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Prospects for a bad-cavity laser using a large ion crystal
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We propose to build a bad-cavity laser using forbidden transitions in large ensembles of cold ions that form
a Coulomb crystal in a linear Paul trap. This laser might realize an active optical frequency standard able to
serve as a local oscillator in next-generation optical clock schemes. In passive optical clocks, large ensembles of
ions appear less promising, as they suffer from inhomogeneous broadening due to quadrupole interactions and
micromotion-related shifts. In bad-cavity lasers, however, the radiating dipoles can synchronize and generate
stable and narrow-linewidth radiation. Furthermore, for specific ions, micromotion-induced shifts can be largely
suppressed by operating the ion trap at a magic frequency. We discuss the output radiation properties and perform
quantitative estimations for lasing on the 3D2 → 1S0 transition in 176Lu+ ions in a spherically symmetric trap.
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I. INTRODUCTION

Optical frequency standards are the most stable clocks to
date. The most advanced implementations reach a short-term
stability at the 3.4 × 10−16/

√
τ level [1], and systematic

uncertainty of 3.2 × 10−18 [2]. Further improvement of optical
frequency standards would allow a multitude of new applica-
tions in fundamental and applied science, such as the study of
fundamental constant variations [3] and relativistic geodesy
[4]. Modern optical clocks are passive clocks, where the
frequency of a local oscillator, i.e., some stable narrow-band
laser, is feedback-stabilized to a narrow clock transition in
trapped atoms or ions, whose frequency is robust with respect
to fluctuations of the environmental parameters. This clock
transition may be extremely narrow, down to a nanohertz level
in some species [2], but the real spectroscopic linewidth is
limited by the short-term stability of the local oscillator and
usually does not surpass the subhertz level. Also, on a time
scale shorter than the interrogation time of the clock transition,
the stability of the local oscillator entirely determines the
stability of the whole frequency standard. Fluctuations of
the local oscillator frequency may also contribute to the
instability of the frequency standard on longer time scales via
the Dick effect [5]. Therefore, improving the local oscillators
is one of the key tasks for the development of more precise
optical clocks. The best modern local oscillators are lasers that
are prestabilized to an ultrastable macroscopic cavity. Their
stability is usually limited by mechanical and thermal noise
[6] and may attain a level of 8 × 10−17 on a time scale up to
1 × 103 s at room temperature [7], and even 4 × 10−17 on a
time scale up to 1 × 102 s in cryogenic environments [8], but
the progress in this direction is slow.

One possible alternative approach is to create an active
optical frequency standard, i.e., a laser where atoms with a
narrow and robust lasing transition play the role of the gain
medium. Such a laser would operate in the so-called bad-cavity
regime, where the linewidth of the cavity mode is much broader
than the gain profile. The output frequency of such a laser
is determined primarily by the gain medium, which makes
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it robust to fluctuations of the cavity length. Such standards
have been proposed by several authors recently [9–11], and a
series of proof-of-principle experiments has been performed
[12–16].

Active atoms that constitute the gain for an active optical
frequency standard must be confined to the Lamb-Dicke
regime to avoid Doppler and recoil shifts. Such a confinement
may be realized with an optical lattice potential at a so-called
magic frequency, where the upper and the lower lasing states
experience the same ac Stark shift [17]. These shifts depend on
the polarization of the trapping fields and can be controlled to
the necessary level of precision only for 3P0 → 1S0 transitions
in Sr and other alkaline-earth-metal atoms, Zn, Cd, Hg, and
Yb. A first proof-of-principle experiment with such a transition
in trapped Sr atoms has been recently performed in a pulsed
regime [16].

The optical lattice potential trapping neutral atoms is
relatively shallow, of the order of a few tens of microkelvins
[17]. This leads to a short trap lifetime; therefore, some method
of compensating for atom losses must be implemented to
practically realize an active optical frequency standard [18,19].
The implementation of such methods is rather complicated,
although certain efforts in this direction are being made [20].

In contrast to neutral atoms, charged ions may be trapped in
much deeper Paul or Penning traps, which leads to much longer
trap lifetimes. Trapped ions may also be cooled via co-trapped
ions of another species (sympathetic cooling) [21]. A bad-
cavity laser utilizing trapped ions may operate continuously
over hours, or even days, without the need to compensate for
ion losses. On the other hand, micromotion of the ions and their
interactions with trapping fields and with each other causes
shifts and inhomogeneous broadening of the clock transition;
these effects are especially pronounced in large ion ensembles.
Thus, ion optical clocks have been built primarily with single
ions [2–4] or with few-ion ensembles [22].

Inhomogeneous broadening may be considerably reduced
for ions with negative differential polarizability of the clock
states in rf Paul traps at a specially chosen magic frequency
of the trapping field [23]. Also, bad-cavity lasers with inho-
mogeneously broadened gain may produce synchronous and
stable output radiation if the total homogeneous broadening of
the lasing transition exceeds the inhomogeneous broadening
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by at least a few times [24]. In lasers based on a three-level
scheme, such a homogeneous broadening will be dominated by
repumping and related incoherent dephasing and may signifi-
cantly exceed the natural linewidth of the lasing transition as
well as inhomogeneous broadening of this transition. It opens
the possibility to build a bad-cavity laser with ions, even if
inhomogeneous broadening exceeds the natural linewidth [24].

In this paper, we present a detailed discussion of the
bad-cavity laser based on Coulomb crystals in Paul traps. In
Sec. II we consider a generic model of a harmonic coaxial
Paul trap formed by static and rf harmonic potentials, obtain
general expressions for micromotion-induced Doppler and
Stark shifts in a cold Coulomb crystal, and introduce the
“magic” frequency, which allows one to compensate these
shifts in leading order. In Sec. III we consider residual terms
of the shifts, and specify the trap geometry. In Sec. IV we
derive the equation for the intracavity field, taking into account
standing-wave periodicity and Gaussian shape of the cavity
mode. In Sec. V we present some quantitative estimations for
a bad-cavity laser with trapped 176Lu+ ions. In Sec. VI we
discuss the results, envisaged difficulties, and possible ways to
overcome them.

II. MAGIC FREQUENCY

Here we consider micromotion-induced second-order
Doppler and dc Stark shifts for ions forming a cold Coulomb
crystal in a harmonic rf Paul trap. Such a many-ion crystal was
considered in Ref. [23], although some higher-order terms
have been omitted there. These terms, however, can be easily
calculated if we note that the only macroscopic force acting
on the ion in the Paul trap is proportional to the same local
electric field that causes the Stark shift.

We consider a Paul trap formed by the potential

φ(r̄ ,t) = m�ωz

2q
r̄T ·

[
¯̄�rf cos(�t) + ε

2
¯̄�s

]
· r̄ , (1)

where r̄ = xēx + yēy + zēz ≡ x1ēx + x2ēy + x3ēz is the posi-
tion vector, m and q are the mass and the charge of the ion, �

is the rf drive frequency, ωz is the frequency characterizing the
trap confinement, ε = 2ωz/�, and ¯̄�rf and ¯̄�s are traceless
dimensionless symmetric matrices determining curvatures of
the potentials. We use a single bar to denote column vectors
with three spatial components, a double bar to denote 3 × 3
matrices, a dot (·) for the inner product, and the superscript T

for the transposition (we often omit this superscript for vectors,
for the sake of brevity). Also we suppose that ωz � �, i.e.,
such that ε may be considered a small parameter.

