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Rydberg electrometry for optical lattice clocks
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Electrometry is performed using Rydberg states to evaluate the quadratic Stark shift of the 5s2 1S0-5s5p 3P0

clock transition in strontium. By measuring the Stark shift of the highly excited 5s75d 1D2 state using
electromagnetically induced transparency, we characterize the electric field with sufficient precision to provide
tight constraints on the systematic shift to the clock transition. Using the theoretically derived, and experimentally
verified, polarizability for this Rydberg state, we can measure the residual field with an uncertainty well below
1 V m−1. This resolution allows us to constrain the fractional frequency uncertainty of the quadratic Stark shift
of the clock transition to 2×10−20.
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I. INTRODUCTION

In the past decade, optical lattice clocks [1,2] have
made dramatic progress in accuracy and stability, surpassing
their microwave counterparts to have the lowest fractional
uncertainty of any frequency standard to date. Ensuring the
continuation of this progress demands that the environmental
perturbations affecting their accuracy are characterized to
increasingly precise levels. Motivated by this challenge, we
report on a method using highly excited Rydberg states to
provide an in situ measurement of the dc electric field.

Uncharacterized electric fields can severely impact the
accuracy of an atomic clock. For the 5s2 1S0-5s5p 3P0 clock
transition in strontium, an electric field of 570 V/m yields
a dc Stark shift of 1 Hz [3], or 2×10−15 in fractional units,
some three orders of magnitude above the lowest estimated
total inaccuracy of a strontium optical lattice clock [4]. Where
dielectric surfaces are close to the atoms, shifts as large as
1×10−13 have been observed [5]. While steps can be taken
to reduce the residual electric field seen by the reference
atoms, such as Faraday shielding [6], or UV discharge of
dielectric surfaces [7], a characterization of the remaining field
is necessary. This is typically done by direct spectroscopy of
the clock transition with an externally applied electric field.
With no residual electric field present, the quadratic nature
of the perturbation implies the resulting induced frequency
shift should be unchanged if the polarity of the applied field
is reversed but the magnitude is left unchanged [8]. However,
this method relies on the ability to apply sufficiently large and
stable electric fields at the position of the atoms to induce
a shift large enough to be quickly resolved during operation
of the clock. For metallic vacuum chambers with minimal
dielectric openings and no internal electrodes, producing such
a shift is problematic. Furthermore, the applied field can charge
dielectric materials such as the vacuum viewports [9], resulting
in a time dependence of the effective applied field.

We circumvent these challenges by performing in situ
electrometry using electromagnetically induced transparency
(EIT) spectroscopy [10] to measure the quadratic Stark shift
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of the Sr 5s75d 1D2 mJ = 0,±1,±2 Rydberg states. Rydberg
states of alkaline-earth atoms are of growing interest for appli-
cations in quantum information [11] and many-body physics
[12], motivating their study by several groups [13,14]. The low-
frequency polarizability scales with principal quantum number
n as n7, making Rydberg states well suited for ac [15–17]
and dc [18–20] electrometry, with EIT spectroscopy being
a particularly convenient measurement technique [9,21–23].
The polarizability of our chosen Rydberg state is eight orders
of magnitude larger than that of the clock transition, which
reduces the required spectroscopic resolution from sub-Hz, as
needed when using to clock transition, to MHz when using
Rydberg states to achieve the desired level of inaccuracy. It
has also been proposed to use Rydberg states to measure
ambient blackbody radiation [24], which is responsible for
the leading systematic uncertainty in many current Sr lattice
clocks [25–28].

Using this spectroscopic method, we reduce the fractional
uncertainty of the dc Stark shift of the clock transition to
2×10−20. Furthermore, the formation of Rydberg states in a
system designed for the operation as an atomic clock opens the
possibility to investigate proposals to use long-range Rydberg
interactions to generate squeezed states which exhibit reduced
quantum projection noise [29].

II. THEORY: SINGLE ELECTRON MODEL
AND STARK MAPS

Alongside their large polarizability, another key advantage
of Rydberg states for precision electrometry is that their
Stark map—the variation of energy levels with the applied
electric field—may be calculated to a very high degree of
accuracy [30]. Even in divalent atoms such as strontium, where
interelectronic Coulomb interactions lead to perturbations of
the Rydberg states [31], it can be shown that accurate wave
functions [32–34], and Stark maps [35–37], can be obtained
without recourse to the complex atomic structure calculations
required for the clock states [38].

This simplification occurs because for Rydberg states, the
effect of interelectronic interactions occurs primarily through
the existence of spatially compact, doubly excited perturber
states that overlap in energy with the Rydberg manifold.
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FIG. 1. (a) Predicted Stark shift of the 5s47d 1D2 mJ = 0 state
compared to experimental data (black dots) without any adjustable
parameters. (b) Predicted Stark shift of the three |mJ | components
of the 5s75d 1D2 state. The shaded area represents the uncertainty
arising from the experimental determination of the zero-field energy
(see text).

However, since the static polarizability is dominated by the
long-range character of the wave function [39], these states
do not significantly alter the Stark maps. In previous work
we have shown that an effective one-electron treatment that
neglects interelectronic effects gives Stark maps that are
in agreement with measurements for high-lying strontium
Rydberg states [35].

