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We present a theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence
of an infrared (IR) laser with both fields linearly polarized in the same direction. In particular, we study the
energy distribution of photoelectrons emitted perpendicularly to the polarization direction. As we previously
showed in Gramajo et al. [Phys. Rev. A 94, 053404 (2016)] for parallel emission, by means of a very simple
semiclassical model which considers electron trajectories born at different ionization times, the electron energy
spectrum can be interpreted as the interplay of intra- and intercycle interferences. However, contrary to the case
of parallel emission the intracycle interference pattern stems from the coherent superposition of four electron
trajectories giving rise to (i) interference of electron trajectories born during the same half cycle (intra-half-cycle
interference) and (ii) interference between electron trajectories born during the first half cycle with those born
during the second half cycle (inter-half-cycle interference). The intercycle interference is responsible for the
formation of the sidebands. We also show that the destructive inter-half-cycle interference for the absorption and
emission of an even number of IR laser photons is responsible for the characteristic sidebands in the perpendicular
direction separated by twice the IR photon energy. This contrasts with the emission along the polarization axis
(all sideband orders are present) since intra-half-cycle interferences do not exist in that case. The intracycle
interference pattern works as a modulation of the sidebands and, in the same way, it is modulated by the
intra-half-cycle interference pattern. We analyze the dependence of the energy spectrum on the laser intensity
and the time delay between the XUV pulse and the IR laser. Finally, we show that our semiclassical simulations
are in very good agreement with quantum calculations within the strong-field approximation and the numerical
solution of the time-dependent Schrödinger equation, giving rise to nonzero emission, in contraposition to other
theories.
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I. INTRODUCTION

More than twenty years have passed since the publication
of one of the first theoretical predictions of sidebands in laser
assisted photoelectric effect (LAPE) [1]. The simultaneous
absorption of one high-frequency photon and the exchange of
several additional photons from the laser field lead to equally
spaced sideband peaks in the photoelectron (PE) spectra. Since
this pioneer work, a lot of experiments have been performed
in this area. Typically, the XUV + IR (infrared) field was
first obtained through high-order harmonic generation using
the original IR laser field as its source [2–5]. In contrast to
this kind of XUV radiation generation, the monochromaticity
of the femtosecond XUV pulse from a free electron laser
(FEL) enables the study of two-color multiphoton ionization
without additional overlapping contributions from neighboring
harmonics [6–11].

Several studies have been performed to analyze the PE
emission in LAPE depending on different features of the
fields: Temporal duration, intensity, polarization state, etc.
For example, the temporal overlap between the XUV and IR
pulses establishes two well distinguished regimes according
to whether the XUV pulse duration is greater or less than the
laser optical period [8,12,13]. Whereas in the former, the laser
intensity is directly related, in a nontrivial way, to the intensity
of the appearing sideband peaks in the PE spectrum [8,14,15],
the latter has been used to characterize the shape and duration

of an IR laser pulse with a technique called “streak camera”
[16–19]. Furthermore, the variation of the polarization states
of each field gives rise to dichroic effects in the PE spectrum,
which opens the door to the control of the electronic emission
[6,9,20–24].

Hitherto, most of the PE spectra have been measured with
angle integrated resolution. Only very recently has it been pos-
sible to measure angularly resolved PE spectra [11,15,23–26],
which is fundamental to achieving a complete understanding
of the LAPE process. In contrast to experiments, theoretical
analysis restricted to fixed emission angles does not present
major difficulties. Most of the theories of LAPE processes
are based on the strong-field approximation (SFA) [27–29].
For example, the soft-photon approximation (SPA) [14],
derived from the SFA in the velocity gauge for infinitely long
XUV and IR pulses, depicts satisfactorily the experimental
results [4,6,7,10,11,30]. Besides, the analytic angle-resolved
PE spectra derived by Kazansky et al. [31,32] and Bivona et al.
[33] are based on simplifications of the temporal integration
within the SFA. Furthermore, in our previous work [34],
we have presented a semiclassical approach that describes
the XUV + IR multiphoton ionization along the direction of
polarization of both fields in very good agreement with the
results by solving ab initio the time-dependent Schrödinger
equation (TDSE). In that work, we have interpreted the PE
spectrum as the coherent superposition of electron trajectories
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emitted within the same optical cycle leading to an intracycle
interference pattern that modulates the sidebands, which can
be thought of as a consequence of the intercycle interference
of electron trajectories born at different optical cycles.

To the best of our knowledge, LAPE ionization has not
been studied in detail for emission directions different from
the polarization axis. Furthermore, Haber et al. have noted
the need for a more comprehensive theoretical description due
to the poor agreement between theoretical and experimental
PE angular distributions for the two-color two-photon above
threshold ionization [25,35]. Several theories, like SPA, predict
no emission in the direction perpendicular to the polarization
axis. However, Bivona et al. envisaged nonzero emission for
XUV ionization of hydrogen by short intense pulses [33].
Therefore, in the present paper, we extend our previous
work [34] for LAPE from H (1s) to study the emission in
the direction perpendicular to the polarization axis of both
XUV and laser fields. In contrast to the case of forward
emission, we find that transversal emission has relatively low
probabilities, i.e., the PE energy range is highly reduced,
However, we observe that the PE emission is nonvanishing in
agreement with Bivona et al. [33]. Moreover, the PE emission
is due to the absorption and emission of an odd number of
IR photons following one XUV photon absorption, whose
photoionization line is absent in the PE spectrum. Hence, PE
spectra in the perpendicular direction can hardly be observed
for laser intensities lower than 1013 W/cm2. Experimental
measurements with strong lasers would be highly desirable
in order to corroborate the present study. A recent work by
Düsterer et al. [11] shows that they can be attainable now.

