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Isotropic light versus six-beam molasses for Doppler cooling of atoms from background vapor:
Theoretical comparison

Stéphane Trémine* and Emeric de Clercq
LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06,

61 Avenue de l’Observatoire, 75014 Paris, France

Philippe Verkerk
Laboratoire de Physique des Lasers Atomes et Molécules, CNRS, Université Lille 1, 59655 Villeneuve d’Ascq, France

(Received 12 May 2017; published 9 August 2017)

We present a three-dimensional theoretical comparison between the radiation-pressure forces exerted on an
atom in an isotropic light cooling scheme and in a six-beam molasses. We demonstrate that, in the case of a
background vapor where all the space directions of the atomic motion have to be considered, the mean cooling
rate is equal in both configurations. Nevertheless, we also point out what mainly differentiates the two cooling
techniques: the force component orthogonal to the atomic motion. If this transverse force is always null in the
isotropic light case, it can exceed the radiation-pressure-force longitudinal component in the six-beam molasses
configuration for high atomic velocities, hence reducing the velocity capture range.
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I. INTRODUCTION

Laser cooling of neutral atoms in redshifted monochromatic
isotropic light was initially proposed by Wang [1] to decelerate
atoms from a thermal beam, and then demonstrated experi-
mentally by Ketterle et al. [2] and Batelaan et al. [3]. Both
experiments consist of a thermal beam passing through a tube
made of spectralon R© [4] (a material with a diffuse reflectivity
R ∼ 99%) into which laser light was coupled using multimode
optical fibers in order to build the required isotropic field.
This cooling technique has also been demonstrated by Wang
et al. [5,6] using a thermal beam going through an integrating
sphere made of copper, with a diffusive MgO coating on the
inner surface of the cavity. This atom-slowing scheme was an
elegant alternative to Zeeman slowing [7], chirped slowing [8],
or white-light slowing [9,10] used to compensate the Doppler
shift variation as the atoms decelerate, in order to maintain a
maximum effectiveness of the cooling forces.

The authors of Refs. [2,5] also suggested that isotropic
light cooling (ILC) could be used to produce optical molasses
as an attractive alternative to the celebrated technique using
three orthogonal pairs of counterpropagating collimated laser
beams [11]. In this case, and when applied on a background
gas as in Ref. [12], ILC was even expected by Ketterle et al.
to be more effective than the standard six-beam configuration
[2]. This expectation was based on a theoretical comparison of
both configurations, showing that the cooling rate in isotropic
light should be higher than in a six-beam molasses (SBM)
for atomic velocities v > �/k (� and k being the natural line
width of the atomic transition implied in the cooling process
and the wave vector norm of the cooling light, respectively),
when calculated for the same laser light detuning � and photon
density.

ILC of an atomic vapor was first demonstrated by Aucou-
turier et al. [13] by enclosing a vapor cell in a cavity made
of spectralon R©, and then using cavities made of copper with
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polished inner surfaces reaching reflective coefficients as high
as 96% [14]. This cooling technique allows the conception
of compact and robust sources of cold atoms for spectroscopy
applications or sensors. Some high-performance atomic clocks
based on ILC are already in development [15–18].

Here we pursue, in the case of a background atomic gas,
the theoretical comparison initiated by Ketterle et al. between
collimated-beam and isotropic-light three-dimensional laser
cooling [2]. Although it is now well known that some
sub-Doppler cooling mechanisms occur in ILC schemes also
[13,14,19], we restrict the present study to the Doppler cooling
process, which is the first to be involved in the atoms capture
from the low tail of the Maxwell-Boltzmann distribution. The
cooling radiation-pressure force expressions in both SBM
and ILC configurations are briefly reviewed in Sec. II in
the context of the two-level atom model, while considering
plane waves and low laser intensities. We distinguish the
longitudinal force, along the atomic motion, and the transverse
force, perpendicular to it. The magnitude of both components,
and their mean values (averaged over all space directions), are
addressed in Sec. III for both configurations. The computations
are performed in the case of a Cs atom. In this paper, our aim is
to point out the specificities of each cooling scheme in the case
of a background vapor, in which all the directions of the atomic
velocity vector v are represented, as opposed to the thermal
beam case.