Here, we develop this approach to calculate Stark maps
with the well-characterized uncertainty necessary to constrain
the instability due to the electric field. The method is based on
analytic expressions for the wave functions and dipole matrix
elements generated using the Coulomb approximation [30].
The wave function is parametrized by a quantum defect, which
is obtained by fitting to the experimentally measured zero-field
energies.

To obtain the Stark map, Rydberg states within a range of
[n − 3,n + 5] from the target states and with l ∈ [0,15] are
included in the Stark Hamiltonian, which is then diagonalized
numerically for each value of the field. At low electric
field, the Stark shift of nondegenerate states is approximately
quadratic, and a fit of the form �E = 1

2α0E
2 yields the static

polarizability α0.
In Fig. 1(a) we show an example Stark map compared to

experimental measurements taken in an atomic beam apparatus
with a well-defined electrode geometry [40]. The data and the
model are in quantitative agreement without any adjustable
parameters. The predicted Stark map for the higher-lying
state used to constrain the field in the lattice clock is shown
in Fig. 1(b). In both cases, the shaded band indicates the
theoretical uncertainty in the Stark map. By far the dominant
contribution to this uncertainty is the experimental uncertainty
in the zero-field energies used to calculate the wave functions.
In strontium, the current state-of-the-art absolute frequency
measurements of Rydberg energy levels is ±30 MHz for S
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FIG. 2. Top: Modulation of the pump beam intensity (green) and
its corresponding modulated EIT induced on the probe absorption
signal (blue). The pump beam is resonant with the n = 53 Rydberg
state and both the external magnetic and electric fields set to zero.
Bottom: An EIT spectrum is obtained by scanning the pump beam
frequency and repeating such an absorption measurement. Example
spectra are shown for zero applied magnetic field, with the applied
electric field on (gray) and off (blue).

and D states [41], with measurements on the other series
having much greater errors [42]. The zero-field energies for
each series and the corresponding errors are obtained by
fitting these experimental data with the Rydberg-Ritz formula
[32]. The shaded region corresponds to the extremal cases
where the 1σ errors on each series are combined to give
the extremal overall polarizabilities. Using ultracold atoms
and frequency comb technology, it was recently shown that
absolute Rydberg spectroscopy with 10 kHz uncertainty is
possible [43], opening the way to significant improvement in
the Stark map uncertainty.

III. EXPERIMENTAL APPROACH

We follow the standard approach for producing cold
strontium samples [44–46]. We operate a blue magneto-optical
trap (MOT) on the 461-nm transition for 650 ms, followed by a
broadband and single-frequency red MOT for 100 and 150 ms,
respectively, which results in a sample of approximately 105

88Sr atoms at a temperature of around 1 μK. Details of our
apparatus can be found in Refs. [47,48]. Before implementing
the EIT probe pulse, the cloud of atoms is released from
the red MOT for 5 ms, giving time for the magnetic field
to settle to the desired bias value, and for the atoms to expand
ballistically to a lower density which was observed to improve
the signal-to-noise level.

For the implementation of the EIT spectroscopy counter-
propagating beams, one resonant with the 5s2 1S0-5s5p 1P1

transition at 461 nm and the other with tunable frequency
at 413 nm, excite atoms to a chosen 5snd 1D2 Rydberg state.
The resulting EIT signal is measured using “lock-in” detection
of the 461-nm probe beam absorption via modulation of the
413-nm pump beam intensity by an optical chopper. A typical
absorption measurement showing the modulated EIT signal
induced by the pump beam is shown in the top of Fig. 2. The
probe beam is derived from a commercial frequency-doubled
diode laser system. Its power and waist, as defined by the
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1/e2 radius of the intensity profile, are 800 fW and 120 μm,
respectively. At this power and atomic number, the probe
beam absorption is between 20% and 40%. A home-built
extended-cavity diode laser (ECDL) provides 8 mW of pump
light which is focused to an 80-μm waist at the atoms’ position.
The bottom inset in Fig. 2 shows typical spectra taken at zero
magnetic field with and without the applied external electric
field.

The long-term frequency stability of the pump and probe
beam is maintained to within 10 kHz by locking to a transfer
cavity referenced to the “clock” laser. In the case of the
probe beam, the subharmonic at 922 nm is directly locked
to the cavity. To stabilize the 413-nm pump-laser frequency,
a commercial Ti:sapphire laser, which is typically used to
form the magic wavelength lattice at 813 nm, is first tuned to
826 nm and locked to the transfer cavity. This light is then
frequency doubled by a LiB3O5 (LBO) crystal [49] to produce
20 μW as needed to generate a beat note with the pump beam.
The beat-note signal is mixed with a direct digital synthesizer
(DDS) and the intermediate frequency is stabilized using a
delay line offset lock scheme [50] via fast feedback to the
diode current and slow feedback to the ECDL piezo. The
DDS provides the necessary tunability needed for scanning
the pump-laser frequency.

In order to spectroscopically resolve the Zeeman sublevels
of the Rydberg state, an external magnetic field between
100 and 300 μT is applied orthogonal to the propagation
direction of the pump and probe beams. In this low-field
regime, the Zeeman splitting of the intermediate 5s5p 1P1

state is negligible compared to its natural linewidth. The
probe beam is linearly polarized orthogonal to the quantization
axis to enable a balanced access to all the mJ levels within
the Rydberg manifold given the fixed polarization of the
pump light. Any background residual magnetic field is nulled
using electron-shelving spectroscopy on the narrow-linewidth
5s2 1S0-5s5p 3P1 transition at 689 nm [51]. We resolve a
Doppler-broadened linewidth of 40 kHz which constrains any
residual field to below 2 μT.