Scaling time and length (in Gaussian units) by

t�

2
→ t,

r̄

�
→ r̄ , where � =

(
q2

mω2
z

)1/3

, (2)

we write the equation of motion (EOM) of the ith ion as

¨̄ri + ε2( ¯̄�s · r̄i) + 2ε( ¯̄�rf · r̄i) cos(2t) = ε2
∑
j �=i

r̄ij

r3
ij

, (3)

where r̄ij = r̄i − r̄j , r = |r̄|. Following Refs. [23,25] we
assume the existence of a stable π -periodic solution of EOM

(3), which may be expressed as

r̄i(t) = R̄0,i + 2
∞∑

n=1

R̄2n,i cos(2nt). (4)

We suppose that all the motions of the ions except the
micromotion (4) are frozen out (cold Coulomb crystal).

The main trap-induced corrections to the frequency ν =
ω/2π of the clock transition of the ith ion are the micromotion-
induced second-order Doppler shift �νi

D, and the Stark shift
�νi

S caused by the time-dependent local electric field of the
trap and nearby ions acting on the ith ion at its instantaneous
position. The second-order fractional Doppler shift averaged
over the period of the micromotion is

�νi
D

ν
= −�2�2

4

〈 ˙̄r2〉
2c2

= −�2�2

c2

∞∑
n=1

n2R̄2
2n,i , (5)

where c is the speed of light, and the prefactor comes from the
scaling (2).

We first consider the Stark shift of the clock transition
caused by the local electric field acting on the ion. Following
Ref. [26], we suppose that the ion trap is placed into a
homogeneous external magnetic field B̄ causing the Zeeman
splitting to be much larger than the tensor component of
the Stark shift (see estimations at the end of Sec. V).
Then the Stark shift of some Zeeman sublevel can be
written as

�E = −α0

2
Ē2 − α2

4

(
3E2

z − Ē2
)
, (6)

where the axis z is oriented along B̄, α0 is the scalar
polarizability, and α2 is

α2 = α2(η,J,F,mF )

= αtens(η,J )
3m2

F − F (F + 1)

3F 2 − F (F + 1)
(−1)I+J+F

{
F J I

J F 2

}

×
(

F (2F − 1)(2F + 1)(2J + 3)(2J + 1)(J + 1)

(2F + 3)(F + 1)J (2J − 1)

)1/2

.

(7)

Here η, J , F , and mF are the principal quantum number,
the angular momentum of the electronic shell, the total
angular momentum, and its projection onto the direction of
the magnetic field, respectively, and αtens(η,J ) is the tensor
polarizability characterizing the state η,J of the electronic
shell of the atom [26].

Denoting the differential polarizabilities �αk = αu
k − αl

k

(k = 0 or 2) of the upper (u) and lower (l) clock states, and
taking into account the relation between the local electric field
and the instantaneous acceleration of the ion, we can write the
time-averaged scalar and tensor Stark shifts, �νi

S,0 and �νi
S,2,

of the clock transition of the ith ion as

�νi
S,0 = −�α0

4πh̄
〈Ē2〉 = −�α0

4πh̄

�4�2m2

16q2
〈 ¨̄r2〉

= −�α0

2πh̄

�4�2m2

q2

∞∑
n=1

n4R̄2
2n,i , (8)
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�νi
S,2 = �α2

8πh̄

(〈Ē2〉 − 3
〈
Ē2

z

〉)

= �α2

4πh̄

�4�2m2

q2

∞∑
n=1

n4(R̄2
2n,i − 3Z2

2n,i

)
, (9)

where Z2n,i is the z projection of R2n,i .
Combining Eqs. (5), (8), and (9), we can express the sum

of the Doppler and Stark shifts in the form

�νi = �νi
S + �νi

D

= −�2�2ν

c2

[
1 +

(
�α0 − �α2

2

)
(m�c)2

2πh̄νq2

] ∞∑
n=1

n4R̄2
2n,i

+ �2�2ν

c2

∞∑
n=1

(n4 − n2)R̄2
2n,i

− 3�α2
�4m2�2

4πh̄q2

∞∑
n=1

Z2
2n,in

4. (10)

It is easy to see that if �α2 > 2�α0, the first term in Eq. (10)
will be zero at the so-called magic value �0 of the radio
frequency �:

�0 = q

mc

√
4πh̄ν

�α2 − 2�α0
. (11)

In the next section we consider remaining terms of Eq. (10).

III. RESIDUAL MICROMOTION-RELATED SHIFTS

To estimate residual terms in Eq. (10), we expand R̄2
2n,i and

Z2
2n,i by the small parameter ε = 2ωz/�. Also we suppose

that the amplitudes R̄2n,i (n �= 0) of the oscillating terms are
small in comparison with the time-independent components
R0,i . Then we can decompose the right part of EOM (3) as

r̄ij

r3
ij

= R̄0,ij

R3
0,ij

+ ¯̄Qij · r̄ ′
ij + · · · , (12)

where r̄ ′
ij = r̄ij − R̄0,ij , and

¯̄Qij = −3R̄0,ij ⊗ R̄0,ij − ¯̄IR2
0,ij

R5
0,ij

. (13)

Here the symbol ⊗ denotes the outer product, and ¯̄I is the
identity matrix.

Substituting Eqs. (13) and (4) into Eq. (3), we obtain

R̄2,i = ε

4
¯̄�rf · R̄0,i + ε3

16

⎡
⎣(

¯̄�s +
¯̄�2

rf

16

)
· ¯̄�rf · R̄0,i

−
∑
j �=i

¯̄Qij · ¯̄�rf · R̄0,ij

⎤
⎦ + O(ε5), (14)

R̄4,i = ε2

64
¯̄�2

rf · R̄0,i + O(ε4), (15)

R̄6,i = ε3

2304
¯̄�3

rf · R̄0,i + O(ε5). (16)

Consider the two residual terms in Eq. (10). The second
term contains only the summands with n � 2. It may be
estimated as

ν�2�2

c2

∞∑
n=1

(n4 − n2)R̄2
2n,i ≈ 12

ν�2�2

c2
R̄2

4,i

≈ 3νε4

1024

�2�2

c2
R̄0,i · ¯̄�4

rf · R̄0,i . (17)

The last term of Eq. (10),

−3�α2
�4m2�2

4πh̄q2

∞∑
n=1

Z2
2n,in

4, (18)

contains also the summand with n = 1, which is proportional
to ε2. However, it can be substantially reduced by a proper
choice of the trap geometry. Namely, if the radio-frequency
component of the trap field is orthogonal to the z axis (see
Fig. 1), i.e., if

¯̄�rf =
⎡
⎣a 0 0

0 −a 0
0 0 0

⎤
⎦, (19)

then Z6,i = O(ε4), Z4,i = O(ε4), and Z2,i = O(ε3). There-
fore, the whole last term of Eq. (10) is of the order of ε6, and
it is dominated by the second term of Eq. (10). We can neglect
it, and approximate �νi as