II. 3D RADIATION-PRESSURE FORCE EXPRESSIONS

According to the Doppler cooling theory [20], the average
radiation-pressure force exerted on a two-level atom irradiated
by a laser beam that is assumed to be a plane wave of angular
frequency ω and wavelength λ is given by

F = �

2

s

1 + s
h̄k, (1)

where k is the wave vector related to the plane wave
(k = 2π/λ) and h̄ is the reduced Planck’s constant. s is
the generalized saturation parameter, taking into account the
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Doppler shift, defined by

s = s0

1 + 4(� − k · v)2/�2
with s0 = 2�2

R

�2
= I

Is

, (2)

s0 being the on-resonance saturation parameter, with �=ω −
ω0 the detuning of the light-wave frequency ω relatively to
the atomic transition frequency ω0, �R the Rabi frequency
associated to the laser intensity I , and Is the saturation
intensity related to the atomic transition involved in the cooling
process. It is worth noting that the radiation-pressure force
(1) is always in the direction of propagation of the light and
reaches a maximum when the laser detuning counterbalances
the Doppler shift such as

� = ω − ω0 = k · v. (3)

Due to the stochastic nature of the spontaneous emission
process that follows each photon absorption, the associated
recoil suffered by the atom will be considered to be null
on average, assuming that enough absorption-emission cycles
occur during the atom-light interaction. The diffusion of the
atom momentum will not be tackled here.

A. Six-beam configuration

We now consider the case of two identical but counter-
propagating laser beams, along the x axis, of wave vectors
kx and −kx. We suppose equal intensities and an optically
thin medium, so that the laser intensities can be considered
constant. Assuming that the two waves act independently
on the atoms (which is valid only at low saturation param-
eters s0 � 1), then the average total radiation-pressure force,
collinear to the laser beams, is simply given by the addition of
both separate forces [20]:

F1D
x = F+

x êx + F−
x êx, (4)

where F±
x refers to the force (1) for the ±kx wave, and êx is

the unit vector of the x axis.
Expression (4) gives a very good approximation of the

real radiation pressure force undergone by the atoms in
one-dimensional (1D) optical molasses [21]. However, this
simple calculation does not take into account the coherent
redistribution of photons from one wave to the other and/or
any saturation effect due to the second wave. Thus, the
generalization of the method used in Eq. (4) to a three-
dimensional (3D) configuration restricts its validity to very low
saturation parameters (s0 � 1). Then the average radiation-
pressure forces exerted on an atom by three orthogonal
standing waves (3D optical molasses) can be linearly added
[22,23]; the resulting force is

F3D
col = F1D

x + F1D
y + F1D

z , (5)

where the x, y, and z axes are defined by the three orthogonal
standing-wave directions as shown in Fig. 1, drawn by vectors
êx, êy , and êz, respectively. Here the laser beams are supposed
to be of equal intensities. We define a global saturation
parameter for this cooling scheme, relative to the full light
intensity, given by

Scol = 6 × s0. (6)

FIG. 1. 3D representation of the rectangular Cartesian coordinate
system showing the conventions used in the paper. The cooling beams
of the SBM configuration, which are supposed to be plane waves and
thus having an infinite diameter, are here represented by large red
(dark gray) arrows. The direction followed by the atom relatively to
the beams is defined by the angles η and ψ . As we mainly consider
the velocity space in this paper, the atom position is unimportant in
this scheme and should be at the origin. Here the atom is moved
off-center for a better view. An example is given of vectors êl and
êt along which the longitudinal and transverse components of the
radiation-pressure force are directed respectively.

Each standing-wave set exerts a force on the atom, along the
laser-beam direction. The resulting force of the three standing
waves can be of any direction according to the direction of the
atomic motion and its velocity. For the incoming comparison
between different cooling configurations (see Sec. III), it will
be useful to express F3D

col as a function of its longitudinal
component F (l)

col, collinear to the atomic motion, and its
transverse component F (t)

col, orthogonal to the atomic motion,
drawn by vectors êl and êt , respectively (see Fig. 1), as

F3D
col = F (l)

colêl + F (t)
colêt . (7)

Indeed, we will show in Sec. III B that, in the SBM scheme
and at high atomic velocities, most of the force magnitude can
be exerted in the plane transverse to the atomic motion.