To test the sensitivity of our method, an external plate
electrode located directly opposite a radial DN40 viewport
is used to apply a dc electric field in order to induce a
Stark shift of the Rydberg states. Shielding from the metal
vacuum chamber greatly attenuates the applied field at the
atoms’ position, meaning several kV potentials are needed to
induce a substantial Stark shift. Such large potentials have the
unfortunate effect of charging the dielectric viewport, resulting
in an exponential decay of the applied electric field strength
at the atoms’ position, as inferred from a reduction in the
Stark shift with time. To ameliorate this effect, we interleave
measurements with opposite field polarity to avoid charging
any external surfaces.

IV. RYDBERG ELECTROMETRY
USING EIT SPECTROSCOPY

As we do not have a method to directly measure the pump
and probe frequencies, we have instead developed a method for
measuring the applied electric fields that is based on the relative
splitting of spectral lines, rather than the absolute detuning. In
the absence of an electric field, the Zeeman sublevels split

FIG. 3. Inset (a) shows the Zeeman splitting without an applied
electric field for the Rydberg state n = 75 (the error bars are smaller
than the symbols). The line centers are extracted from the EIT spectra,
an example of which is shown in inset (c) for the highest-field
case. Even without an applied field, a fit to the splitting reveals a
slight asymmetry resulting from the tensor nature of the Stark shift
consistent with a residual electric field of 1.52 V m−1. For the applied
field case, shown in insets (b) and (d), the Stark shift is clearly visible
and the fitting procedure returns an electric field of 5.75 V m−1.

symmetrically with applied magnetic field B. However, in the
presence of an electric field E, the Stark shift will result in
an asymmetry in the spectrum, since the Stark shift depends
on |mJ |. Example spectra with and without an applied electric
field are shown in Fig. 3. In order to extract the line centers, five
Fano profiles are fit to each spectrum corresponding to each of
the five possible mJ transitions. The asymmetric effect of an
applied electric field on the observed Zeeman shift of the mJ

is clearly visible in Fig. 3.
To obtain the electric field from the spectroscopic data, the

relative line positions are compared to a calculation of the
combined Zeeman and Stark shift of each level. In the general
case, the magnetic and electric field vectors are separated
by an angle β, requiring transformation to a common basis.
Choosing to work in the |J,m〉 basis defined by the magnetic
field quantization axis, the matrix elements of the Zeeman
Hamiltonian are give by

〈J,m1| HB |J,m2〉 = −m1μBδm1m2 , (1)

where μ, the magnitude of the magnetic dipole moment, is
the Bohr magneton for a singlet state and δ is the Kronecker
delta function. The Stark Hamiltonian, with eigenenergies
�E(mJ ,E) that are computed as outlined in Sec. II, is rotated
by an angle β by applying the appropriate Wigner d matrix
dJ

m,m′ (β) for J = 2. The matrix elements of this transformed
Hamiltonian are given by

〈J,m1| HE |J,m2〉 =
∑
m′

dJ
m1,m′ (β)dJ

m2,m′(β)�E(m′,E). (2)

Finally, the theoretical splitting is computed by diagonaliz-
ing the Hamiltonian H = HE + HB . Using this approach, we
fit the experimentally observed energy splitting by varying the
electric field strength E and its angle β relative to the applied
magnetic field in the model. As the Stark shift is quadratic,
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our method only determines β modulo π . The only other
fitting parameter is an overall two-photon detuning from the
zero-field resonance as we have no measure of the absolute
frequency of the 413-nm laser.

Figure 3 shows the relative energy splitting for various
magnetic fields with and without an applied electric field.
An external electrode set to 2 kV, the maximum allowed by
the high-voltage supply, generated the applied electric field.
From a fit to the Zeeman splitting, the electric field at the
position of the atoms is estimated to be 5.75 ± 0.11(stat) ±
0.16(sys) V m−1. The fitting procedure also returned a value
of β = 0.47(1)π that is consistent with the axial magnetic
field and radially applied electric field. An electric field of
such magnitude would result in a fractional frequency shift of
the clock transition equal to 2×10−19. Given this is the largest
field we can apply, it would have taken approximately a year of
continuous operation to resolve this frequency shift given our
fractional frequency instability, highlighting the utility of this
method when applying large external fields is not possible.

Next, the external field was switched off and the procedure
was repeated. A fit to the resulting splitting revealed a
residual electric field of 1.52+0.62(stat)

−0.22
+0.05(sys)
−0.03 V m−1 most

likely due to the patch potential on the surrounding chamber.
The uncertainty for this electric field value comprises both
the statistical error resulting from the fitting procedure and the
systematic error arising from the uncertainty in the Stark map
for 751D2. The quoted statistical error corresponds to a 68%
confidence interval as determined by the fitting procedure. A
weak correlation observed between the uncertainty in β and
the electric field is taken into account in this estimate [52]
(see Appendix B for further details). The systematic error on
the electric field value due to the uncertainty for the Rydberg
polarizability was calculated by repeating the fitting procedure
with revised Stark maps offset from the theoretically predicted
value by ±σ . Translating this electric field and corresponding
uncertainty to the dc Stark shift of the 1S0-3P0 clock transition
results in a fractional frequency shift of −1.6+0.4

−1.6×10−20. The
fractional uncertainty of the differential polarizability of the
clock states is negligible compared to that of the electric field
and therefore has been ignored in the quoted uncertainty.

