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We study the question of existence, i.e., stability with respect to dissociation of the spin-quartet permutation- and
reflection-symmetric 4(−3)+g (Sz = −3/2,M = −3) state of the (ααeee) Coulomb system: the He2

+ molecular
ion, placed in a magnetic field 0 � B � 10 000 a.u. We assume that the α particles are infinitely massive
(Born-Oppenheimer approximation of zero order) and adopt the parallel configuration, when the molecular axis
and the magnetic field direction coincide, as the optimal configuration. The study of the stability is performed
variationally with a physically adequate trial function. To achieve this goal, we explore several helium-containing
compounds in strong magnetic fields, in particular; we study the spin-quartet ground state of the He− ion and
the ground (spin-triplet) state of the helium atom, both for a magnetic field in 100 � B � 10 000 a.u. The main
result is that the He2

+ molecular ion in the state 4(−3)+g is stable towards all possible decay modes for magnetic
fields B � 120 a.u. and with the magnetic field increase the ion becomes more tightly bound and compact with a
cigar-type form of electronic cloud. At B = 1000 a.u., the dissociation energy of He2

+ into He− + α is ∼702 eV
and the dissociation energy for the decay channel to He + α + e is ∼729 eV, and both energies are in the energy
window for one of the observed absorption features of the isolated neutron star 1E1207.4-5209.

DOI: 10.1103/PhysRevA.96.023410

I. INTRODUCTION

It seems obvious that the chemical composition of the atmo-
sphere of a magnetic white dwarf or a magnetized neutron star
cannot be established as long as we lack reliable information
about the behavior of many-body Coulomb systems, especially
about simple molecules and atoms in the presence of strong
magnetic fields. So far, only hydrogen- and helium-like atomic
systems, and H2

+-type molecular systems, have been studied
to a certain depth. There are indications that in addition to
traditional atoms and molecules, other nonstandard, exotic
atomic and molecular systems can also exist in strong magnetic
fields (see, for example, Refs. [1,2]). In a recent discovery [3],
it was found that even the He− atomic ion becomes stable
for magnetic fields B � 0.13 a.u. with the spin doublet state
2(−1)+ as ground state at first, and then for B � 0.74 a.u. all
electron spins get aligned and antiparallel to a magnetic field
direction: The corresponding state 4(−3)+ becomes the ground
state of the system (see also Ref. [4]). It happens in spite of the
fact that helium belongs to the most inert (closed-shell) atomic
systems. Needless to say, helium has a rich chemistry even in
the absence of intense magnetic fields (see, e.g., Ref. [5]).

Usually, investigations of the Coulomb systems in strong
magnetic fields (unreachable in the laboratory) are justified by
the fact there exists a strong magnetic field on the surface
of many neutron stars B ∼ 1011–13 G and of some highly
magnetized white dwarfs B ∼ 108–9 G; see, e.g., Ref. [6]. In
general, magnetic fields can reach B ∼ 1015 G, or even higher,
in the case of the so-called magnetars, the neutron stars with
anomalously large surface magnetic fields. While there is the
evidence for the presence of helium in the atmosphere of
magnetic white dwarfs [7], there is no similar understanding
about helium in any form in atmospheres of neutron stars or
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their chemical content in general that can satisfactorily explain
the observations.

The discovery of absorption features at ∼0.7 and ∼1.4 keV
in the x-ray spectrum of the isolated neutron star 1E1207.4-
5209 by Chandra X-ray Observatory [8] and its further confir-
mation by XMM-Newton X-ray Observatory [9] motivated us
to perform studies of atoms and molecules in a strong magnetic
field. At present, there is a number of neutron stars whose
atmospheres are characterized by absorption features: All of
them are waiting to be solidly explained. These observations
make clear that a detailed study of traditional atomic-molecular
systems is needed, as well as for a search for new exotic
chemical compounds which exist in a strong magnetic field
only (see, e.g., Refs. [10–13]).