B. Isotropic light configuration

In the isotropic light cooling scheme, we consider that
the cavity into which the laser light is coupled generates an
homogeneous light field of angular frequency ω, where all
the photons directions are evenly represented. ω is assumed
to be red detuned. In order to fulfill the Doppler resonance
condition given by Eq. (3), an atom of resonance frequency ω0

will preferentially absorbs photons in the direction of angle θ

such as cos θ = −�/(kv), i.e., belonging to a cone in 3D space
as illustrated in Fig. 2. In the ILC configuration, for velocities
v � |�|/k, there are always photons to satisfy the resonance
condition. As the atom slows, the cone angle closes, being fully
closed for v = |�|/k. Then, considering the natural line width
of the cooling transition, only some off-resonance absorptions
will occur.

Let us consider that the light traveling in the solid angle
δ� around the wave vector kθ,ϕ (such as ‖kθ,ϕ‖ = k, and
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FIG. 2. Auto-adaptation of the resonance condition for an atom
with velocity v in presence of isotropic light. When the atom slows due
to the absorption of photons with wave vectors k, the cone fulfilling
the Doppler resonance condition closes, being fully closed for
v = |�|/k.

whose direction is defined by the angles θ and ϕ relatively
to the atomic motion; see Fig. 2) acts as a single plane wave
of intensity δI . Then, using expression (1) for low saturation
parameters, we can express the elementary radiation-pressure

force δF exerted by this wave as

δF (θ,ϕ) = �

2
δsh̄kθ,ϕ = δF (l)êl + δF (t)êt , (8)

where δF (l) and δF (t) are the longitudinal and transverse
components of the elementary force, respectively. δs = sθ δ�

is the saturation parameter associated with the considered
wave, where sθ = s̃0/[1 + 4(� + kv cos θ )2/�2]. The total
mean force Fiso exerted by an ILC scheme on an atom of
velocity v is then obtained by adding the elementary forces
exerted in each space direction as

Fiso =
∫∫

δF (θ,ϕ). (9)

Due to rotational symmetry properties, the integration on ϕ in
Eq. (9) eliminates the transverse component of the mean force,
which leads to

Fiso = F (l)
iso = 4πs̃0 × h̄k

�

2

(
�2

16k2v2

){
ln

[
1 + 4(�− kv)2/�2

1 + 4(�+ kv)2/�2

]
+ 4�

�

[
arctan

(
2(� + kv)

�

)
− arctan

(
2(� − kv)

�

)]}
.

(10)

As previously mentioned in Sec. II A, adding the elementary
forces as in Eq. (9) will restrict the use of expression (10)
to very low saturation parameters. Since the transverse com-
ponent of Fiso is null, the ILC scheme allows a deceleration
that is always antiparallel to the atomic motion, whatever its
direction, as opposed to other cooling schemes.

For the comparisons to come, and as done previously for
the SBM configuration [see Eq. (6)], we need to define a
global saturation parameter for the ILC scheme. The saturation
parameter at resonance s̃0 introduced previously for a wave
of direction given by angles θ and ϕ can also be written as
s̃0 = dSiso/d�, where dSiso is the global saturation parameter
at resonance for waves contained in the solid angle d�. The
cooling field isotropy then leads to

Siso = 4πs̃0. (11)

III. THEORETICAL COMPARISON OF THE TWO
COOLING CONFIGURATIONS

We now compare both configurations considering sepa-
rately the component of the radiation-pressure force collinear
to the atom’s velocity (responsible of the cooling) and the
transverse component. Here we mainly study the spacial
properties of the radiation-pressure force, i.e., the force
magnitude as a function of the direction of the atomic motion.
These 3D comparisons also bring us to 1D comparisons,
in which we are led to consider mean values of the force
components in the SBM case, averaged over all possible
atomic incidences relatively to the beams. The relative capture
efficiency of the two cooling schemes is then discussed. The
computations are performed for the D2 line of a Cs atom (i.e.,
λ = 852.35 nm and �/2π = 5.22 MHz), for a red detuning
� = −2� and saturation parameters Siso = Scol = 0.1.