The paper is organized as follows: In Sec. II, we describe the
semiclassical model (SCM) used to calculate the photoelectron
spectra for the case of laser-assisted XUV ionization perpen-
dicular to the polarization direction, which leads to simple
analytical expressions. In Sec. III, we present the results and
discuss the comparison of the SCM and the SFA outcomes and
the ab initio calculation of the TDSE. Concluding remarks are
presented in Sec. IV. Atomic units are used throughout the
paper, except when otherwise stated.

II. THEORY OF THE SEMICLASSICAL MODEL

We study the ionization of an atomic system interacting
with an XUV pulse assisted by an IR laser. In the single-
active-electron (SAE) approximation the TDSE reads

i
∂

∂t
|ψ(t)〉 = [H0 + Hint(t)]|ψ(t)〉, (1)

where H0 = �p2/2 + V (r) is the time-independent atomic
Hamiltonian, whose first term corresponds to the electron
kinetic energy, and its second term to the electron-core
Coulomb interaction. The second term in the right-hand side
of Eq. (1), i.e., Hint = �r · �FX(t) + �r · �FL(t), describes the
interaction of the atom with both time-dependent XUV [ �FX(t)]
and IR [ �FL(t)] electric fields in the length gauge.

The electron initially bound in the atomic state |φi〉 is
emitted with final momentum �k and energy E = k2/2 in
the final state |φf 〉 belonging to the continuum. Then, the

photoelectron momentum distributions can be calculated as

dP

d�k = |Tif |2, (2)

where Tif is the T -matrix element corresponding to the
transition φi → φf .

Within the time-dependent distorted wave theory, the
transition amplitude in the prior form and length gauge is
expressed as

Tif = −i

∫ +∞

−∞
dt 〈χ−

f (�r,t)|Hint(�r,t)|φi(�r,t)〉, (3)

where φi(�r,t) = ϕi(�r)eiIpt is the initial atomic state, Ip is the
ionization potential, and χ−

f (�r,t) is the distorted final state
[36,37]. The SFA neglects the Coulomb distortion in the
final channel produced by the ejected-electron state due to its
interaction with the residual ion. Hence, we can approximate
the distorted final state with the Volkov function, which is the
solution of the Schrödinger equation for a free electron in an
electromagnetic field [38], i.e., χ−

f = χV
f , where

χV
f (�r,t) = (2π )−3/2 exp

[
i(�k + �A(t)) · �r

+ i

2

∫ ∞

t

dt
′
(�k + �A(t ′))2

]
(4)

and the vector potential due to the total external field is defined
as �A(t) = − ∫ t

0 dt ′[ �FX(t ′) + �FL(t ′)].
We consider the atomic photoionization due to a short XUV

pulse assisted by an IR laser where both of them are linearly
polarized in the same direction ẑ. For simplicity, we consider
a hydrogen atom initially in the ground state, however, the
present study can be easily generalized to any atom within
the SAE approximation. In the present work, we restrict
the photoelectron momentum �k = kzẑ + kρρ̂ (in cylindrical
coordinates) to the direction perpendicular to the polarization
axis, i.e., kz = 0 and kρ � 0. The case of emission parallel
to the polarization axis, i.e., kρ = 0, was studied recently
in [34].

With the appropriate choice of the IR and XUV laser
parameters considered, we can assume that the energy domain
of the LAPE processes is well separated from the domain of
ionization by an IR laser alone. In other words, the contribution
of IR ionization is negligible in the energy domain where
the absorption of one XUV photon takes place. Besides, if
we set the general expression of the XUV pulse of duration
τX as �FX(t) = ẑFX0(t) cos(ωXt), where FX0(t) is a slowly
nonzero varying envelope function, the matrix element can be
written as

Tif = − i

2

∫ t0+τX

t0

dt dz(�k + �A(t)) FX0(t) eiS(t) (5)

with (t0,t0 + τX) the temporal interval where FX0(t) is nonzero.
S(t) is the generalized action

S(t) = −
∫ ∞

t

dt ′
[

(�k + �A(t ′))2

2
+ Ip − ωX

]
(6)
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and the z component of the dipole element for the 1s state is

dz(�v) = − i

π
27/2(2Ip)5/4 ẑ · �v

[v2 + 2Ip]3
. (7)

In Eq. (5) we have used the rotating wave approximation which
accounts, in this case, for the absorption of only one XUV
photon and neglects, thus, the contribution of XUV photon
emission. As the frequency of the XUV pulse is much higher
than the IR laser one, the XUV contribution to the vector
potential can be neglected [39,40], since the XUV intensity is
not much higher than the laser one. For the sake of simplicity,
we restrict our analysis to the case where the XUV pulse
duration is a multiple of half the IR optical cycle, i.e., τX =
NTL = 2Nπ/ωL, where TL and ωL are the laser period and
the frequency of the IR laser, respectively, and 2N is an integer
positive number. During the temporal lapse that XUV pulse is
present, the IR electric field can be modeled as a cosinelike
wave, hence the vector potential can be written as �A(t) =
AL0 sin (ωLt)ẑ with AL0 = FL0/ωL and FL0 the amplitude of
the laser electric field.