�νi ≈ 3νε4

1024

�2�2

c2
a4

(
X2

0,i + Y 2
0,i

)
. (20)

For our future estimations we consider the particular case
of a spherical trap. Namely, we take a = √

3 in Eq. (19), and

¯̄�s =
⎡
⎣− 1

2 0 0
0 − 1

2 0
0 0 1

⎤
⎦, (21)

which corresponds to the pseudopotential

V (r̄) = mω2
z

2
r̄ ·

(
¯̄�s +

¯̄�2
rf

2

)
· r̄ = mω2

z r̄
2

2
. (22)

It is easy to show that a large Coulomb crystal of N ions in such
a trap will have an approximate spherical shape with the radius

FIG. 1. Sketch of the linear Paul trap with Coulomb crystal and
external cavity (not to scale), where the |Fu,mu = 0〉 → |Fl,ml =
±1〉 quadrupole transitions are coupled with two circularly polarized
cavity modes. B̄ is the magnetic field determining the quantization
axis.
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FIG. 2. Maximum micromotion-induced shift �max calculated
according to Eq. (23) at N = 1 × 105 ions for different |3D2,Fu,mF =
0〉 → |1S0,Fl = 7,mF = 1〉 transitions in 176Lu+ ions. Red dotted
line, Fu = 5, � = 2π × 25.3 MHz; green dashed line, Fu = 8,
� = 2π × 55.3 MHz; blue dot-dashed line, Fu = 9, � = 2π ×
22.3 MHz.

R ≈ N1/3 in units of � (i.e., � is the Wigner-Seitz radius), and
the density of the crystal will be homogeneous on the scales
exceeding �.

The micromotion-related shift (20) goes to zero at the center
of the crystal and reaches its maximum value

�max = 2π �νi
max ≈

(
3

4

)3 2πν N2/3 ω
8/3
z q4/3

�2
0 c2 m2/3

(23)

at X2
0,i + Y 2

0,i = N2/3.
To illustrate the dependence of �max on ωz, we present in

Fig. 2 the maximal micromotion-related shifts �max(ωz) for
different |3D2,Fu,mF = 0〉 → |1S0,Fl,mF = 1〉 transitions in
176Lu+ ions, supposing that the spherical Coulomb crystal
contains N = 1 × 105 ions, and that the radio frequencies �

are equal to the magic frequencies �0 for the corresponding
transitions; see Sec. V for details.

We should note that expressions (20)–(23) for the
micromotion-related shift as well as for the magic frequency
�0 [Eq. (11)] of the radio-frequency field have been obtained
in the leading order (ε4) of the small parameter ε, and in this
leading order the individual shift �i ∝ X2

i + Y 2
i . However,

it is easy to see that the first term in Eq. (10) (which turns
to zero at � = �0) is also proportional to X2 + Y 2 in the
leading order of ε2. Therefore, fine tuning of � near �0 may
be used for further compensation of the micromotion-related
shifts down to the order of ε6; the respective correction of
the magic frequency was considered in Ref. [23]. Also, this
tuning may be used for compensation of the light shifts caused
by the pumping and cooling fields, or for suppression of
the sensitivity of the frequency of the lasing transition to
fluctuations of nonperfectly controlled parameters of the trap,
such as amplitudes of the trapping and pumping fields. Detailed
investigations of these possibilities are beyond the scope of this
paper.

IV. CAVITY FIELD

In this section we estimate the output power of the bad-
cavity laser based on a spherical Coulomb crystal with radius
Rc = N1/3� coupled with the cavity field. We neglect here the
micromotion-induced and quadrupole shifts of the lasing tran-
sitions; this assumption is acceptable, if the inhomogeneous
broadening caused by these shifts is small in comparison with
the homogeneous one [24]. These assumptions are proved
in the end of Sec. V. Instead, we take into account that the
cavity mode is a standing-wave Gaussian mode with waist
w0.

We start from the mean-field equations (see Appendix A
for details of the derivation), where we neglect detunings and
suppose equivalence of the cavity eigenfrequency ωc with the
transition frequencies ω and ω

j

ul of the laser field and lasing
transitions:

d〈ĉ〉
dt

= −κ

2
〈ĉ〉 − i

2

∑
j

gj

〈
σ̂

j

lu

〉
, (24)

d
〈
σ̂

j
z

〉
dt

= igj

[〈ĉ+〉〈σ̂ j

lu

〉 − 〈ĉ〉〈σ̂ j

ul

〉] − γ‖
〈
σ̂ j

z

〉 + w − γ,

(25)

d
〈
σ̂

j

lu

〉
dt

= igj

2
〈ĉ〉〈σ̂ j

z

〉 − γ⊥
〈
σ̂

j

lu

〉
. (26)

Here ĉ and ĉ+ are the cavity field operators, σ̂
j

αβ = |αj 〉〈βj |
(|αj 〉 and |βj 〉 are the generic notations for the levels of the
j th atom), 〈σ̂ j

z 〉 = 〈σ̂ j
uu〉 − 〈σ̂ j

ll 〉, w is the incoherent pumping
rate, γ is the spontaneous rate of the lasing transition, γ‖ =
w + γ , γ⊥ = (γ + w)/2 + γR , γR is the incoherent dephasing
rate (limited from the bottom by the value ξw/2, where ξ =
�1/�2 is the ratio of decay rates �1 and �2 of the intermediate
pumping state into the lower and the upper lasing states |l〉
and |u〉, respectively), and gj is the coupling coefficient of
the cavity field with the lasing transition in the j th ion. As is
shown in Appendix B,

gj = g(r̄) = g0 e
− r2⊥

w2
0 cos(k̄ · r̄). (27)

One may obtain the steady-state (cw) solution of Eqs. (24)–
(26) setting time derivatives to zero. Then, from Eq. (24)
follows

〈ĉ〉cw = − i

κ

3N

4πR3
c

∫ Rc

−Rc

∫ √
R2

c −z2

0
gj (r̄)〈σ̂lu(gj (r̄))〉cw

× 2π r⊥ dr⊥ dz, (28)

where Rc = N1/3� is the radius of the Coulomb crystal. In turn,
〈σ̂lu(gj (r))〉cw = 〈σ̂ j

lu〉cw may be expressed via 〈ĉ〉cw with the
help of Eqs. (25) and (26) as

〈σ̂lu(gj (r̄))〉cw = 1

2

igj (r̄)〈ĉ〉cw(w − γ )

γ⊥γ‖ + |〈ĉ〉cw|2g2
j

. (29)
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Substituting Eq. (27) into Eq. (29) and Eq. (29) into Eq. (28)
and reducing 〈ĉ〉cw, we obtain the equation

1 = (w − γ )

2κ

3N

4πR3
c

∫ Rc

−Rc

∫ √
R2

c −z2

0
2π r⊥

× g2
0 cos2(kz)e

− 2r2⊥
w2

0

γ⊥γ‖ + |〈ĉ〉cw|2g2
0 cos2(kz)e

− 2r2⊥
w2

0

dr⊥dz. (30)

The integral over r⊥ may be taken analytically. Then Eq. (30)
transforms into

1 = (w − γ )

2κ

3N

4R3
c

w2
0

2|〈ĉ〉cw|2

×
∫ Rc

−Rc

ln

⎡
⎢⎣ γ⊥γ‖ + |〈ĉ〉cw|2g2

0 cos2(kz)

γ⊥γ‖ + |〈ĉ〉cw|2g2
0 cos2(kz)e

−2 R2
c −z2

w2
0

⎤
⎥⎦dz.