V. CONCLUSION

In conclusion, we believe that Rydberg electrometry
constitutes a valuable technique for controlling systematic
errors in optical lattice clocks. The dc Stark shifts can in
principle be separated from other systematic uncertainties
using measurements on the clock transition alone, but this
is time consuming and requires the application of well-
characterized external electric fields. In contrast, Rydberg
states selectively enhance the spectroscopic sensitivity to
stray electric fields by several orders of magnitude. The high
spectroscopic resolution provided by EIT thus enables rapid
quantitative measurements of the stray electric field. On the
practical side, all that is required is a single additional laser
to provide the pump beam, and existing lattice clock setups
need not be modified to include electrodes. The constraint
on the clock uncertainty that we obtained is compatible with
the accuracy of the current generation of lattice clocks, and
improved spectroscopy of the relevant Rydberg levels would

see this reduced to negligible levels. Lastly, we note that
the combination of Rydberg states and optical lattice clocks
could also be applied to measurements of blackbody-induced
systematic errors, and the creation of nonclassical states.
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APPENDIX A: THEORETICAL STARK
MAP UNCERTAINTY

Here, we consider further the estimation of the uncertainty
in the electric field that arises from the calculation of the Stark
map. As stated earlier, at the current level of precision the
dominant contribution is the uncertainty in the experimentally
measured zero-field energies of the Rydberg states. In this
work, we carried out a more detailed analysis of the data
set discussed in Ref. [32]. For each Rydberg series, the
experimentally available Rydberg energies are fitted with the
Rydberg-Ritz formula to obtain the zero-field energy at all
principal quantum numbers. Given that the reduced χ2 of
those fits is around 2 with around 30 degrees of freedom,
the statistical uncertainty on the fit parameters obtained from
a simple fitting procedure can be underestimated (see p. 107,
Ref. [53]). To get a more reliable estimate of the uncertainty
on the fit parameters, we fitted a large number of different
subsamples of the spectroscopic data, generated by randomly
removing a few data points from the full data set. The mean
value and uncertainty of the fit parameters are then taken to be
respectively the mean and standard deviation σ of the resulting
distributions.

To obtain the uncertainty in the Stark map, the zero-field
energies are varied within ±σ of their mean value. By
understanding how each state shifts with applied field, we
are able to find the combination of zero-field uncertainties that
leads to the minimal and maximal values of the Stark shift,
giving the curves that delimit the shaded area in Fig. 1 in the
article.

APPENDIX B: FITTING PROCEDURE FOR RYDBERG
ZEEMAN SPLITTING

Determining the magnitude of the electric field from
the Rydberg electromagnetically induced transparency (EIT)
spectra requires a two-step fitting procedure. First, each EIT
spectrum, recorded at a fixed magnetic field, is fit to determine
the line centers of the five mJ magnetic sublevels of the
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FIG. 4. Example Rydberg spectrum taken at a magnetic field
of.192 mT. The model shows good agreement with the observed data,
as indicated by the normally distributed residuals and the reduced χ2

value.

5s75d 1D2 Rydberg state. Using these values, the entire
Zeeman splitting is then fit to extract both the electric field
strength E and the angle β between the electric and magnetic
field.

To fit the EIT signal T as a function of laser detuning �,
we use the following model,

T (�) =
5∑

i=0

Ai

(
1 − (qi	i + � − �0,i)2

	2
i + (� − �0,i)2

)
. (B1)

The model is composed of five Fano profiles, each of which
has four fitting parameters: amplitude A, the linewidth 	, the
line center �0, and the Fano parameter q. Figure 4 shows a fit
along with the normally distributed residuals.

Once all spectra are fit, the observed Zeeman splitting is
compared to the eigenvalues of the Hamiltonian containing
both the Zeeman and Stark subterms. To compute this
Hamiltonian, we adopt the notation that |J,m〉 and |J,m′〉 are
the eigenstates of the Zeeman and Stark subterms, respectively.
Transforming between these two bases amounts to a rotation
by an angle β represented by a operator R = e−iβJy . The
matrix elements of the Stark Hamiltonian HE , with eigenvalues
�E(m′,E), in the |J,mJ 〉 basis are given by

〈J,m1| HE |J,m2〉
= 〈J,m1| R

∑
m′

�E(m′,E) |J,m′〉 〈J,m′| R† |J,m2〉

=
∑
m′

〈J,m1| R† |J,m′〉 〈J,m′| R |J,m2〉 �E(m′,E)

�
∑
m′

dJ
m1,m′ (β)dJ

m2,m′(β)�E(m′,E), (B2)

where dJ
m1,m′(β) is the Wigner d matrix for J = 2. In the final

line, we used the identity dJ
m,m′ (β) = dJ

m′,m(−β). By varying
the values of the electric field strength and angle β, we find

FIG. 5. Contour plots showing the change in χ 2 resulting from
varying the electric field strength and angle β in the fitting model.
Contours are shown for the data sets with (top) and without (botom) an
externally applied electric field. From the contours we can determine
the uncertainty for the fitting parameters along with correlation
between their values. The blue dots indicate the values for E and β that
minimize χ 2. The red dashed lines indicate the ±1σ bounds for each
fitting parameter based on the extrema of the contour corresponding
to an increase in χ 2 of 1.

those that give the best agreement with the observed Zeeman
splitting. Also included as a fitting parameter is an overall
two-photon detuning as we have no measure of the absolute
frequency of the 413-nm laser.