The SCM consists of solving the time integral Eq. (5) by
means of the saddle-point approximation [41–44], wherein
the transition amplitude can be thought of as a coherent
superposition of the amplitudes of all electron classical
trajectories with final momentum �k over the stationary points
ts of the generalized action S(t) in Eq. (6),

Tif =
∑

ts

√
2π FX0 dz(�k + �A(ts))

|S̈(ts)|1/2

× exp

[
iS(ts) + iπ

4
sgn(S̈(ts))

]
, (8)

where S̈(t) = d2S(t)/dt2 = −[�k + �A(t)] · �F (t) and sgn de-
notes the sign function. Then, from the saddle-point equa-
tion, i.e., Ṡ = dS(ts)/dt = 0, the ionization times fulfill the
relation

A2(ts) + k2
ρ = v2

0, (9)

where v0 = √
2(ωX − Ip) is the initial velocity of the electron

at the ionization time. In ionization by an IR laser alone, release
times are complex due to the fact that the active electron
escapes the core via tunneling through the potential barrier
formed by the interaction between the core and the external
field, i.e., V (r) + �r · �FL(t). Contrarily, in LAPE, real solutions
of Eq. (9) correspond to real ionization times ts . From Eq. (9),
the domain of allowed classical trajectories perpendicular to
the polarization axis is

√
v2

0 − A2
L0 � kρ � v0 where v0 �

FL0/ωL. Nonclassical trajectories with complex ionization
times have a momentum kρ outside the classical domain. In this
work, we neglect the small weight of nonclassical trajectories
with complex ionization times since its imaginary parts give
rise to exponential decay factors.

The ionization times that verify Eq. (9) are shown schemat-
ically in Fig. 1 for one IR optical cycle. As we can observe,
there are four ionization times per optical cycle and, therefore,
the total number of interfering trajectories with the same final
momentum perpendicular to the polarization axis is 4N . A
quick analysis of Eqs. (8) and (9) indicates that the periodicity
for the solution of Eq. (9) is π/ωL, which is half of that

FIG. 1. Emission times (solutions of Eq. (9)) as the intersection
of the two curves A2(t) = A2

L0 sin2(ωLt) in red solid line and v2
0 − k2

ρ

in black solid line for one IR optical cycle. In this particular case, the
XUV pulse starts when the potential vector vanishes.

corresponding to the parallel emission case [34]. Therefore,
the sum over the emission times can be performed alternatively
over 2N half cycles with two emission times in each of them.
They are the early ionization time t (m,1) and the late ionization
time t (m,2) corresponding to the mth optical half cycle, where
t (m,β) = t (1,β) + π (m − 1)/ωL with β = 1,2. The expressions
for the ionization times can be easily derived from Eq. (9),

t (1,1) = 1

ωL

sin−1
[√(

v2
0 − k2

ρ

)/
A2

L0

]
, (10a)

t (1,2) = π

ωL

− t (1,1). (10b)

From Eq. (6), the generalized action and its second
derivative at the time ts for electron trajectories along the
perpendicular direction can be written as

S(ts) =
(

k2
ρ

2
+ Ip + Up − ωX

)
ts − Up

2ωL

sin(2ωLts) (11)

and

S̈(ts) = FL0AL0 sin(2ωLts)/2, (12)

respectively, where Up = (FL0/2ωL)2 is the ponderomotive
energy of the oscillating electron driven by the laser field.

For the case of emission along the polarization axis in
Ref. [34], the symmetry properties of the dipole matrix element
were not taken into account since it can be factorized. Con-
trarily, for perpendicular emission they need to be considered
since according to Eqs. (7) and (10), the dipole elements dz

evaluated at emission times of consecutive half cycles differ
in a sign, i.e.,

dz(kρρ̂ + ẑA(t (m,β))) =
√

2AL0

iπω3
X

sin(ωLt (m,β))

= −dz(kρρ̂ + ẑA(t (m+1,β))). (13)

Hence, the odd and even half cycles have opposite contribu-
tions. Including Eqs. (10) and (13) into Eq. (8), the ionization
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probability of Eq. (2) can be written as

|Tif |2 = �(kρ)

∣∣∣∣∣∣
2N∑

m=1

2∑
β=1

(−1)m exp

[
iS(t (m,β)) + iπ

4
sgn(S̈(t (m,β)))

]∣∣∣∣∣∣
2

. (14)

Equation (14) can be interpreted as the coherent sum over inter-
fering trajectories decomposed into those associated with the
two release times within the same half cycle (inner summation)
and those associated with release times in the 2N different half
cycles (outer summation). The ionization probability �(kρ)
contains all identical factors for all subsequent ionization
trajectories which depend on the final momentum kρ , i.e.,

�(kρ) = 4F 2
X0

πω6
XωL

√
v2

0 − k2
ρ√

k2
ρ − v2

0 + A2
L0

. (15)

In the same way as in previous works [34,45,46] and after
a bit of algebra, it can be shown that