(31)

Because the cavity waist w0 and the radius of the crystal, Rc,
are large in comparison with 1/k, we can average Eq. (31) on
the scale of 2π/k with the help of the following relation:

2

π

∫ π/2

0
ln(1 + b cos2 z)dz = 2 ln

[√
1 + b + 1

2

]
. (32)

It allows one to represent Eq. (31) in the form

1 = 3Nζ 2(w − γ )

4κ|〈ĉ〉cw|2 [ln(1 + √
1 + A) − F (A,ζ )], (33)

where

F (A,ζ ) =
∫ 1

0
ln

⎛
⎝1 +

√
1 + A exp

2(x2 − 1)

ζ 2

⎞
⎠dx, (34)

A = |〈ĉ〉cw|2g2
0

γ‖γ⊥
, (35)

ζ = w0

Rc

. (36)

To find the steady-state intracavity field, one has to solve
Eq. (33) numerically.

V. PROSPECT FOR BAD-CAVITY LASER
WITH 176Lu+ IONS

In this section we consider the implementation of a bad-
cavity laser using the 3D2 → 1S0 transition in the 176Lu+ (I =
7) ion. Briefly this possibility was mentioned in Ref. [24]; here
we present a more detailed quantitative analysis.

A possible pumping scheme is shown in Fig. 3: A 350.84-
nm pumping laser populates the 3P o

1 state which decays with
a 42% probability into the 3D2 upper lasing state, and with a
37.6 % probability back into the lower lasing state [27]. The
decay of the 3P o

1 state will populate also the long-living 3D1

state, which can be depopulated via the 3P o
2 state with the help

of a 484.10-nm laser. Two additional 661.37- and 547.82-nm
lasers should be applied to pump the atoms out of the 1D2 and
3D3 states populated by the decay of the 3P o

2 state. The 484.10-,
547.82-, and 661.37-nm lasers may be detuned to the red side
and be used also for cooling of the ion ensemble; sympathetic
cooling with an additional ion species is also possible.

An important point is that all involved states except the
ground state have a hyperfine structure; therefore, the pumping
lasers should have several frequency components to effectively
repump the atoms. Finally, a five-component 499.55-nm laser
should be employed to pump the populations into the upper
lasing state, for example, with specific F = Fu and mF = 0.
This can be realized if one component of this laser is tuned
in resonance with the |3D2,Fe〉 → |3P o

2 ,Fe〉 transition and
polarized along the z axis of the trap, coinciding with the
direction of the auxiliary magnetic field.

For our calculations, we use values from Ref. [27], where
the spontaneous rate of the 3D2 → 1S0 lasing transition is
γ = 4.19 × 10−2 s−1, the differential scalar polarizability is
�α0 = −0.9a3

0 , and the tensor polarizability of the upper state
is αtens(3D2) = −5.6a3

0 , where a0 is the Bohr radius.
Let the lower indices l and u correspond to the lower lasing

1S0 and the upper lasing 3D2 levels. With the help of the

FIG. 3. Left: General pumping scheme (hyperfine structure not shown) for an 804-nm bad-cavity laser on 176Lu ions. Dashed lines denote
the most relevant spontaneous decays, and solid lines correspond to both spontaneous and laser-induced transitions (wavelengths are indicated).
Right: Details of the hyperfine and Zeeman structure of 3D2 and 3P o

2 levels, and transitions induced by a five-component 499.55-nm pumping
laser to pump the ions into the |Fu = 9,mu = 0〉 upper lasing state.
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499.55-nm laser, the populations may be pumped either into
one of the |3D2,Fu,mF = ±Fu〉 states (both mF = ±Fu states
may also be populated simultaneously, if Fu > 5), or into some
of the |3D2,Fu,mF = 0〉 states.

Quadrupole transitions may, generally speaking, be accom-
panied by �m = 0, ± 1, ± 2. In this paper we restrict our
consideration to the geometry shown in Fig. 1. In such a
configuration, micromotion of the ions takes place primarily in
the plane orthogonal to the cavity axis [up to the terms of order
ε3; see Eqs. (14) and (15)], and the ions will be confined to
length scales significantly smaller than the mode wavelength in
the axial direction, i.e., in the Lamb-Dicke regime. As shown
in Appendix B, only the transitions with �m = ±1 will be
coupled with the cavity modes in such a configuration.

Note that two modes (σ+ and σ− polarized) with the
same eigenfrequency may be excited simultaneously in the
cavity. These modes couple the upper |3D2,Fu,mF = 0〉 lasing
state with two |1S0,Fl,ml = ±1〉 lower states, forming a “�
system.” Generally speaking, lasing in such a system cannot
be represented as a simple superposition of two independent

lasers, because the modes will be coupled via the coherence
between two lower lasing levels. However, a detailed investi-
gation of such a system lies beyond the scope of the present
paper, and we consider only a single circularly polarized mode
coupling |u〉 = |3D2,Fu,mF = 0〉 and |l〉 = |1S0,Fl = I,mF =
1〉 states. Note also that a selective excitation of a single mode
may be performed if the mirrors of the optical cavity will have
slightly different transparencies for left- and right-polarized
modes, and the lasing threshold will be more easily attainable
for one of them.

Using the method presented in Sec. II, we find that the
magic frequency �0 exists for Fu = 5, 8, and 9 (�0 =
2π × 25.3, �0 = 2π × 45.3, and �0 = 2π × 22.3 MHz, re-
spectively). Also, one may find the values of the “magic
magnetic field” Bm, at which the sensitivity of the lasing
transition frequency to the fluctuation of this field vanishes
in the first order: Bm = 0.388, −1.035, and −1.040 G for
Fu = 5, 8, and 9, respectively.

The maximal value g0 of the coupling coefficient of the
Gaussian standing-wave cavity mode with the lasing transition

FIG. 4. Output power P for various confinement frequencies ωz and upper lasing states |Fu,mF = 0〉 (on different panels, see labels in
upper left corners) and different values of ζ = w0/Rc (different curves on the same plot, labeled by the values of ζ ) as functions of the
pumping rate w (x axis) for a spherical Coulomb crystal containing N = 1 × 105176Lu+ ions coupled to the cavity with finesse F = 1 × 105.
Confinement frequencies are ωz = 2π × 0.2, ωz = 2π × 0.5, and ωz = 2π × 1 MHz, which correspond to the radii Rc = N 1/3� of the crystal
equal to 368, 200, and 126 μm, respectively.
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may be estimated as (see Appendix B for details)

g0 = �ul

√
5πc3γ

ω2Veff
, (37)

where Veff = πw2
0L is the effective mode volume, L is the

cavity length, w0 is the mode waist,

�2
ul = 8(2Fl + 1)(2Ju + 1)

{
Jl I Fl

Fu 2 Ju

}2

× (
C

Fu mu

Fl ml 2 −1

)2
, (38)

and mu = ml − 1. It is easy to see that the ratio g2
0/κ does not

depend on the cavity length L, but only on the cavity finesse
F , because κ may be expressed via L and F as κ = πc/(FL).