To extract the uncertainty for the electric field and angle β,
we examine the sensitivity of χ2 to changes of their values.
To do this we fix their values near those that minimize χ2

and refit the data by only varying the two-photon detuning.
By repeating this procedure for different electric field and β

values, we produce a contour plot showing the change in χ2 as
a function of these two fitting parameters. The region bounded
by the contour corresponding to an increase in χ2 of 1 sets the
confidence region for the two fit parameters. The extrema of
this boundary define the quoted ±1σ uncertainties. Examples
of such contour plots for the fits presented in this article are
shown in Fig. 5.
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This procedure also reveals correlations between the two
fitting parameters that cannot be detected by the numerically
computed covariance matrix. These correlations give rise to
the asymmetric statistical errors quoted in the article. One
can also see that χ2 is symmetric about β = π

2 . This results

from the quadratic nature of the Stark shift. Therefore, our
method returns the value of β modulo π . The numerical
fitting package used for this work was the nonlinear least-
square minimization and curve fitting (LMFIT) developed for
Python [54].

[1] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt,
Rev. Mod. Phys. 87, 637 (2015).

[2] H. Katori, Nat. Photon. 5, 203 (2011).
[3] T. Middelmann, S. Falke, C. Lisdat, and U. Sterr, Phys. Rev.

Lett. 109, 263004 (2012).
[4] T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti,

B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S.
Safronova, G. F. Strouse, W. L. Tew, and J. Ye, Nat. Commun.
6, 6896 (2015).

[5] J. Lodewyck, M. Zawada, L. Lorini, M. Gurov, and P. Lemonde,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 411 (2012).

[6] K. Beloy, N. Hinkley, N. B. Phillips, J. A. Sherman, M.
Schioppo, J. Lehman, A. Feldman, L. M. Hanssen, C. W. Oates,
and A. D. Ludlow, Phys. Rev. Lett. 113, 260801 (2014).

[7] S. E. Pollack, M. D. Turner, S. Schlamminger, C. A. Hagedorn,
and J. H. Gundlach, Phys. Rev. D 81, 021101 (2010).

[8] A. Matveev, C. G. Parthey, A. Beyer, N. Kolachevsky, J. Alnis,
R. Pohl, T. Udem, and T. W. Haensch, in CLEO: 2011 -
Laser Applications to Photonic Applications (Optical Society
of America, Washington, DC, 2011), p. QTuJ6.

[9] R. P. Abel, C. Carr, U. Krohn, and C. S. Adams, Phys. Rev. A
84, 023408 (2011).

[10] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod.
Phys. 77, 633 (2005).

[11] A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller, Phys. Rev. Lett.
101, 170504 (2008).

[12] R. Mukherjee, J. Millen, R. Nath, M. P. A. Jones, and T. Pohl,
J. Phys. B 44, 184010 (2011).

[13] J. Millen, G. Lochead, and M. P. A. Jones, Phys. Rev. Lett. 105,
213004 (2010).

[14] B. J. DeSalvo, J. A. Aman, C. Gaul, T. Pohl, S. Yoshida, J.
Burgdörfer, K. R. A. Hazzard, F. B. Dunning, and T. C. Killian,
Phys. Rev. A 93, 022709 (2016).

[15] J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau,
and J. P. Shaffer, Nat. Phys. 8, 819 (2012).

[16] C. L. Holloway, J. A. Gordon, S. Jefferts, A. Schwarzkopf, D.
A. Anderson, S. A. Miller, N. Thaicharoen, and G. Raithel,
IEEE Trans. Antennas Propag. 62, 6169 (2014).

[17] H. Fan, S. Kumar, J. Sheng, J. P. Shaffer, C. L. Holloway, and
J. A. Gordon, Phys. Rev. Appl. 4, 044015 (2015).

[18] A. Osterwalder and F. Merkt, Phys. Rev. Lett. 82, 1831 (1999).
[19] T. Thiele, J. Deiglmayr, M. Stammeier, J.-A. Agner, H. Schmutz,

F. Merkt, and A. Wallraff, Phys. Rev. A 92, 063425 (2015).
[20] D. K. Doughty and J. E. Lawler, Appl. Phys. Lett. 45, 611

(1984).
[21] A. K. Mohapatra, T. R. Jackson, and C. S. Adams, Phys. Rev.

Lett. 98, 113003 (2007).
[22] A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill,

and C. S. Adams, Nat. Phys. 4, 890 (2008).
[23] A. Tauschinsky, R. M. T. Thijssen, S. Whitlock, H. B. van Linden

van den Heuvell, and R. J. C. Spreeuw, Phys. Rev. A 81, 063411
(2010).

[24] V. D. Ovsiannikov, A. Derevianko, and K. Gibble, Phys. Rev.
Lett. 107, 093003 (2011).