2N∑
m=1

2∑
β=1

(−1)m e[iS(t (m,β))+(iπ/4)sgn(S̈(t (m,β)))]

= 2
2N∑

m=1

ei(S̄m+mπ) cos

(

Sm

2
+ π

4

)
, (16)

where S̄m = [S(t (m,1)) + S(t (m,2))]/2 = S0 + m(S̃/2) is the
average action of the two trajectories released in the mth
half cycle, with S̃ = (2π/ωL)(E + Ip + Up − ωX) and S0

an unimportant constant that will be canceled out when the
absolute value is taken in Eq. (14). The accumulated action
between the two release times t (m,1) and t (m,2) within the
same mth half cycle, 
Sm = S(t (m,1)) − S(t (m,2)) in Eq. (16),
is given by


S = S̃

2

{
2

π
sin−1

[√(
v2

0 − k2
ρ

)/
A2

L0

] − 1

}

− 1

2ωL

√
v2

0 − k2
ρ

√
k2
ρ − v2

0 + A2
L0, (17)

where we have omitted the subscript m, since it is independent
of which half cycle is considered. It is worthwhile to note that
the expression of the accumulated action in Eq. (17) differs
from the one for parallel emission [see Eq. (22) in Ref. [34]].
Finally, due to the linear dependence of the average action S̄m

on the cycle number m and the factorization of the cosine factor
in the right-hand side of Eq. (16), the ionization probability
can be easily written as

|Tif |2 = 4�(kρ) cos2

(

S

2
+ π

4

)
︸ ︷︷ ︸

intra-half-cycle

[
sin (NS̃/2)

cos (S̃/4)

]2

︸ ︷︷ ︸
inter-half-cycle

. (18a)

= 4�(kρ) 4 cos2

(

S

2
+ π

4

)
sin2

(
S̃

4

)
︸ ︷︷ ︸

intracycle

[
sin (NS̃/2)

sin (S̃/2)

]2

︸ ︷︷ ︸
intercycle

.

(18b)

Equations (18a) and (18b) indicate that the photoelec-
tron spectrum can be factorized in two different ways. (i)
On one hand, the factorization in Eq. (18a) highlights the
contribution of the pair of electron trajectories within the
same half cycle (intra-half-cycle interference), governed by
the factor G(kρ) = cos2 (
S/2 + π/4), and the interference
stemming from trajectories released at different half cy-
cles (inter-half-cycle interference) described by the factor
H (kρ) = [sin (NS̃/2)/ cos (S̃/4)]

2
. On the other hand, the

factor F (kρ) = 4 cos2 (
S/2 + π/4) sin2(S̃/4) stemms from
the contribution of the four trajectories within the same
optical cycle (intracycle interference), and the factor B(kρ) =
sin2(NS̃/2)/ sin2(S̃/2) stemms from trajectories released at
different cycles (intercycle interference, in correspondence
with previous analysis of Eq. (23) in [34]). Whereas in (i)
the interference of 2N half cycles is highlighted giving rise
to the intra-half- and inter-half-cycle factors, in (ii) we think
of the coherent contributions of N different optical cycles
splitting the contribution in intra- and intercycle interference
patterns. Obviously, the two different factorizations give rise
to the same results, i.e., G(kρ)H (kρ) = F (kρ)B(kρ).

In Fig. 2(a), we plot the intra-half-cycle function G(kρ) and
the inter-half-cycle H (kρ) for a XUV laser pulse duration τX =
2TL as a function of the energy. Whereas the intra-half-cycle
factor G(kρ) exhibits a nonperiodic oscillation, the inter-half-
cycle H (kρ) is periodic in the final photoelectron energy with
peaks at positions E� = k2

ρ/2 given by

E� = ωX + (2� + 1)ωL − Ip − Up (19)

with � = . . . , − 2, − 1,0,1,2, . . .. In fact, in the limit of
infinitely long XUV and IR pulses, limN→∞ H (kρ) =∑

l δ(S̃/4 + π/2 − �π ), the ionization probability vanishes
unless the final energy satisfies Eq. (19) which gives the
positions of the different sidebands. We see that the energy
difference between two consecutive sidebands is 2ωL and
not ωL as for the emission in the direction parallel to the
polarization axis [34]. From Eq. (19), it is easy to see that
only odd numbers (2� + 1) of laser photons can be absorbed
or emitted together with the absorption of one XUV photon.
Due to the lack of sidebands for the absorption or emission
of an even number of laser photons, the absorption of only
one XUV photon alone (in the absence of absorption or
emission of IR photons) is forbidden. The intra-half-cycle
pattern displays few oscillations with maxima depending on
the electron kinetic energy. These can be easily calculated
through 
S = (2q − 1/2)π , with integer q. In Fig. 2(b), we
plot the total interference pattern corresponding to an XUV
pulse of duration τX = 2TL, and the intracycle factor F (kρ).
For the sake of comparison, we reproduce in Fig 2(b) the
intra-half-cycle factor G(kρ) of Fig. 2(a). All interference
factors have been rescaled for better visualization. The multi-
plication of both intra-half-cycle and inter-half-cycle factors,
i.e., G(kρ)H (kρ), is displayed in Fig. 2(b), where we observed
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FIG. 2. Buildup of the interference pattern following the SCM
for N = 2. (a) Intra-half-cycle interference pattern given by G(kρ)
in thick red line, intercycle pattern given by the factor B(kρ) in thin
dotted green (light grey) line and inter-half-cycle pattern given by
the factor H (kρ) in thin blue (grey) line. (b) Intracycle pattern given
by the factor F (kρ) in thick gray line and total interference pattern
F (kρ)B(kρ) = G(kρ)H (kρ) in thin black line. Vertical lines depict the
positions of the sidebands E� of Eq. (19). The IR laser parameters are
FL0 = 0.05, and ωL = 0.05, and the XUV frequency is ωX = 1.5.