A. Longitudinal component

We first proceed to a 1D comparison of the two cooling
configurations; we provide in Fig. 3 the variations of the
radiation-pressure-force longitudinal components defined in
Eqs. (7) and (10) (here given in units of ½ h̄k�), as a function
of the velocity, for an atom moving along an arbitrary space
direction. In order to point out general properties, we restrain
this 1D comparison to both extrema, i.e., at low and high
velocity only. Making relevant comparisons in the intermediate

FIG. 3. Magnitude of the radiation-pressure-force longitudinal
component exerted along an arbitrary direction (here η = ψ = π/4;
see Fig. 1) vs atomic velocity, in a SBM configuration (orange or light
gray solid line) and in an ILC configuration (blue or dark gray solid
line). The linear approximation of both forces at low velocity given
by Eq. (12) is shown with a purple dashed line, while at high velocity,
the Taylor series expansions of F (l)

col [Eq. (13)] and F (l)
iso [Eq. (14)]

are plotted with dotted orange (light gray) and blue (dark gray) lines,
respectively. The calculations are performed for a detuning � = −2�

and saturation parameters Scol = Siso = 0.1.
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velocity range requires a 3D point of view that we give in the
next paragraph. One can first observe that, at low velocity,
both forces merge. Indeed, for |kv| � |�| and |kv| � �,F (l)

col
and F (l)

iso can be reduced to the same linear approximation:

F (l) ∼ −αv with α = −4h̄k2

(
S

6

)
(2�/�)

[1 + (2�/�)2]2
,

(12)

where S must be replaced by the appropriate global saturation
parameter Scol or Siso. On the other hand, at high velocity, the
two forces behave differently, F (l)

col decreasing faster than F (l)
iso.

This is confirmed by the following Taylor series expansions

of both forces at v → ∞ up to the fifth order [valid only when
η and ψ differ from 0 mod π/2 in case of Eq. (13)]:

F (l)
col ∼ 6s0 × h̄k

�

2

[
�2�

6k3

(
4

sin2 η sin2(2ψ)
+ 1

cos2 η

)]
1

v3
,

(13)

F (l)
iso ∼ 4πs̃0 × h̄k

�

2

[
v

|v|
(

π��

4k2

)
1

v2
−

(
�2�

2k3

)
1

v3

]
, (14)

the first term ofF (l)
col being in v−3, while it is in v−2 forF (l)

iso. This
slower decrease at high velocity of the radiation-pressure-force
longitudinal component in the ILC scheme can be explained

FIG. 4. Magnitude of the radiation-pressure-force longitudinal component exerted by a SBM configuration on an atom with velocity v, as a
function of the atomic incidence relatively to the six beams. The force has been normalized to the one calculated in isotropic light for the same
cooling parameters (F (l)

col/F (l)
iso). Cooling beams, respectively directed along ±x,±y, and ±z, are represented by large red (dark gray) arrows

in panel (a). The calculations are performed for an optical detuning � = −2�, saturation parameters Scol = Siso = 0.1 and the values of |v|
indicated on each graph.
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by referring to Fig. 2. Indeed, in such a configuration and as
previously mentioned in Sec. II B, there are always photons sat-
isfying the resonance condition given by Eq. (3) for atoms with
velocities |v| � |�|/k (whatever the direction of the atomic
motion). However, in the SBM configuration, for a given veloc-
ity value, there will be only a few space directions along which
the moving atom will encounter resonant photons, these direc-
tions being the ones for which the cone described in Fig. 2 co-
incides with at least one beam. In other words, for a given space
direction of a SBM configuration (as in Fig. 3) and for veloc-
ities such as |v| > |�|/(k cos θ ), atoms will absorb light only
off resonantly. Actually, this is this difference between the two
cooling schemes that made the authors of Ref. [2] suggest that
ILC could be more effective than the usual SBM configuration,
since the capture range should be extended in the ILC case.

The following paragraph is dedicated to a 3D comparison
of the two cooling schemes. First, it has to be mentioned
that in the ILC configuration the magnitude of the radiation-
pressure force F (l)

iso, is independent of the atom direction. A
3D representation of the force magnitude as a function of the
direction would lead to observe a perfect sphere. We show
in Fig. 4 the magnitude of the longitudinal component of the
radiation-pressure force exerted by a six-beam molasses on
an atom of velocity v, as a function of the atomic incidence
relatively to the cooling beams. On these graphs, the distance
from a point to the origin gives the magnitude of the force
component for an atom following the direction defined by this
point and the origin. The graphs are computed for different
values of the atomic velocity v ranging from 1 to 80 m s−1.
In order to compare the two cooling schemes, the magnitude
of the force component is normalized to the magnitude of the
isotropic-light force F (l)