To study the dependence of the output power on the mode
waist w0, it is convenient to express w0 via the radius Rc of
the Coulomb crystal as w0 = ζRc, like in Sec. IV. The output
power P may be estimated as

P = h̄ωκ |〈ĉ〉cw|2, (39)

where 〈ĉ〉cw is the steady-state intracavity field which may be
found from the numeric solution of Eq. (33). Note also that
〈ĉ〉cw appears in Eqs. (33)–(36) and (39) either as |〈ĉ〉cw|2g2 or
as |〈ĉ〉cw|2κ; therefore, the output power depends on the cavity
finesse F , not on the length L.

For a quantitative estimation of the output power, we
consider a spherical Coulomb crystal containing N = 1 ×
105 176Lu+ ions, where the lasing transition is one of the
|3D2,Fu,mF = 0〉 →〉|1S0,Fl = I,mF = 1〉 quadrupole transi-
tions with Fu = 5, 8, or 9. The cavity finesse is F = 1 × 105.
Also we suppose the repumping efficiency ξ = 0.6 (i.e., 40%
of the atoms pumped into the 3P o

1 state from the lower lasing
state decay back; see Appendix A for details).

Figure 4 presents the output power P [Eq. (39)] for
these three transitions for three different values of the
confinement frequency ωz (ωz = 2π × 200 kHz, ωz = 2π ×
500 KHz, and ωz = 2π × 1 MHz), and different values of ζ .

In Fig. 5 we show the dependence of the maximum output
power Pmax, corresponding to the optimized pumping rate w,
on the parameter ζ . One can see that the optimal values of ζ

are about 0.8.

FIG. 5. Output power Pmax optimized with respect to the pumping
rate w as a function of ζ = w0/Rc for different upper lasing states
|Fu,mF = 0〉 (on different panels; see labels in upper right corners)
and different confinement frequencies ωz (labeled curves on the same
plot). Parameters are the same as in Fig. 4.

Let us discuss the linewidth �ω of such a bad-cavity
laser. Our semiclassical mean-field model cannot predict the
linewidth; one needs to construct at least some “second-order
theory” keeping second-order cumulants of the operators
related to different ions, as it was done in Refs. [10,28],
but with a larger amount of groups of ions with different
coupling strengths (and shifts, generally speaking). Such a
task claims additional attention. However, as an order-of-
magnitude estimation, we can take the formula

�ω ≈ g2/κ (40)

from Ref. [10] and substitute g0 for g. For w0 = 100 μm
(which corresponds to ζ = 0.8 for a spherical Coulomb crystal
with N = 1 × 105 ions at ωz = 2π × 1 MHz) this estimation
gives �ω ∼ 2π × 3 to 2π × 4 mHz for the transitions con-
sidered in this section; weaker confinement results in an even
narrower linewidth.

Concerning the validity of negligence of the micromotion-
induced frequency shift, the optimal values of the repumping
rate w, at which the maximum output powers are attained,
are about 15, 50, and 150 s−1 for ωz = 2π × 0.2, 2π × 0.5,
and 2π × 1 MHz, respectively. These values of w signifi-
cantly exceed the maximum micromotion-induced shifts �max

corresponding to the respective confinement frequencies; see
Fig. 2. The repumping rate determines the homogeneous
broadening; therefore, near the optimal regime we may neglect
the inhomogeneous broadening related to the micromotion-
induced shifts, at least for the parameters considered above.

A few words about the quadrupole shift are in order. This
shift was investigated in Ref. [23] for the 1S0 → 3D1 transition
in the Lu+ ion. It has been shown that, for ωz = 2π × 200 kHz
and a spherical Coulomb crystal with more than a thousand
ions, the distribution of the quadrupole shift is symmetric and
has a dispersion below 0.1 Hz. The quadrupole shift scales as
�−3, or as ω2

z . Because the quadrupole moment of the 3D1 and
3D2 states are similar, we estimate that for ωz = 2π × 1 MHz
the dispersion of the quadrupole shifts does not exceed a few
hertz, which is much less than the optimal repumping rate.

Finally, let us compare the Zeeman splitting with the tensor
Stark shift. One can easily calculate the Zeeman shifts between
the upper lasing state |Fu,mF = 0〉 and the nearby Zeeman
state |Fu,mF = 1〉 at the respective “magic” value of the
magnetic field Bz: they are 211, 258, and 377 kHz, respectively.
At the same time, at ωz = 2π × 1 MHz and N = 1 × 105, the
tensor Stark shift will be only about 1 kHz on the edge of the
Coulomb crystal. Therefore, the tensor Stark shift is small in
comparison with the Zeeman shift, and the theory in Ref. [26]
may be applied.

VI. DISCUSSION AND CONCLUSION

In the present paper, we studied the possibility to create a
bad-cavity laser on forbidden transitions in cold ions trapped
in a linear Paul trap and forming a large Coulomb crystal. We
considered the particular case of a spherical Coulomb crystal
of 176Lu+ ions, where the |3D2,Fu,mF = 0〉 → |1S2,Fl =
I,mF = 1〉 transition is coupled to the circularly polarized
mode of the high-finesse (F = 1 × 105) optical cavity, whose
axis coincides with the trap axis and with the direction of
external magnetic field. We showed that 1 × 105 ions in the
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trap with ωz = 2π × 1 MHz may provide about 0.5 pW of
output power with a 150 s−1 repumping rate if the mode waist
w0 is about 80% of the crystal radius, i.e., w0 ∼ 100 μm.

To increase this power, one could increase the number of
ions, increase the frequency ωz of the radial confinement, or
use an elongated trap. Here we consider the main advantages
and disadvantages of these measures in some detail.

First, the ion crystal radius Rc scales as Rc ∝ N1/3. To
keep the value ζ = Rc/w0 near the optimum (about 0.8), we
have to increase the cavity waist w0 ∝ N1/3, so the coupling
coefficient g ∝ N−1/3. The total output power P ∝ N2g2 [10],
which gives the scaling law P ∝ N4/3. Also, in larger ion
ensembles, the maximum micromotion-related shifts grow
with N , particularly �max ∝ N2/3 at � = �0 [Eq. (23)]. At
the same time, a decrease of g may lead to a decrease of
the linewidth δω, as shown in Eq. (40). We should note,
however, that both controlling a large number of ions and
fabricating a high-finesse resonator with a large mode waist
may be technically challenging.

Second, increasing the confinement frequency ωz will lead
to a scaling Rc ∝ ω

−2/3
z , which allows one to increase the

coupling coefficient g ∝ ω
2/3
z , keeping the same ζ , so that

the output power scales as P ∝ ω
4/3
z . At the same time,

the maximal micromotion-induced shift �max at � = �0

will scale as �max ∝ ω
8/3
z , as shown in Eq. (23). Using the

semiclassical model with equal coupling g for all the atoms,
but with nonzero frequency shifts [Eq. (20)], we found that the
maximum output power might be attained at ωz ∼ 2π × 10 to
2π × 20 MHz (for different transitions) if the other parameters
are the same as considered in Sec. V. However, such a
large value of ωz is much higher than typical ion trap axial
frequencies [23,25]. Moreover, the parameter ε is no longer a
small parameter at such large ωz, and the theory presented in
Secs. II and III is not valid. Finally, the increasing g may lead
to a drastic increase of the linewidth �ω.