[25] R. Le Targat, L. Lorini, Y. Le Coq, M. Zawada, J. Guéna, M.
Abgrall, M. Gurov, P. Rosenbusch, D. G. Rovera, B. Nagórny,
R. Gartman, P. G. Westergaard, M. E. Tobar, M. Lours, G.
Santarelli, A. Clairon, S. Bize, P. Laurent, P. Lemonde, and J.
Lodewyck, Nat. Commun. 4, 2109 (2013).

[26] S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V.
Gerginov, N. Huntemann, C. Hagemann, A. Al-Masoudi, S.
Häfner, S. Vogt, U. Sterr, and C. Lisdat, New J. Phys. 16, 073023
(2014).

[27] N. Poli, M. Schioppo, S. Vogt, S. Falke, U. Sterr, C. Lisdat, and
G. M. Tino, Appl. Phys. B 117, 1107 (2014).

[28] M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori,
Nature (London) 435, 321 (2005).

[29] L. I. R. Gil, R. Mukherjee, E. M. Bridge, M. P. A. Jones, and T.
Pohl, Phys. Rev. Lett. 112, 103601 (2014).

[30] M. L. Zimmerman, M. G. Littman, M. M. Kash, and D.
Kleppner, Phys. Rev. A 20, 2251 (1979).

[31] T. F. Gallagher, Rydberg Atoms (Cambridge University Press,
Cambridge, UK, 1994).

[32] C. Vaillant, M. Jones, and R. Potvliege, J. Phys. B 45, 135004
(2012).

[33] C. Vaillant, M. Jones, and R. Potvliege, J. Phys. B 47, 155001
(2014).

[34] S. Ye, X. Zhang, T. C. Killian, F. B. Dunning, M. Hiller, S.
Yoshida, S. Nagele, and J. Burgdörfer, Phys. Rev. A 88, 043430
(2013).

[35] J. Millen, G. Lochead, G. R. Corbett, R. M. Potvliege, and
M. P. A. Jones, J. Phys. B 44, 184001 (2011).

[36] G. Lochead, D. Boddy, D. P. Sadler, C. S. Adams, and M. P. A.
Jones, Phys. Rev. A 87, 053409 (2013).

[37] M. Hiller, S. Yoshida, J. Burgdörfer, S. Ye, X. Zhang, and F. B.
Dunning, Phys. Rev. A 89, 023426 (2014).

[38] M. S. Safronova, S. G. Porsev, U. I. Safronova, M. G. Kozlov,
and C. W. Clark, Phys. Rev. A 87, 012509 (2013).

[39] C. L. Vaillant, R. M. Potvliege, and M. P. A. Jones, Phys. Rev.
A 92, 042705 (2015).

[40] R. K. Hanley, A. D. Bounds, P. Huillery, N. C. Keegan, R. Faoro,
E. M. Bridge, K. J. Weatherill, and M. P. A. Jones, J. Phys. B:
At. Mol. Opt. Phys. 50, 115002 (2017).

[41] R. Beigang, K. Lücke, A. Timmermann, P. J. West, and D.
Frölich, Opt. Commun. 42, 19 (1982).

[42] J. R. Rubbmark and S. A. Borgström, Phys. Scr. 18, 196 (1978).
[43] R. Kliese, N. Hoghooghi, T. Puppe, F. Rohde, A. Sell, A. Zach,

P. Leisching, W. Kaenders, N. C. Keegan, A. D. Bounds, E. M.
Bridge, J. Leonard, C. S. Adams, S. L. Cornish, and M. P. Jones,
Eur. Phys. J.: Spec. Top. 225, 2775 (2016).

[44] H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami,
Phys. Rev. Lett. 82, 1116 (1999).

[45] T. H. Loftus, T. Ido, M. M. Boyd, A. D. Ludlow, and J. Ye,
Phys. Rev. A 70, 063413 (2004).