iso. For low-enough velocities such as
|kv| � |�| (i.e., v � 0.1 × 2�/k ∼ 1 m s−1), and according
to the resonance condition of Eq. (3), the magnitude of the
longitudinal force is almost independent of the angle θ between
the atom’s motion and the light field direction. The force
calculated in the SBM case is thus equal to the one calculated
for an ILC configuration in the same conditions [see Eq. (12)].
That is why we observe a sphere with a unit radius in Fig. 4(a).
Then, for v ∼ |�|/k (∼9 m s−1), the aperture of the cone of
resonance shown in Fig. 2 being almost null, the atoms mainly
absorb photons having the same direction as v. This leads
to a maximum of the longitudinal force along the beams’
axes of the SBM configuration, as observed in Fig. 4(b).
For v = 13 m s−1 [see Fig. 4(c)], the resonance condition is
fulfilled when θ ∼ π/4, which leads to a force maximum along
the diagonals of the planes defined by two pairs of beams.
Indeed, in this case, when following the (1,1,0) direction,
for example, the atoms can resonantly absorb photons from
two orthogonal beams. For v = 16 m s−1 [see Fig. 4(d)],
the resonance condition is fulfilled for cos θ ∼ 1/

√
3. Hence,

the maximum amplitude of F (l)
col will be reached along the

system’s diagonals, allowing the atoms to resonantly absorb
photons from three orthogonal beams, as along the (1,1,1)
direction, for example. At first glance, the last two graphs
of Fig. 4 seem harder to interpret due to the many occurring
resonances. When looking carefully at Figs. 4(e) and 4(f), we
can distinguish four maxima around each beam direction, i.e.,
24 in total, these maxima getting closer to the beams’ axes
when the velocity is increased from 40 to 80 m s−1. This can

FIG. 5. Cooling rate vs atomic velocity in an ILC configuration
(Fiso · v; blue or dark gray solid line) and in a SBM configura-
tion (F 3D

col · v; gray dotted lines) with laser beams along the ±x,

±y, and ±z directions and v along the (1,0,0), (1,1,0), and (1,1,1)
directions. The mean cooling rate F 3D

col · v has also been plotted (◦);
see Eq. (15). The calculations are performed for a detuning � = −2�

and saturation parameters Scol = Siso = 0.1. The indicators (a) to (f)
indicate the velocity values for which the panels in Fig. 4 have been
calculated.

be interpreted by pursuing the previous reasoning. Indeed, if
we now consider the limit v → ∞, Eq. (3) leads to θ → π/2,
which means that the cone of resonance is fully opened. In that
case, an atom moving along the beams’ axes should be able
to resonantly absorb photons from up to four different beams.
But meanwhile, the magnitude of the longitudinal force tends
to 0 and makes this case unreachable in theory. Nevertheless,
the maxima observed in Figs. 4(e) and 4(f) are effectively due
to the absorption of photons in four different beams, but off
resonantly. Indeed, as pointed out in Sec. II B, the resonance
condition is not as restrictive as given by Eq. (3). Actually,
the cone shown in Fig. 2 has a non-null thickness given by a
Lorentzian distribution law with a FWHM equal to �, allowing
atoms moving along directions slightly shifted compared to the
ideal cases described so far, to fulfill the resonance condition
with one, two, three, or four beams simultaneously.

We now compare both configurations in term of cooling
rates, i.e., regarding the energy loss per atom and per unit
of time given by dE(v)/dt = F (v) · v. In the case of the
SBM configuration, we have first computed the cooling
rates’ variations as functions of the atomic velocity for the
three specific directions (1,0,0), (1,1,0), and (1,1,1); see
Fig. 5. Such a comparison has already been made by Ketterle
et al. [2]. Assuming that, for velocities v > |�|/k, the most
favorable direction lies symmetrically between the three pairs
of laser beams of a SBM [the (1,1,1) direction, for example],
the authors of Ref. [2] concluded that the ILC scheme had a
much faster cooling rate than SBM at high velocity, resulting
in a larger velocity capture range, as can be observed in
Fig. 5 for v � 24 m s−1. As a consequence, isotropic light was
expected to be more efficient at cooling an atomic vapor than
the SBM configuration. Nevertheless, these conclusions were
too fast. Actually, the graphs of Fig. 4 illustrate that the most
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favorable direction only lies symmetrically between the three
pairs of laser beams of a SBM for a given value of the atomic
velocity [see Fig. 4(d)]. In other words, the radiation-pressure
force reaches a maximum for some atomic directions relative
to the cooling beams, but these favored directions depend
on the atomic velocity v, the optical detuning �, and the
saturation parameter Scol. These directions are not always the
particular cases (1,0,0), (1,1,0), and (1,1,1) [see Figs. 4(e) and
4(f)].

