issues with this region is
that one must integrate the potential up to its singularity. In
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practice, one must determine a lower bound for which there are
no qualitative changes in the PADs. However, this introduces
some ambiguity so that no quantitative statements can be
made about total ionization rates. Furthermore, the tunnel
trajectory end point is fixed by the tunnel exit derived in [51],
which takes a perturbative approach. Improvements to this
contour have been reported in [58] in the context of low-energy
structures.

A direct comparison with the TDSE shows that our
approach works best for near-threshold and moderate photo-
electron energies. Discrepancies have been observed for very
low and very high energies, and may be due to the following
issues. First, there exist branch cuts associated with orbit
3. In the low- and high-energy regimes these branch cuts
are related to soft and hard recollisions, respectively. This
means that either a better contour must be chosen, or analytic
continuations to the transition amplitude must be made.
Second, by inserting a closure relation in the ATI transition
amplitude, we have eliminated the contributions from excited
bound states in Eq. (12). These contributions may play a role
for very low energy, by providing additional pathways for the
electron to reach the continuum. Finally, the assumption that
the under-the-barrier momentum is constant may break down
in cases for which there is substantial acceleration such as
along orbit 3.

Nonetheless, the CQSFA can qualitatively reproduce many
features in the ATI momentum distribution, including the
number of nodes on each ATI ring. In [36] it is stated how sub-
barrier corrections rectify the number of nodes on the second
ring but those on the first remain incorrect. This is attributed to
the tunnel contour approximation being insufficient. However,
we do obtain the correct number of fringes using the same
approximation. It is more likely that this discrepancy is due
the ṗ · r term used in our expression, which is absent in [36]. In
previous publications, we have found this term to be important
for a good agreement with the TDSE [26,27]. Similar results
have also been reported in [52].

Given that the CQSFA has very low computational de-
mands, it can be extended to more complex systems such as
multielectron targets. Possibilities for extending this method
for a multielectron system include effective potentials, impos-
ing a spatial boundary inside which the multielectron dynamics
are incorporated and the field is treated approximately, such as
in the analytical R-matrix theory (ARM) [50], and perturbative
multielectron expansions around the one-electron CQSFA
[64–66]. If the present formulation is considered, a method
of extending an effective potential to the complex plane
would be necessary for computing the tunnel trajectory.
Given that this extension would only be required along
the path of the tunnel trajectory and the other dynamics
may be considered as real, this should not be a difficult
task.
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APPENDIX A: GENERALIZED INTERFERENCE
CONDITIONS

In this Appendix we derive Eqs. (32) and (33) from Eq. (30).
First, Eq. (30) is rewritten as

�(pf ) =
∣∣∣∣∣

ne∑
e=1

Nc−1∑
c=0

exp[iSec]

∣∣∣∣∣
2

(A1)

=
∣∣∣∣∣

ne∑
e=1

exp[iSe0]
Nc−1∑
c=0

exp[i(Sec − Se0)]

∣∣∣∣∣
2

. (A2)

From Eq. (31) we can calculate Sec − Se0, which reads as

Sec − Se0 = 2πic

ω

(
Ip + Up + 1

2
p2

f

)
︸ ︷︷ ︸

α

. (A3)

The fact that we can pull out a factor Se0 and the remaining
sum over c is not dependent on e means that we can factorize
the two sums. This gives

�(pf ) =
∣∣∣∣∣

ne∑
e=1

exp[iSe0]

∣∣∣∣∣
2

︸ ︷︷ ︸
�ne

∣∣∣∣∣
Nc−1∑
c=0

exp

[
2πiαc

ω

]∣∣∣∣∣
2

︸ ︷︷ ︸
�Nc

, (A4)

from which we can infer Eq. (32), namely
�(pf ) = �ne

(pf )�Nc
(pf ). (A5)

We can further simplify �Nc
(pf ), so that

�Nc
(pf ) =

∣∣∣∣∣exp
[ 2πiα(Nc−1)

ω

]− 1

exp
[

2πiα
ω

]− 1

∣∣∣∣∣
2

= cos
[ 2πNc

ω
α
]− 1

cos
[

2π
ω

α
]− 1

, (A6)

which leads to Eq. (33).

APPENDIX B: COULOMB CORRECTION FOR
TUNNEL PREFACTOR

In this Appendix, we compute the integral over the
binding potential for the imaginary part of the CQSFA action
related to tunnel ionization, Eq. (50), in the long-wavelength
approximation. This integral is important in determining the
shapes of single-orbit distributions, and influences their side
lobes. The tunnel trajectory can be written explicitly as

r0(τ ) = ipe0(τi − t ′i ) + i

∫ τi

t ′i

A(tr + iτ ′
i )dτ ′

i . (B1)

Using the long-wavelength approximation and expanding
around the imaginary component, the above-stated expression
is approximated by

r0(τ ) = (τi − t ′i )
[
i[p0 + A(t ′r )] − 1

2 Ȧ(t ′r )(τi + t ′i )
]
, (B2)
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where τi = Im[τ ]. This expression can be used to compute the indefinite integral∫
V (r0(τ ))dτ = iC√

−p2
0x + χ2

[
ln(τi − t ′i ) − ln

(
2
[
χη(τi) − p2

0x

]+ 2
√

−p2
0x + η(τi)2

√
−p2

0x + χ2
)]

, (B3)

where

χ = i[p0x + A(t ′r )] − t ′i Ȧ(t ′r ) and (B4)

η(τi) = i[p0z + A(t ′r )] − 1
2 (t ′i + τi)Ȧ(t ′r ). (B5)

We are however interested in the definite integral from t ′ to t ′r . Care must be taken with the lower bound as it will lead to a
divergence. For that reason, we take it as t ′ − i
τi , where 
τi is chosen to be arbitrarily small. This gives

IVT
=
∫ t ′r

t ′−i
τi

V (r0(τ ))dτ = i ln

⎡
⎢⎢⎣
⎛
⎜⎝ t ′i
(
χη(t ′i − 
τi) − p2

0x +
√

−p2
0x + η(t ′i − 
τi)2

√
−p2

0x + χ2
)


τi

(
χη(0) − p2

0x +
√

−p2
0x + η(0)2

√
−p2

0x + χ2
)

⎞
⎟⎠

C/
√

−p2
0x+χ2

⎤
⎥⎥⎦, (B6)

so that exp[−iIVT
] will be a power of C/

√
−p2

0x + χ2 and 
τ
−C/

√
−p2

0x+χ2

i will contribute as an orbit independent overall
factor multiplying the whole transition amplitude. There is also some freedom on how to approach this limit, and a convenient

parametrization, such as 
τi ∼ δC/
√

−p2
0x+χ2

, may be employed. Equation (B6) agrees with numerical computations, in which

τi is set to be small.
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