023419-6

https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1038/nphoton.2011.45
https://doi.org/10.1038/nphoton.2011.45
https://doi.org/10.1038/nphoton.2011.45
https://doi.org/10.1038/nphoton.2011.45
https://doi.org/10.1103/PhysRevLett.109.263004
https://doi.org/10.1103/PhysRevLett.109.263004
https://doi.org/10.1103/PhysRevLett.109.263004
https://doi.org/10.1103/PhysRevLett.109.263004
https://doi.org/10.1038/ncomms7896
https://doi.org/10.1038/ncomms7896
https://doi.org/10.1038/ncomms7896
https://doi.org/10.1038/ncomms7896
https://doi.org/10.1109/TUFFC.2012.2209
https://doi.org/10.1109/TUFFC.2012.2209
https://doi.org/10.1109/TUFFC.2012.2209
https://doi.org/10.1109/TUFFC.2012.2209
https://doi.org/10.1103/PhysRevLett.113.260801
https://doi.org/10.1103/PhysRevLett.113.260801
https://doi.org/10.1103/PhysRevLett.113.260801
https://doi.org/10.1103/PhysRevLett.113.260801
https://doi.org/10.1103/PhysRevD.81.021101
https://doi.org/10.1103/PhysRevD.81.021101
https://doi.org/10.1103/PhysRevD.81.021101
https://doi.org/10.1103/PhysRevD.81.021101
https://doi.org/10.1103/PhysRevA.84.023408
https://doi.org/10.1103/PhysRevA.84.023408
https://doi.org/10.1103/PhysRevA.84.023408
https://doi.org/10.1103/PhysRevA.84.023408
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1103/PhysRevLett.101.170504
https://doi.org/10.1103/PhysRevLett.101.170504
https://doi.org/10.1103/PhysRevLett.101.170504
https://doi.org/10.1103/PhysRevLett.101.170504
https://doi.org/10.1088/0953-4075/44/18/184010
https://doi.org/10.1088/0953-4075/44/18/184010
https://doi.org/10.1088/0953-4075/44/18/184010
https://doi.org/10.1088/0953-4075/44/18/184010
https://doi.org/10.1103/PhysRevLett.105.213004
https://doi.org/10.1103/PhysRevLett.105.213004
https://doi.org/10.1103/PhysRevLett.105.213004
https://doi.org/10.1103/PhysRevLett.105.213004
https://doi.org/10.1103/PhysRevA.93.022709
https://doi.org/10.1103/PhysRevA.93.022709
https://doi.org/10.1103/PhysRevA.93.022709
https://doi.org/10.1103/PhysRevA.93.022709
https://doi.org/10.1038/nphys2423
https://doi.org/10.1038/nphys2423
https://doi.org/10.1038/nphys2423
https://doi.org/10.1038/nphys2423
https://doi.org/10.1109/TAP.2014.2360208
https://doi.org/10.1109/TAP.2014.2360208
https://doi.org/10.1109/TAP.2014.2360208
https://doi.org/10.1109/TAP.2014.2360208
https://doi.org/10.1103/PhysRevApplied.4.044015
https://doi.org/10.1103/PhysRevApplied.4.044015
https://doi.org/10.1103/PhysRevApplied.4.044015
https://doi.org/10.1103/PhysRevApplied.4.044015
https://doi.org/10.1103/PhysRevLett.82.1831
https://doi.org/10.1103/PhysRevLett.82.1831
https://doi.org/10.1103/PhysRevLett.82.1831
https://doi.org/10.1103/PhysRevLett.82.1831
https://doi.org/10.1103/PhysRevA.92.063425
https://doi.org/10.1103/PhysRevA.92.063425
https://doi.org/10.1103/PhysRevA.92.063425
https://doi.org/10.1103/PhysRevA.92.063425
https://doi.org/10.1063/1.95328
https://doi.org/10.1063/1.95328
https://doi.org/10.1063/1.95328
https://doi.org/10.1063/1.95328
https://doi.org/10.1103/PhysRevLett.98.113003
https://doi.org/10.1103/PhysRevLett.98.113003
https://doi.org/10.1103/PhysRevLett.98.113003
https://doi.org/10.1103/PhysRevLett.98.113003
https://doi.org/10.1038/nphys1091
https://doi.org/10.1038/nphys1091
https://doi.org/10.1038/nphys1091
https://doi.org/10.1038/nphys1091
https://doi.org/10.1103/PhysRevA.81.063411
https://doi.org/10.1103/PhysRevA.81.063411
https://doi.org/10.1103/PhysRevA.81.063411
https://doi.org/10.1103/PhysRevA.81.063411
https://doi.org/10.1103/PhysRevLett.107.093003
https://doi.org/10.1103/PhysRevLett.107.093003
https://doi.org/10.1103/PhysRevLett.107.093003
https://doi.org/10.1103/PhysRevLett.107.093003
https://doi.org/10.1038/ncomms3109
https://doi.org/10.1038/ncomms3109
https://doi.org/10.1038/ncomms3109
https://doi.org/10.1038/ncomms3109
https://doi.org/10.1088/1367-2630/16/7/073023
https://doi.org/10.1088/1367-2630/16/7/073023
https://doi.org/10.1088/1367-2630/16/7/073023
https://doi.org/10.1088/1367-2630/16/7/073023
https://doi.org/10.1007/s00340-014-5932-9
https://doi.org/10.1007/s00340-014-5932-9
https://doi.org/10.1007/s00340-014-5932-9
https://doi.org/10.1007/s00340-014-5932-9
https://doi.org/10.1038/nature03541
https://doi.org/10.1038/nature03541
https://doi.org/10.1038/nature03541
https://doi.org/10.1038/nature03541
https://doi.org/10.1103/PhysRevLett.112.103601
https://doi.org/10.1103/PhysRevLett.112.103601
https://doi.org/10.1103/PhysRevLett.112.103601
https://doi.org/10.1103/PhysRevLett.112.103601
https://doi.org/10.1103/PhysRevA.20.2251
https://doi.org/10.1103/PhysRevA.20.2251
https://doi.org/10.1103/PhysRevA.20.2251
https://doi.org/10.1103/PhysRevA.20.2251
https://doi.org/10.1088/0953-4075/45/13/135004
https://doi.org/10.1088/0953-4075/45/13/135004
https://doi.org/10.1088/0953-4075/45/13/135004
https://doi.org/10.1088/0953-4075/45/13/135004
https://doi.org/10.1088/0953-4075/47/15/155001
https://doi.org/10.1088/0953-4075/47/15/155001
https://doi.org/10.1088/0953-4075/47/15/155001
https://doi.org/10.1088/0953-4075/47/15/155001
https://doi.org/10.1103/PhysRevA.88.043430
https://doi.org/10.1103/PhysRevA.88.043430
https://doi.org/10.1103/PhysRevA.88.043430
https://doi.org/10.1103/PhysRevA.88.043430
https://doi.org/10.1088/0953-4075/44/18/184001
https://doi.org/10.1088/0953-4075/44/18/184001
https://doi.org/10.1088/0953-4075/44/18/184001
https://doi.org/10.1088/0953-4075/44/18/184001
https://doi.org/10.1103/PhysRevA.87.053409
https://doi.org/10.1103/PhysRevA.87.053409
https://doi.org/10.1103/PhysRevA.87.053409
https://doi.org/10.1103/PhysRevA.87.053409
https://doi.org/10.1103/PhysRevA.89.023426
https://doi.org/10.1103/PhysRevA.89.023426
https://doi.org/10.1103/PhysRevA.89.023426
https://doi.org/10.1103/PhysRevA.89.023426
https://doi.org/10.1103/PhysRevA.87.012509
https://doi.org/10.1103/PhysRevA.87.012509
https://doi.org/10.1103/PhysRevA.87.012509
https://doi.org/10.1103/PhysRevA.87.012509
https://doi.org/10.1103/PhysRevA.92.042705
https://doi.org/10.1103/PhysRevA.92.042705
https://doi.org/10.1103/PhysRevA.92.042705
https://doi.org/10.1103/PhysRevA.92.042705
https://doi.org/10.1088/1361-6455/aa6e79
https://doi.org/10.1088/1361-6455/aa6e79
https://doi.org/10.1088/1361-6455/aa6e79
https://doi.org/10.1088/1361-6455/aa6e79
https://doi.org/10.1016/0030-4018(82)90082-7
https://doi.org/10.1016/0030-4018(82)90082-7
https://doi.org/10.1016/0030-4018(82)90082-7
https://doi.org/10.1016/0030-4018(82)90082-7
https://doi.org/10.1088/0031-8949/18/4/002
https://doi.org/10.1088/0031-8949/18/4/002
https://doi.org/10.1088/0031-8949/18/4/002
https://doi.org/10.1088/0031-8949/18/4/002
https://doi.org/10.1140/epjst/e2016-60092-0
https://doi.org/10.1140/epjst/e2016-60092-0
https://doi.org/10.1140/epjst/e2016-60092-0
https://doi.org/10.1140/epjst/e2016-60092-0
https://doi.org/10.1103/PhysRevLett.82.1116
https://doi.org/10.1103/PhysRevLett.82.1116
https://doi.org/10.1103/PhysRevLett.82.1116
https://doi.org/10.1103/PhysRevLett.82.1116
https://doi.org/10.1103/PhysRevA.70.063413
https://doi.org/10.1103/PhysRevA.70.063413
https://doi.org/10.1103/PhysRevA.70.063413
https://doi.org/10.1103/PhysRevA.70.063413