In the case of a background vapor and a SBM configuration,
where all atomic incidences relatively to the six beams are met
with the same probability, we find more relevant to evaluate
a mean cooling rate, i.e., a cooling rate averaged over all
space directions of the atomic motion, to be compared with

the ILC case. This mean cooling rate, reported in Fig. 5, is
given by

F3D
col · v = v

4π

∫ 2π

0

∫ π

0
F (l)

col sin η dη dψ, (15)

where η and ψ are the polar and azimuthal angles, respectively,
defining the direction followed by the atom in the spherical
coordinate system (see Fig. 1). We can observe that this mean
cooling rate is not only higher than the one calculated for the
(1,1,1) direction for v � 24 m s−1, but is also strictly equal to
the cooling rate calculated for the ILC configuration on the full
range of velocities between 0 and 80 m s−1. This result is not
as surprising as it could seem. Indeed, the mean cooling rate

FIG. 6. Magnitude of the radiation-pressure-force transverse component exerted by a SBM configuration on an atom with velocity v, as a
function of the atomic incidence relatively to the six beams. As in Fig. 4, the force has been normalized to the isotropic-light force (F (t)

col/F (l)
iso).

The calculations are performed for an optical detuning � = −2�, saturation parameters Scol = Siso = 0.1, and the values of |v| indicated on
each graph.
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given by Eq. (15) in the case of a SBM configuration could
also be written as six times the mean cooling rate evaluated for
one beam only. In such a calculation, the reference direction
is given by the beam itself, and the average is performed
on all possible atomic incidences relatively to this beam. In
a reverse way, when evaluating the cooling rate in the ILC
case, the atomic direction is taken as the reference direction,
and the average is performed on all possible wave incidences
[see Eq. (9)]. A straightforward calculation finally shows that
both cooling rates are equal when s̃0 = 6s0/4π , i.e., when
Siso = Scol.

B. Transverse component

Figure 6 shows the 3D variations of the magnitude of the
radiation-pressure-force transverse component exerted by a
six-beam molasses on an atom of velocity v, in the same
conditions as in Fig. 4. We recall that, without consideration
of the recoil induced by spontaneous emissions, there is
no transverse force in the ILC configuration for all atomic
velocities. To compare the force magnitudes, here also the
magnitude of the transverse force calculated for a SBM
configuration is normalized to the isotropic-light force F (l)

iso. In
order to interpret the graphs of Fig. 6, we can first point out the
specific cases for which the force transverse component F (t)

col is
null in a SBM. For an atom moving along an arbitrary direction,
the transverse force is directed along a given direction. But
if we consider an atom moving along one of the rotational
symmetry axis of the system, and if we apply a rotation
that leaves the system unchanged, then the direction of the
force transverse component should rotate accordingly. The
only force that can be directed in more than one direction
being obviously null, we deduce that F (t)

col = 0 along all the
rotational symmetry axis (of second, third, and fourth order)
of the system. For example, this can be guessed along the
(1,0,0), (1,1,0), and (1,1,1) directions on most of the graphs
of Fig. 6. If we now compare the graphs of Figs. 4 and 6 for
increasing atomic velocities, we first note that for low-enough
velocities such as |k · v| � |�| [see Figs. 4(a) and 6(a) while
noting the difference in scale], the force transverse component
is very weak in comparison to the longitudinal component.
Indeed, in this case, the radiation-pressure forces exerted by
the six beams on an atom being almost independent of the
incidence angle θ (see Fig. 2), and thus having about the
same amplitude, they almost compensate each other in the
plane transverse to the atomic motion. On the other hand,
for high velocities [see Figs. 4(f) and 6(f), for example]
and for particular directions, one can note that most of the
radiation-pressure force is exerted in the plane transverse to
the atomic motion. This is expected, since the higher is v, the
larger is the top angle θ of the cone to which belong the photons
fulfilling the resonance condition given by Eq. 3 (see Fig. 2).
This can also be observed when comparing the variations of

F (l)
col and F (t)

col for increasing velocities (see Fig. 7), where
we remind that the upper bar on the radiation-pressure-force
components denotes an average over all possible atomic
incidences relatively to the six beams.