how the intra-half-cycle interference pattern [G(kρ)] works
as a modulation of the intracycle interference pattern [F (kρ)]
and the latter does the same with the sidebands (intercycle
interference pattern). Small deviations of the different maxima
of the intracycle interference pattern in Fig. 2(b) with respect to
the conservation of energy in Eq. (19) can be easily observed.
The width of the peaks is involved in the explanation of these
small deviations: For the intracycle distribution (τX = TL),
the factor H (kρ) in Eq. (18a) is responsible for the sidebands
centered at E� [in agreement with Eq. (19)] and widths equal
to 
E = 2ωL/N . The intra-half-cycle envelope factor G(kρ)
modulates the factor H (kρ) shifting slightly the peaks, i.e.,
for energies where G(kρ) is an increasing function the peaks
shift to the right (higher energies), whereas where G(kρ) is a
decreasing function they move to the left. As the XUV pulse
gets longer, i.e., N is higher, the sidebands are sharper and the
peaks shift less. As pointed out before, in the limit N 	 1,
the sidebands became δ functions and, thus, they do not move
with the intra-half-cycle envelope.

On the other hand, Eq. (18b) shows that the photoelectron
spectrum can be thought of as the intercycle pattern with
peaks at positions En = nωL + ωX − Ip − Up modulated by
the intracycle interference pattern given by the factor F (kρ).
Therefore, the lack of even-order sidebands stems from the

factor sin2(S̃/4) into the intracycle factor F (kρ) [see Eq. (18a)].
The factor sin2(S̃/4) reflects the fact that the dipole element
has opposite signs for the two different half cycles into the
same optical cycle [see Eq. (13)] giving rise to destructive
interference between the contribution of the two electron
trajectories of the first half cycle with the corresponding to
the second half cycle of every optical cycle during the time
interval that the XUV pulse is on. Contrarily, for emissions
in the parallel direction, whereas the ionization during one of
the two half cycles contributes to emissions in one direction
(forward or backward), the other half cycle will contribute
to the opposite direction [34]. Therefore, no interference is
produced for parallel emissions allowing to all peaks separated
by ωL.

III. RESULTS AND DISCUSSION

We need to compare the outcome of SCM calculations
with quantum ones in order to probe the general conclusion
of the SCM: The ionization probability of electrons emitted
perpendicularly to the polarization axis of the XUV and the
laser pulse can be factorized in two different contributions
in two different ways: (i) intra-half-cycle and inter-half-cycle
interferences [Eq. (18a)] and (ii) intracycle and intercycle in-
terferences [Eq. (18b)]. We have performed calculations within
the SFA and TDSE methods, which have been extensively
covered in the literature and in our previous work [34] and
we do not repeat them here. For the SFA calculating method,
please refer, for example, to Refs. [31–33,37,45,46], and for
the ab initio numerical solutions of the TDSE we employ
the generalized pseudospectral method combined with the
split-operator representation of the time-evolution operator,
which is thoroughly explained in the literature (see, for
example, [47–49]). For the computational feasibility of the
SFA and TDSE calculations, we take the XUV pulse and the
IR laser field modeled as

�Fi(t) = Fi0(t − tib) cos

[
ωi

(
t − 
i − τL

2

)]
ẑ, (20)

where i = L and X denote the IR laser and XUV pulses,
respectively. The envelopes of the electric fields in Eq. (20)
were chosen as

Fi0(t) = Fi0

⎧⎪⎨
⎪⎩

t/Ti if 0 � t � Ti

1 if Ti � t � τi − Ti

(τi − t)/Ti if τi − Ti � t � τi

(21)

and zero otherwise, where Ti = 2π/ωi and τi are the i-field
period and pulse duration, respectively. It describes a central
flattop region and linear one-cycle ramp on and ramp off.
For the sake of simplicity, we suppose that the duration of
both laser fields comprise an integer number of cycles, i.e.,
τi = NiTi where Ni is a positive integer. In addition, as we
have mentioned before, we also consider the case where τX =
NTL. We choose the origin of the time scale as the beginning
of the IR laser pulse, i.e., tLb = 0, with no displacement of
the laser pulse 
L = 0. In this way, the IR laser field is a
cosinelike pulse centered in the middle of the pulse, t = τL/2.
In Eq. (20), the time delay of the XUV pulse with respect to the
laser pulse is 
X and tXb = 
X + τL/2 − τX/2 denotes the
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FIG. 3. Photoelectron spectra in the perpendicular direction
calculated within (a) the SFA and (b) the TDSE, for different XUV
pulse durations τX = TL/2 (thick light gray), TL (thick gray), and 2TL

(thin black) and respective time delays 
X = TL/4, TL/2, and TL.
The XUV and IR parameters are the same as in Fig. 2 and τL = 5TL

and FX0 = 0.05. Vertical lines depict the positions of the sidebands
according to Eq. (19). The photoelectron energy distributions have
been rescaled for better visualization.

beginning of the XUV pulse that depends on the XUV pulse
duration. It also marks the starting time of the active window
for ionization. The vector potential from the perspective of
the active window is shifted when comparing different XUV
pulse durations due to the different values of tXb. Therefore,
for the sake of comparison of the ionization yield for different
XUV pulse durations, the active window should be in phase
with the vector potential. For that, we define the module 2π

optical phase φ ≡ ωLtXb = ωL
X + (NL − N )π as the phase
of the starting time of the XUV pulse with respect to the vector
potential �A(t) [50].