Third, the Coulomb crystal in the elongated trap will be
less regular than in the spherical one, and the quadrupole
shifts may play a more significant, non-negligible role. On
the other hand, such a method allows one to pack more ions
into the same cavity mode. Such a setup should be designed
carefully.

In the present paper, we neglect the excitation of the second
circularly polarized mode in the cavity. If such a mode will
be excited, it will lead to a reduction of the output power. The
picture will become more complex because of interactions of
these modes via the coherence between the lower lasing states.
A detailed investigation of their interaction will be presented
in future work. Here we can note that both the output fields will
have different polarizations and frequencies, and the frequency
difference will be of the order of a few hundred hertz (for
“magic” magnetic fields). The beat signal between two modes
may be used for a stabilization of the magnetic field near its
magic value.

In addition to 176Lu+, some other ions with metastable
states and negative differential polarizabilities may also be
considered candidates, although it seems to be less straight-
forward to find a proper repumping scheme. Instead, one may
implement a “passive” scheme with cavity-enhanced nonlinear
spectroscopy, similar to the one proposed in Refs. [29,30].

Such a scheme may also be used for locking the frequency of
some slave laser to the optical transition, and this approach
does not require pumping of the atoms into the upper lasing
state.

We considered the “collinear” configuration, where the trap
axis, cavity axis, and external magnetic field are coaligned. In
such a configuration, the cavity mode will be coupled only with
�m = ±1 quadrupole transitions. To allow the coupling with
�m = 0 and/or �m = ±2 transitions, some nonzero angle
between the cavity axis and the magnetic field should be
introduced. It may be attained, for example, by tilting the
cavity axis with respect to magnetic field, coaligned with the
trap axis, or by tilting the magnetic field with respect to
the cavity axis coinciding with the trap axis.

In the first case (tilted cavity) the broadening related to the
tensor Stark shift [the third term in Eq. (10)] will be suppressed,
as well as in the collinear configuration considered in the main
text. However, such a scheme does not allow the use of an
elongated trap geometry and will cause additional problems
connected with confinement of the atoms to the Lamb-Dicke
regime along the cavity axis. In particular, our estimations
show that for the parameters of the ions considered in the
paper, the amplitude R2,i� of the micromotion on the edges
of the crystal exceeds the wavelength of the mode. Note that
this micromotion-related issue may be of less importance for
some long-wavelength transitions, such as 2D3/2 → 2S1/2 and
2D5/2 → 2S1/2 transitions in Ba+ ions.

Tilting the magnetic field instead of the cavity axis allows
the use elongated traps and keeps the ions in the Lamb-Dicke
regime but requires special measures to suppress the tensor
Stark shift. As shown in Ref. [31], compensation of this shift
may be performed with a special choice of the magnetic field.

In summary, we have shown that a bad-cavity laser may
be realized on a Coulomb crystal composed of ions with
negative differential polarizability of the clock transition. As
an example, we considered the 3D2 → 1S0 lasing transition in
176Lu+, with the ions forming a spherical Coulomb crystal
in a linear Paul trap. Such a crystal may provide a route to
truly steady-state lasing in the bad-cavity regime if the proper
continuous cooling and pumping is performed.
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APPENDIX A: SEMICLASSICAL EQUATIONS FOR
THREE-LEVEL MODEL AND ADIABATIC ELIMINATION

OF THE INTERMEDIATE STATE

Consider the system of N three-level trapped atoms (ions)
with states |l〉, |u〉, and |i〉, whose |u〉 → |l〉 transition is
coupled with the cavity mode ĉ, and whose |l〉 → |i〉 transition
is pumped by external field with Rabi frequency V ; see Fig. 6.
Neglecting the dipole-dipole interaction between different
atoms and their collective coupling to the bath modes (the
role of these effects are considered in Refs. [32,33]), we can
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FIG. 6. Level structure and notations used for levels, frequencies,
detunings, and relaxation rates: ωc and ω are the frequencies of the
cavity mode and the output laser field, �j and �

p

j are the detunings
of respective atomic transitions from the output and pumping fields,
respectively, and �1, �2, and γ are the decay rates.

write the master equation for such a system in the form

dρ

dt
= − i

h̄
[Ĥ,�̂] + ˆ̂Lc[�̂] +

∑
j

ˆ̂Lj [�̂], (A1)

where the Lindbladian ˆ̂Lc describes the relaxation of the cavity
field,

ˆ̂Lc[�̂] = −κ

2
[ĉ+ĉ �̂ + �̂ ĉ+ĉ − 2 ĉ �̂ ĉ+], (A2)

the Lindbladian ˆ̂Lj describes the relaxations of individual
atoms,

ˆ̂Lj [�̂] = γ

2

[
2σ̂

j

lu�̂σ̂
j

ul − σ̂ j
uu�̂ − �̂σ̂ j

uu

]
+ �1

2

[
2σ̂

j

li �̂σ̂
j

il − σ̂
j

ii �̂ − �̂σ̂
j

ii

]
+ �2

2

[
2σ̂

j

ui �̂σ̂
j

iu − σ̂
j

ii �̂ − �̂σ̂
j

ii

]
, (A3)

and the Hamiltonian in the respective rotating frame has the
form

Ĥ = h̄δĉ+ĉ + h̄
∑

j

(
(�j + δ)σ̂ j

uu + �
p

j σ̂
j

ii

)

+ h̄

2

∑
j

gj

(
ĉ+σ̂

j

lu + σ̂
j

ul ĉ
) + h̄V

2

∑
j

(
σ̂

j

il + σ̂
j

li

)
.

(A4)

Here and below we use the notation σ̂
j
rq = |rj 〉〈qj |, where gj

is the coupling strength between the lth lower and uth upper
lasing states and the cavity field, and V is the Rabi frequency
of the pumping field.