From Sec. III A and the previous paragraph, we now
understand that it is not possible to restrict the comparison

FIG. 7. Mean value of the radiation-pressure-force transverse

component (F (t)
col, solid line) vs atomic velocity in a SBM con-

figuration. The mean value of the longitudinal component (F (l)
col,

dashed line) has also been reported for reference. The calculations
are performed for an optical detuning � = −2� and a saturation
parameter Scol = 0.1.

between the ILC configuration and the SBM to a given
direction of the atomic incidence, or even to the longitudinal
component of the radiation-pressure force. On the one hand,
we have shown that, for a six-beam molasses configuration, the
direction along which the radiation-pressure force reaches a
maximum fully depends on the considered value of the atomic
velocity (see Fig. 4). On the other hand, we have highlighted
what mainly differentiates the two cooling configurations:
the transverse component of the radiation-pressure force (see
Fig. 6). Indeed, if the force transverse component is always
null in isotropic light, it can become the main component of
the force exerted in a six-beam molasses for atoms with high
velocities, as observed in Fig. 7 for v > 18 m s−1. In the SBM
case, the existence of this transverse component will lead to an
increase of the atomic-trajectories length during the cooling
process, when compared to the ILC case. This specificity of
the SBM configuration will limit, for a given capture volume,
the Doppler capture velocity to a lower value than the one
expected in the ILC case. This is illustrated in Fig. 8, where
we have reported the distance d̄ needed for an atom with
initial velocity vi to be decelerated to vf = 1 m s−1, for
both cooling configurations. The computations are performed
by solving the equations of motion for an atom undergoing
the radiation-pressure forces given by Eqs. (5) and (10),
respectively. vf = 1 m s−1 has been chosen as a typical value
of the capture velocity for the sub-Doppler cooling processes
[24] (not taken into account in this paper). In the case of
the SBM configuration, the distance d has been averaged
over all possible directions of the vector vi. Due to the low
saturation parameters used for our calculations, the distances
obtained here are significantly higher than the ones observed
in conventional cooling experiments (for the same velocity
range as considered in Fig. 8 and saturation parameters on the
order of 10, d̄ is usually of few centimeters). Nevertheless,
Fig. 8 clearly shows that if both schemes are equivalent at low
velocity (here below 7 m s−1), the distance needed to decelerate
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FIG. 8. Mean distance needed for an atom with initial velocity
vi to be decelerated to vf = 1 m s−1, when undergoing the radiation-
pressure forces exerted in an ILC configuration (blue or dark gray
solid line) or in a SBM (orange or light gray dashed line). The
calculations are performed for an optical detuning � = −2� and
saturation parameters Scol = Siso = 0.1.

the atoms from vi to vf increases faster at high velocity in the
SBM case. Therefore, less atoms should be cooled from the low
tail of the Maxwell-Boltzmann distribution, when compared
to the ILC case.

Here we can finally reveal an interesting feature from Figs. 4
and 6. Indeed, if we consider the load of a 3D optical molasses
with a two-dimensional (2D) Magneto-Optical-Trap (MOT),
the direction of injection of the cold atom beam would not
matter in case of use of an ILC scheme. On the other hand, it
seems that it should matter for a SBM configuration. Thus, for
given values of the saturation parameter and detuning of the
molasses beams, and for a given mean velocity of the cold atom
beam, the 2D MOT should be oriented in a specific direction
relatively to the molasses beams in order to maximize the
longitudinal component of the cooling force, while minimizing
its transverse component (i.e., preferentially along one of the
rotational symmetry axis of the configuration).