RYDBERG ELECTROMETRY FOR OPTICAL LATTICE CLOCKS PHYSICAL REVIEW A 96, 023419 (2017)

[46] F. Sorrentino, G. Ferrari, N. Poli, R. Drullinger, and G. M. Tino,
Mod. Phys. Lett. B 20, 1287 (2006).

[47] I. R. Hill, Y. B. Ovchinnikov, E. M. Bridge, E. A. Curtis, and P.
Gill, J. Phys. B 47, 075006 (2014).

[48] I. R. Hill, R. Hobson, W. Bowden, E. M. Bridge, S. Donnellan,
E. A. Curtis, and P. Gill, J. Phys.: Conf. Ser. 723, 012019
(2016).

[49] Purchased from Eksma Optics, Optolita UAB Mokslininku str.
11, LT-08412 Vilnius, Lithuania.

[50] U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M.
Zielonkowski, Rev. Sci. Instrum. 70, 242 (1999).

[51] T. Akatsuka, M. Takamoto, and H. Katori, Nat. Phys. 4, 954
(2008).

[52] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C: The Art of Scientific Computing
(Cambridge University Press, New York, 1988).

[53] I. Hughes and T. Hase, Measurements and Their Uncertainties:
A Practical Guide to Modern Error Analysis (Oxford University
Press, Oxford, UK, 2010).

[54] M. Newville, T. Stensitzki, D. B. Allen, M. Rawlik, A.
Ingargiola, and A. Nelson, “LMFIT: Non-Linear Least-Square
Minimization and Curve-Fitting for Python” (2014).

023419-7

https://doi.org/10.1142/S0217984906011682
https://doi.org/10.1142/S0217984906011682
https://doi.org/10.1142/S0217984906011682
https://doi.org/10.1142/S0217984906011682
https://doi.org/10.1088/0953-4075/47/7/075006
https://doi.org/10.1088/0953-4075/47/7/075006
https://doi.org/10.1088/0953-4075/47/7/075006
https://doi.org/10.1088/0953-4075/47/7/075006
https://doi.org/10.1088/1742-6596/723/1/012019
https://doi.org/10.1088/1742-6596/723/1/012019
https://doi.org/10.1088/1742-6596/723/1/012019
https://doi.org/10.1088/1742-6596/723/1/012019
https://doi.org/10.1063/1.1149573
https://doi.org/10.1063/1.1149573
https://doi.org/10.1063/1.1149573
https://doi.org/10.1063/1.1149573
https://doi.org/10.1038/nphys1108
https://doi.org/10.1038/nphys1108
https://doi.org/10.1038/nphys1108
https://doi.org/10.1038/nphys1108