In the following, we probe the results of the SCM by com-
paring the photoelectron spectrum dP/dE = 2π

√
2E|Tif |2

to quantum simulations. We consider the IR and XUV
frequencies as ωL = 0.05 and ωX = 30ωL = 1.5 respectively,
the IR laser duration τL = 5TL, and three different XUV pulses
with durations τX = TL/2, TL, and 2TL (i.e., N = 1/2, 1, and
2). For these parameters, the SCM and SFA estimates ratios
between transversal and forward emission of about 4% and 2%,
respectively, the latter in agreement with the TDSE prediction.
In Figs. 3 and 4 we consider the corresponding time delays

X = TL/4, TL/2, and TL, so that the optical phases are the
same φ = π . In Fig. 3(a) and 3(b) we show results of the
SFA and the numerical solution of the TDSE, respectively, for

the same XUV and IR pulse parameters used in Fig. 2 with
FX0 = FL0 = 0.05. The agreement among the SCM (Fig. 2),
the SFA (Fig. 3(a)), and TDSE [Fig. 3(b)] energy distributions
is very good since the effect of the Coulomb potential on the
energy spectrum for electron emission in the perpendicular
direction is very small if not negligible. However, the analysis
of the effect of the Coulomb potential of the remaining core
on the electron yield deserves a thorough study, which is
beyond the scope of this paper. As predicted in Eq. (18a), the
intra-half-cycle interference pattern, calculated as the energy
distribution for a XUV pulse duration of half a laser cycle,
i.e., τX = TL/2, modulates the intracycle interference pattern,
calculated as the energy distribution for a XUV pulse duration
of one laser cycle, i.e., τX = TL. In the same way, the latter
modulates the sidebands in the energy distribution for a longer
XUV pulse, i.e., τX = 2TL, as shown in Figs. 3(a) and 3(b).
For the latter case (when the XUV pulse duration involves
several periods of the laser, i.e., τX = 2TL), the positions of
the sidebands obtained by the quantum calculations (SFA and
TDSE) in Figs. 3(a) and 3(b) agree with the SCM expressed
in Eq. (19). As expected, the energy spectra for the quantum
SFA and TDSE calculations extend beyond the classical limits
Elow = v2

0/2 − 2Up = 0.5 and Eup = v2
0/2 = 1. The TDSE

spectrum for the shorter XUV duration case in Fig. 3(b)
presents several additional structures that are related to the
direct electronic emission due to the IR laser only. This is
discussed in the context of the next figure.

We have investigated the dependence of the energy distribu-
tion for photoelectrons emitted in the direction perpendicular
to the polarization axis on the intensity of the XUV pulse.
We have checked that the total (angle- and energy-integrated)
ionization probability is essentially proportional to the inten-
sity of the XUV pulse whereas the overall shape of the energy
distribution in the transversal direction (Fig. 3) remains rather
unchanged when varying the intensity of the XUV pulse (not
shown). Contrarily, the intensity of the IR laser has a strong
effect on the shape of the energy distribution. In Fig. 4 we show
calculations of the energy distribution in the perpendicular
direction within the SCM in (a), (d), and (g), the SFA in (b),
(e), and (h), and the TDSE in (c), (f), and (i), for laser field
intensities from IL = 0 up to 8.8 × 1013 W/cm2 (FL0 = 0.05).
We analyze the energy distribution for different XUV pulse
durations. The energy spectra for τX = TL/2, TL, and 2TL in
Figs. 2 and 3 are cuts of Fig. 4 at IL = 8.8 × 1013 W/cm2.
The classical boundaries Elow and Eup drawn in dotted lines
exactly delimit the SCM spectrogram of Figs. 4(a), 4(d) and
4(g), as expected. For the case where τX = TL/2 (first column),
Figs. 4(a)–4(c) show a negative slope of the intra-half-cycle
interference stripes. The value of the slope for the maxima can
be calculated numerically from the transcendental equation
for the energy 
S = (2q − 1/2)π with q = −2, − 1,1,2, . . .