IV. CONCLUSION

We have reviewed the expressions of the light-pressure
forces at low saturation in a six-beam molasses and in an
isotropic light cooling configuration. The spatial properties of
the forces, i.e., their magnitude with respect to the direction
of the atomic motion, have been investigated in the case of
a thermal vapor. Naturally, in the ILC case the longitudinal
force (or the related cooling rate) is direction independent.
In SBM, on the contrary, there are directions where the
force (or cooling rate) can be larger or smaller than in
isotropic light. These directions depend on the atomic velocity
magnitude. Nevertheless, assuming that cooling rates averaged
over all directions are more representative in the case of
a background gas, we have shown that the mean cooling
rates are equal in both cases. A maximum is reached for
velocity v ∼ |�|/k, followed by a slow decrease for increasing
velocities. On the other hand, the two cooling schemes highly

differ when considering the force component transverse to
the movement. There is no transverse force for an ILC
configuration (remember that, in this paper, we do not take
into account the transverse momentum spreading induced
neither by spontaneous emission nor by stimulated emission
[25]). In SBM, a transverse force exists, direction and velocity
dependent. When averaged over all possible atomic incidences
relatively to the six beams, the related mean value of this
transverse force first mainly increases with v, becoming larger
than the longitudinal component of the force for velocities
higher than v ∼ 2|�|/k. Then follows a decrease which is
slower than the one observed for the longitudinal component,
leading to a force exerted essentially in the plane transverse to
the atomic motion at high velocity. Finally, we have computed
the mean distance needed to slow an atom from the background
vapor close to sub-Doppler capture velocities (∼1 m s−1) in
both configurations, pointing out that the force transverse
component met in the SBM case should lead us to observe
smaller Doppler capture velocities than in the ILC scheme.

Although the ILC configuration tolerates only pretty small
apertures in the diffusive (or reflective) cavity around the
vapor cell, which can restrict its applications, it has several
advantages. It can be easier to implement on a 3D cooling
experiment than the SBM configuration, and much easier if one
looks for large-scale cold atomic samples [26]; it is expected to
be more robust (not subject to beam misalignments or intensity
imbalances), and it should also be less power-consuming
owing to the recycling of cooling light by the cavity. As
in Ref. [5], we have considered in this paper that the light
field generated by the cavity used in the ILC scheme was
isotropic and homogeneous at a macroscopic scale, i.e., on the
whole cavity volume. Only intensity inhomogeneities along
the tube axis have been considered in Refs. [2,3,25], ignoring
the existence of a peaked intensity profile along the tube
(or sphere) radius [27,28]. The existence of such intensity
inhomogeneities in the ILC configuration deeply affects the
cooling performances that can be expected. Furthermore, the
presence of the diffusive (or reflective) cavity induces also
a recycling of the fluorescence light emitted by the atoms,
a part of which is blueshifted [29]. One could expect this
light to compromise the cooling process. Nevertheless, many
experiments (including ours) have already demonstrated the
efficiency of the ILC scheme applied to a background vapor
[13–18], showing that the fluorescence light does not prevent
the cooling. In a forthcoming publication, we will discuss
the role of the intensity inhomogeneities and of the recycled
fluorescence in altering the cooling process.

It would be interesting to bring the theoretical comparison
presented in this paper to the domain of high saturation
parameters (such as Scol = Siso = 10, for example, a value
that is more commonly met in practice), to see if the expected
superiority of ILC versus SBM still holds. The diffusion of
the atom momentum should then be considered, since it has
been shown that extra transverse diffusion is expected in the
ILC configuration due to stimulated emission [25]. Moreover,
the highest probability for multiphoton processes in these
conditions would imply that we should consider multilevel
atoms with at least three Zeeman sublevels for the ground state
and five Zeeman sublevels for the exited state. Indeed, if the
Doppleron resonances [30] that occur at high intensity (deeply
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altering the shape of the radiation-pressure force versus atomic
velocity) can even be met in the two-level atom model [21],
they start to compete with even-order multiphoton transitions
(responsible of sub-Doppler cooling) from the (3+5)-level
atom model [31]. Even if the cooling field is assumed to be
homogeneous at a macroscopic level for both configurations,
the field properties at the microscopic scale would have to
be considered for the calculations. These field properties
would then depend, on the one hand, on the phase difference
between the cooling beams for a SBM configuration, and on
the other hand, on the roughness of the cavity inner surface
that generates a speckle field in the ILC case. However,

considering a multilevel atom moving in such laser fields with
multidimensional periodicity [32] will make the task difficult.
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