In the semiclassical (mean-field) approximation, where all
the correlators are decoupled, the set of equations for atomic

and field expectation values is

d〈ĉ〉
dt

= −i
[κ

2
+ iδ

]
〈ĉ〉 − i

2

∑
j

gj

〈
σ̂

j

lu

〉
, (A5)

d
〈
σ̂

j

ll

〉
dt

= −i
gj

2

[〈ĉ+〉〈σ̂ j

lu

〉 − 〈ĉ〉〈σ̂ j

ul

〉] − iV

2

[〈
σ̂

j

li

〉 − 〈
σ̂

j

il

〉]
+ γ

〈
σ̂ j

uu

〉 + �1
〈
σ̂

j

ii

〉
, (A6)

d
〈
σ̂

j
uu

〉
dt

= i
g

2

[〈ĉ+〉〈σ̂ j

lu

〉 − 〈ĉ〉〈σ̂ j

ul

〉] − γ
〈
σ̂ j

uu

〉 + �2
〈
σ̂

j

ii

〉
,

(A7)

d
〈
σ̂

j

ii

〉
dt

= iV

2

[〈
σ̂

j

li

〉 − 〈
σ̂

j

il

〉] − �
〈
σ̂

j

ii

〉
, (A8)

d
〈
σ̂

j

lu

〉
dt

= −
(γ

2
+ i(�j + δ)

)〈
σ̂

j

lu

〉 − igj

2
〈ĉ〉[〈σ̂ j

ll

〉 − 〈
σ̂ j

uu

〉]
+ iV

2

〈
σ̂

j

iu

〉
, (A9)

d
〈
σ̂

j

li

〉
dt

= −
(

�

2
+ i�

p

j

)〈
σ̂

j

li

〉 + igj

2
〈ĉ〉〈σ̂ j

ui

〉
− iV

2

[〈
σ̂

j

ll

〉 − 〈
σ̂

j

ii

〉]
, (A10)

d
〈
σ̂

j

ui

〉
dt

= −
(

γ + �

2
+ i

(
�

p

j − �j − δ
))〈

σ̂
j

ui

〉
+ igj

2
〈ĉ〉〈σ̂ j

li

〉 − iV

2

〈
σ̂

j

ul

〉
, (A11)

plus respective equations for 〈σ̂ j

ul〉, 〈σ̂ j

il〉, and 〈σ̂ j

iu〉. Here � =
�1 + �2 is the total decay rate of the intermediate state |i〉.

Supposing that � � (V,�
p

j ) � (gj 〈ĉ〉,�j ,δ,γ ), we can
adiabatically eliminate the intermediate level |i〉 using
Eqs. (A9)–(A11) and corresponding conjugated equations. It
gives

〈
σ̂

j

li

〉 = 〈
σ̂

j

il

〉∗ = −iV

� + 2i�
p

j

〈
σ̂

j

ll

〉
, (A12)

〈
σ̂

j

ii

〉 = V 2

�2 + 4�
p

j

2

〈
σ̂

j

ll

〉
, (A13)

〈
σ̂

j

ui

〉 = 〈
σ̂

j

iu

〉∗ = −iV

� + 2i�
p

j

〈
σ̂

j

ul

〉
. (A14)

Substituting Eqs. (A12)–(A14) into Eqs. (A6)–(A8), we
obtain

d
〈
σ̂

j
z

〉
dt

= igj

[〈ĉ+〉〈σ̂ j

lu

〉 − 〈ĉ〉〈σ̂ j

ul

〉]
+w

[
1 − 〈

σ̂ j
z

〉] − γ
[
1 + 〈

σ̂ j
z

〉]
, (A15)

d
〈
σ̂

j

lu

〉
dt

= igj

2
〈ĉ〉〈σ̂ j

z

〉
−

(
γ + w

2
+ γR + i

(
�j + δ + �LS

j

))〈
σ̂

j

lu

〉
.

(A16)
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Here 〈σ̂ j
z 〉 = 〈σ̂ j

uu〉 − 〈σ̂ j

ll 〉,

w = �2V
2

�2 + 4�
p

j

2 and �LS
j = w(ξ + 1)

�
�

p

j (A17)

are the incoherent pumping rate and the light shift,

γR = ξw/2 (A18)

is the rate of incoherent dephasing caused by the repumping,
and ξ = �1/�2.

Let us discuss briefly the light shifts �LS
j . First, they

are proportional to individual detunings �
p

j of the |l〉 → |i〉
pumping transition in the j th ion from the pumping field. These
detunings depend on the micromotion-related second-order
Doppler and Stark shifts. If the pumping field is tuned into
resonance with the pumping transition of the ion in the
center of the trap, they are proportional to X2

j,0 + Y 2
j,0, as

well as the micromotion-related shifts of the lasing transition
(20), which may be compensated with the help of the fine
tuning of the radio frequency � near its “magic” value �0,
as mentioned in the end of Sec. III. Third, light shifts are
suppressed, in comparison with the detunings, by a factor of
(ξ + 1)w/�. For example, in the scheme with 176Lu+ ions
considered in the paper, � = 2.8 × 107 s−1 and ξ = 0.6, which
for w ≈ 100 s−1 gives (ξ + 1)w/� ≈ 6 × 10−6. In the present
paper, we neglect this shift.

APPENDIX B: COUPLING OF ELECTRIC QUADRUPOLE
TRANSITION WITH THE CAVITY FIELD

Here we suppose that the cavity mode is a Gaussian
standing wave. For the sake of simplicity, we neglect the
beam divergence and the Gouy phase; this simplification is
valid, because we only need to calculate the coupling of the
cavity mode with ions localized near the cavity waist. Then
the electric field of the cavity mode is

ˆ̄E(r̄) = ē
ω

c

√
8πh̄c2

Veff ω
e
− r2⊥

w2
0 sin(k̄ · r̄)[ĉ + ĉ+], (B1)

where ē is the (complex) polarization unit vector, ω is the mode
frequency, k̄ is the wave vector, w0 is the cavity waist, Veff =
πw2

0L is the effective mode volume, L is the cavity length, ĉ is
the (time-dependent) field operator, and r⊥ = |r̄ − k̄(k̄ · r̄)/k2|
is the projection of r̄ on the plane orthogonal to k̄. The origin
is on the axis of the cavity. If w0 � 1/k, then the interaction
of this electric field with quadrupole momentum Q̂ of some
ion localized in the position r̄ may be approximately written
as

Ĥint = 1

6

∂Êα

∂xβ

Q̂αβ ≈ eαkβ

6
Q̂αβ[ĉ + ĉ+]

×
√

8πh̄ω

Veff
exp

[
− r2

⊥
w2

0

]
cos(k̄ · r̄), (B2)

where the summations over twice appearing Cartesian indices
α,β, . . . are implied here and below, for the sake of brevity.
Cartesian components of the quadrupole momentum operator

are

Q̂αβ =
∫

(3xαxβ − r̄2δαβ)ρ̂(r̄)d3x, (B3)

where ρ̂(r̄) is the operator of the charge density.
Let us consider some lasing transition between the upper

and lower lasing states |u〉 and |l〉. Supposing that the ion is
placed into the origin, we express the absolute value of the
coupling strength g(r̄) of the ion situated in r̄ as

g(r̄) = 2

h̄
|〈l,1|Ĥint|u,0〉| = g0 e

− r2⊥
w2

0 cos(k̄ · r̄), (B4)

where

g0 =
√

8πω

h̄ Veff

∣∣∣∣eαkβ

3
〈l|Q̂αβ |u〉

∣∣∣∣ (B5)

is the coupling coefficient for the ion placed on the cavity axis
in the antinode of the mode.