[see Eq. (17)]. For the cases τX = TL (second column of
Fig. 4), we observed in Figs. 4(d)–4(f) that the intra-half-cycle
interference patterns are flanked by stripes of zero or near zero
probability distribution corresponding to the zeros of the factor
sin(S̃/4) in the intracycle factor F (kρ), i.e., S̃/4 = nπ , which
gives E = ωX − Ip − Up + 2nωL. The slope of these minima
is −Up/IL = −(2ωL)−2 and the energy difference between
consecutive minima (and maxima) is 2ωL. For the case of τX =
2TL (third column of Fig. 4), we see in Figs. 4(g)–4(i) that the
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FIG. 4. Photoelectron spectra in the perpendicular direction (in arbitrary units) calculated at different laser field strengths within the SCM
[(a), (d), and (g)], the SFA [(b), (e), and (h)], and the TDSE [(c), (f), and (i)]. The XUV pulse durations are τX = TL/2 [(a)–(c)], τX = TL

[(d)–(f)], and τX = 2TL [(g)–(i)]. The other XUV and IR parameters as in previous figures. In green dotted line we show the classical boundaries
and in black dotted line the E� values given by Eq. (19). The photoelectron energy distributions have been rescaled for better visualization.

stripes of the probability distribution become even thinner due
to the effect of the destructive inter-half-cycle interference for
energy values much different than the conservation energy
for absorption of one XUV photon and an odd number of
IR laser photons [Eq. (19)]. Moreover, when we compare
the position of the maxima with Eq. (19), marked as black
dotted lines in Fig. 4(g), we see an excellent agreement (see
also Fig. 3). The domain of the SFA and TDSE spectrograms
(second and third rows of Fig. 3) extend beyond the classical
boundaries with smooth edges. The characteristic intra-half-
and intracycle stripes with negative slope reproduce very well
the SCM predictions.

In Figs. 4(c), 4(f) and 4(i), the TDSE calculations exhibit
a strong probability distribution for high values of the laser
intensity IL � 0.5 × 1014 W/cm2 in the low-energy region
which almost does not overlap with the laser assisted XUV
ionization for the longer XUV duration cases, but for the τX =
TL/2 case. We suspect that these structures are responsible for
those appearing in Fig. 3(b). The source of this probability
enhancement is the atomic ionization by the IR laser pulse
alone, which has not been considered in our SCM and is
strongly suppressed in the SFA because the laser photon energy

is much lower than the ionization potential, i.e., ωL � Ip. For
this reason, we can confirm that the SFA is a more reliable
method to deal with laser assisted photoemission compared
to ATI by IR lasers [34]. Therefore, except for the region
where ionization by the laser field alone becomes important,
SFA and TDSE spectrograms exhibit a very good agreement
between them and resemble the SCM calculations qualitatively
well. The resulting energy stripes become thinner and more
pronounced as the duration of the XUV pulse increases,
exhibiting the fact that the intra-half-cycle interference pattern
modulates the intracycle pattern, which, at the same time,
modulates the sidebands (intercycle interference pattern). We
rescale the photoelectron spectra in Figs. 4(c), 4(f) and 4(i)
with factors 1:1, 1:2, and 1:4, respectively, in order to keep
the (intra-half-, intracycle, and intercycle) LAPE interferences
comparable since the ionization yield scales with the pulse
duration. By varying the XUV pulse duration the near-
threshold structures should be unaltered and this is essentially
what we observe from our TDSE computations. However, due
to the rescaling factors, one sees that the low-energy structures
decrease as the XUV pulse gets longer. The right way to see
this is that the relative importance of the IR contribution to the
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FIG. 5. Photoelectron spectra in the perpendicular direction (in arbitrary units) calculated as a function of the time delay 
X within the
SCM [(a), (d), and (g)], the SFA [(b), (e), and (h)], and the TDSE [(c), (f), and (i)]. The XUV pulse durations are τX = TL/2 [(a)–(c)], τX = TL

[(d)–(f)], and τX = 2TL [(g)–(i)]. The other XUV and IR parameters as in previous figures. In dotted line we show the energy values of Eq. (22).
The photoelectron energy distributions have been rescaled for better visualization.

whole ionization yield (LAPE) diminishes as the XUV pulse
duration is higher.

So far, we have performed our analysis of the electron
emission in the transverse direction for optical phase φ = π

(since NL is odd). In order to reveal how the intracycle
interference pattern changes with the time delay, we vary 
X

in an optical cycle, so that φ varies from 0 to 2π . In Fig. 5(a)
we show the intra-half-cycle interference pattern calculated
for τX = TL/2 within the SCM in the transverse direction as a
function of the optical phase module 2π . The horizontal stripes
show the independence of the intra-half-cycle interference
pattern with the time delay, except for the discontinuity for
energy values equal to

Edisc = 1
2

[
v2

0 − A2(tXb)
]
. (22)

For φ = 0 the discontinuity is situated at Edisc = v2
0/2 [since in

this case 
X = 3TL/4 for N = 1/2 and then A(tXb = 3TL) =
0], which coincides with the classical boundary. Figure 5(a)
shows us that as φ (and 
X) varies, the discontinuity follows
the shape of the square of the vector potential, which means
that the discontinuity is π periodic in φ, contrarily to the

2π periodicity in the case of parallel emission [34]. For
phase values φ = 0, π, and 2π , the discontinuity situates
at Eup = v2

0/2 = 1, whereas for φ = π/2 and 3π/2, it does
at Elow = v2

0/2 − 2Up = 0.5, losing entity in both cases.
The SFA and TDSE energy distributions, in the respective
Figs. 5(b) and 5(c), exhibit similar characteristics to the
SCM, but with a richer π -periodic structure. Interestingly, the
discontinuity at Edisc is reflected as a jump of the probability
distributions for the same energy values. The remarkable
resemblance between the computationally cheap SFA and the
ab initio solution of the TDSE results shows, once again,
that the SFA is very appropriate to explain and reproduce the
electron yield in LAPE processes. Low-energy contributions in
TDSE calculations shown in Fig. 5(a) are due to IR ionization
as described before in Figs. 4(c)–4(e).