The quadrupole momentum Q̂ is the symmetric traceless
second-rank tensor, and its Cartesian components may be
expressed via the spherical components

Q̂2q =
√

4π

5

∫
r2ρ̂(r̄)Y2q

(
r̄

r

)
d3x (B6)

as

Q̂xx =
√

3

2
(Q̂22 + Q̂2−2) − Q̂20, (B7)

Q̂yy = −
√

3

2
(Q̂22 + Q̂2−2) − Q̂20, (B8)

Q̂zz = 2Q̂20, (B9)

Q̂xy = −i

√
3

2
(Q̂22 − Q̂2−2), (B10)

Q̂zx =
√

3

2
(Q̂21 − Q̂2−1), (B11)

Q̂zy = −i

√
3

2
(Q̂21 + Q̂2−1). (B12)

Now we should express the matrix elements of Q̂2q

via the rate γ of spontaneous transition. The states |a〉 =
|ηaJaIFama〉 (a = u or l) are characterized by principal
quantum numbers ηa , the electronic shell angular momenta Ja ,
the nuclear angular momentum I , the total angular momenta
Fa , and its projections ma . Then, according to the well-known
expression for the electric multipole spontaneous transition
rate [34] we can write

γ = ω5

15h̄c5

∑
Fl,ml

|〈ηuJuIFumu|Q̂2q |ηlJlIFlml〉|2. (B13)

Using the Wigner-Eckart theorem [35], we can express the
matrix element as

〈ηuJuIFumu|Q̂2q |ηlJlIFlml〉
= (−1)Fl+Ju+I−2

√
2Fl + 1 C

Fumu

Flml2q

×
{

Jl I Fl

Fu 2 Ju

}
〈ηuJu||Q̂2||ηlJl〉, (B14)
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where 〈ηuJu||Q̂2||ηlJl〉 is a reduced matrix element. Using the
properties of the Clebsch-Gordan coefficients and 6J symbols
[35] ∑

ml,q

(
C

Fumu

Flml2q

)2 = 1, (B15)

∑
Fl

(2Fl + 1)

{
Jl I Fl

Fu 2 Ju

}2

= 1

2Ju + 1
, (B16)

we obtain

〈ηuJu||Q̂2||ηlJl〉2 = 15h̄c5γ (2Ju + 1)

ω5
, (B17)

which gives

〈ηuJuIFumu|Q̂2q |ηlJlIFlml〉2

= (2Fl + 1)(2Ju + 1)
(
C

Fumu

Flml2q

)2

×
{

Jl I Fl

Fu 2 Ju

}2 15h̄c5γ

ω5
. (B18)

Let us calculate the coupling strengths g for the circularly
polarized cavity mode in the configuration shown in Fig. 1,
i.e., when ē = (iēy ± ēx)/

√
2 and k̄ = ēzω/c. Then

eαkβQ̂αβ = ω

c
√

2
(iQ̂yz ± Q̂xz) = ω

√
3

c
Q̂2±1. (B19)

Substituting Eq. (B19) into Eq. (B5), we obtain

g0 = ω

c
√

3

√
8πω

h̄ Veff
〈l|Q̂2±1|u〉. (B20)

One can see that transitions with mu − ml = ±1 can be
coupled with the cavity mode in such a configuration.

Let us suppose, for the sake of definiteness, that mu = ml .
Then

g2
0 = 40πc3γ

Veff ω2
(2Fl + 1)(2Ju + 1)

×
{

Jl I Fl

Fu 2 Ju

}2(
C

Fumu

Flml2±1

)2 = 5πc3γ

Veff ω2
�2

ul, (B21)

where �2
ul is given by Eq. (38).

APPENDIX C: HYPERFINE STRUCTURE OF 176Lu+ 3 D2

STATE AND SECOND-ORDER ZEEMAN SHIFT

The hyperfine structure of low-lying levels of 175Lu+ ions
(I = 7/2) was measured in Ref. [36]. In particular, it was found
that the energies of the hyperfine sublevels of the 3D2 state
grow as F increases from 3/2 to 11/2. The distances between
adjacent levels are 0.139, 0.210, 0.288, and 0.382 cm−1. Using
the standard expression for the hyperfine energy levels

Ehfs(F )

h̄
= Ahfs

K

2

+Bhfs

3
2K(K + 1) − 2I (I + 1)J (J + 1)

4I (2I − 1)J (2J − 1)

(C1)

where

K = F (F + 1) − J (J + 1) − I (I + 1), (C2)

we can fit the hyperfine constants as Ahfs,175 = 2π ×
1935 MHz, Bhfs,175 = 2π × 1388 MHz.

To estimate the hyperfine constants Ahfs,176 and Bhfs,176 for
the 3D2 state of the 176Lu+ ion, we can use the fact that Bhfs

is proportional to the nuclear quadrupole moment, and Ahfs is
proportional to the nuclear g factor gI = −μ/(IμB ), where μ

is the nuclear magnetic moment and μB is the Bohr magneton.
According to Ref. [37], nuclear quadrupole moments of

175Lu+ and 176Lu+ are 3415 and 4818 mb, respectively, which
gives Bhfs,176 = 2π × 1963 MHz. In turn, the magnetic mo-
ments are μ175 = 2.2327μN and μ176 = 3.162μN according
to Ref. [38], which gives Ahfs,176 = 2π × 1370 MHz.

In the presence of external magnetic field B̄, the hyperfine
energy levels experience a Zeeman splitting. Magnitudes of
the Zeeman shift may be found from the diagonalization of
the hyperfine-Zeeman Hamiltonian

Ĥ

h̄
= μB(gI

ˆ̄I + gJ
ˆ̄J ) · B̄ + Ahfs

ˆ̄I · ˆ̄J

+ 3Bhfs

4J (2J − 1)I (2I − 1)

×
[

2( ˆ̄I · ˆ̄J )2 + ˆ̄I · ˆ̄J − 2

3
ˆ̄I 2 ˆ̄J 2

]
, (C3)

where

gJ = gL

J (J + 1) − S(S + 1) + L(L + 1)

2J (J + 1)

+ gS

J (J + 1) + S(S + 1) − L(L + 1)

2J (J + 1)
(C4)

is the electronic Lande g factor. Taking gL = 1, gS =
2.002319043617, L = 2, S = 1, and J = 2, we find gJ ≈
1.16705. Also, gI ≈ −0.000246 for 176Lu+.

In weak magnetic field B̄ the Zeeman shifts �Z|F,mF =0〉(B)
of the states |F,mF = 0〉 are quadratic in |B̄|. We find

�Z|5,0〉(B)

2π |B̄|2 = −440.0
Hz

G2
,

�Z|6,0〉(B)

2π |B̄|2 = −15.19
Hz

G2
,

�Z|7,0〉(B)

2π |B̄|2 = 127.3
Hz

G2
,

�Z|8,0〉(B)

2π |B̄|2 = 166.3
Hz

G2
,

�Z|9,0〉(B)

2π |B̄|2 = 165.5
Hz

G2
. (C5)

In turn, the Zeeman shift �Z,0 of the state |1S0,m = 1〉
(playing the role of the lower lasing state in the scheme
considered in the main text) is determined by the nuclear
gyromagnetic ratio and is linear in the magnetic field:
�Z,0/Bz = −2π × 344.3 Hz/G.

The “magic” value Bm of the magnetic field is such a value
of the z projection of this field that the frequency difference
between the upper and the lower clock states (or lasing states in
our case) are insensitive in the leading order to the fluctuations
of this field. Magic fields can be easily found for various
transitions from the equating of the first derivatives of the
Zeeman shifts of the upper and the lower lasing states.
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