For τX = TL in Fig. 5(d), the SCM spectrum displays
horizontal lines corresponding to the intracycle interference
or, what is the same, to the interplay between the intra-half-
cycle factor G(kρ) and the factor sin2(S̃/4), according to
Eq. (18b). In the same way, for the case where τX = 2TL

in Fig. 5(g) the SCM spectrum displays horizontal lines
corresponding to the intercycle interference modulated by
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the intracycle pattern of Fig. 5(d). We note that there is no
discontinuity in the factor G(kρ) at the energy values E�

given by Eq. (19). Hence, as the sidebands get narrower,
discontinuity of the intracycle modulation blurs. Continuity in
the intracycle and intra-half-cycle factors is related to the fact
that the accumulated action at both sides of the discontinuity
verifies that 
S|E>Edisc + 
S|E<Edisc = S̃/2, where 
S|E>Edisc

(
S|E<Edisc ) is the accumulated action calculated at energies
higher (lower) than the discontinuity Edisc. Hence, the evalua-
tion of cos2(
S/2 + π/4) gives exactly the same result at E�

independently on φ. Once more, from the SFA spectrograms
displayed in Figs. 5(e) and 5(h) and the corresponding TDSE
calculations in Figs. 5(f) and 5(i), we can see, once again,
that the agreement between the SFA and TDSE spectrograms
is very good, with the exception of a contribution at low
energies due to the ionization by the IR laser pulse alone,
which is strongly suppressed in the SFA calculations. By
comparing the intra-half-cycle pattern for τX = TL/2 in the
left column [Figs. 5(a)–5(c)] to the intracycle interference
pattern in τX = TL in the center column [Figs. 5(d)–5(f)]
and the whole interference pattern for τX = 2TL in the right
column [Figs. 5(g)–5(i)], we corroborate the SCM prediction
that the intra-half-cycle interference pattern (spectrogram for
τX = TL/2) works as a modulator of the intracycle pattern
(spectrogram for τX = TL), whereas the latter does the same
with the intercycle interference pattern or sidebands.

IV. CONCLUSIONS

We have studied the electron emission produced by atomic
hydrogen in its ground state subject to an XUV pulse in
the presence of an infrared laser pulse in the direction
perpendicular to the common polarization axis of both pulses.
The previously developed SCM [34] for LAPE (XUV + IR) in
the forward direction has been reformulated for perpendicular
emission. The goodness of our model over others is more
evident for emission in the perpendicular emission. Few theo-
retical approaches are mentioned in the literature: soft-photon
approximation [14], Kazansky’s first-order time-dependent
perturbation theory [21,22,31,32], and Bivona’s theory [33].
Whereas the first two predict null perpendicular emission for
ionization from an s state, only the last one foresees nonzero
perpendicular probability. Our study not only agrees with the
latter, but also goes beyond by analyzing the properties of
perpendicular emission much more thoroughly. In accordance
to our recent study of LAPE in the forward direction [34],
the PE spectrum can be factorized as two contributions:
One accounting for sidebands formation and the other as a
modulation. Whereas the former can be interpreted as the

intercycle interference of electron trajectories from different
optical cycles of the IR laser, the latter corresponds to intra-
cycle interference stemming from the coherent superposition
of four electron trajectories born in the same optical cycle.
Contrary to parallel emission, the intracycle interference
pattern for transversal emission can be decomposed as the
contribution of the two interfering trajectories born within the
same half optical period (intra-half-cycle interference) and
the Young-type interference between the contributions of the
two half cycles into the same optical cycle (inter-half-cycle
interference). We have shown that the electron trajectories
born into the two half cycles within the same optical cycle
interfere destructively for the absorption and/or emission of
an even number of IR photons, which leads to the exchange of
only an odd number of laser photons in the formation of the
sidebands. Therefore, the absorption line of the XUV photon
alone (with no exchange of laser photons) is forbidden. We
show that the intra-half-cycle interference pattern modulates
the intracycle pattern, which, in the same way, modulates the
sidebands. We have observed a very good agreement of our
SCM energy spectrum with the corresponding one to the SFA
and the ab initio solution of the TDSE.

We have observed that as the laser intensity increases the
spectra becomes wider and approximately bounded within
the classical energy domain. Another difference between the
emission parallel and perpendicular to the polarization axis is
the classical boundaries. We have shown that the upper energy
boundary in perpendicular emission is independent of the laser
intensity, contrary to parallel emission which increases linearly
with energy [34]. In turn, the lower classical boundaries in both
cases increases as the laser intensity grows, but at different
rates. The values of these boundaries can be useful to know the
elusive magnitude of the laser intensity in experiments. We can
conclude that the SFA is accurate to describe the PE spectrum
perpendicular to the polarization direction, especially for low
and moderate laser intensities so that the electron ionization
by the IR laser alone is low compared to LAPE. Finally, by
analyzing the electron spectrum as a function of the time
delay between the two pulses 
X, we have shown that the
intra-half-cycle pattern is π periodic in the optical phase with
a probability jump that reproduces the profile of the square of
the laser vector potential.
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