As a result of such investigations, a model of the
helium-hydrogenic molecular atmosphere of the neutron star
1E1207.4-5209 was proposed which is based on the assump-
tion that the most abundant components in the atmosphere
are the exotic molecular ions He2

3+ and H3
2+, with the

presence of He+,(HeH)2+,H2
+ subject to a surface magnetic

field ≈4.4 × 1013 G (see Ref. [14]). Conjectures about the
absence of hydrogen envelopes in some neutron stars have
also motivated the study of atmospheres composed of neutral
helium. However, those simple models appear to be in conflict
with observations. Models of atmosphere, composed with
a large abundance of molecular systems containing helium,
have been later suggested (see Refs. [14,15] and references
therein). For reasons which are not completely clear to the
present authors, it has been emphasized [15] that the He2

+

molecule has to play a particularly important role. This
molecular system exists in a field-free case in the spin-doublet,
nuclei-permutation-antisymmetric (u), reflection-symmetric
(with respect to any plane containing the internuclear axis) (+)
ground state 20+

u [16], usually denoted as 2�+
u . It is a rather

compact system characterized by a small dissociation energy
∼2.5 eV into He+(2S) + He(1S), see Table I. The lowest
spin-doublet, nuclei-permutation-symmetric (g) excited state
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TABLE I. He2
+, field-free case: First row → energy and

equilibrium distance (�) for the ground state 2�u and excited state
2�g calculated with a trial function (9). Second row → the energies
calculated at the equilibrium distance taken from Refs. [37,38]. Third
row → energy (rounded) and equilibrium distance for 2�u from
Ref. [37] a and for 2�g from Ref. [38] b.

2�u
2�g

E (a.u.) Req (a.u.) E (a.u.) Req (a.u.)

−4.955243 2.15 (�) −4.8653 8.61 (�)
−4.953765 2.042 −4.8651 8.742
−4.994644 2.042a −4.9036 8.742b

20+
g [16], usually denoted as 2�+

g , is repulsive. It is essentially
unbound with shallow van der Waals minimum at large
internuclear distance; see Ref. [5] and references therein. It
took us a number of years to perform a quantitative study of
this particular system in the presence of a strong magnetic
field, which is the subject of the present work. We are not
aware of any similar previous study.

It is quite common in the field-free case that the ground
state of simple atoms and molecules be characterized by the
lowest possible total electron spin. Since the first qualitative
studies of atomic and molecular systems [17–22], it became
clear that in sufficiently strong magnetic fields the ground
state is eventually realized by a state where the spins of all
electrons are antiparallel to the magnetic field direction. Thus,
the total electron spin takes maximal value as well as its total
projection. It implies that the ground state depends on the
magnetic field strength: There exists one (or several) threshold
(critical) magnetic field(s) for which one type of ground state
changes to another one. This phenomenon was quantitatively
observed for the first time for the H2 molecule. It was shown
that spin-singlet ground state 1�g , for small magnetic field,
changes for intermediate fields B � 0.2 a.u. to the unbound
(repulsive) 3�u state as the ground state (precisely in the
domain of magnetic fields typical of magnetic white dwarfs),
while for stronger magnetic fields B � 12.3 a.u., the ground
state of the hydrogen molecule is realized by spin-triplet state
3�u (see Ref. [23] and references therein). Another recent
example, which was mentioned above, is the case of the He−

atomic ion where the ground state is realized first by the
spin doublet state 2(−1)+ for B � 0.13 a.u., and later by the
spin-quartet state 4(−3)+, for magnetic fields B � 0.74 a.u.,
where all electron spins are aligned antiparallel to a magnetic
field direction. In general, the phenomenon of change of the
ground-state nature with a magnetic field strength in traditional
atomic systems was known since a time ago; see, e.g., Ref. [24]
and reference therein.

The aim of this article is to perform a variational study of
the He2

+ molecular ion subject to a strong magnetic field
in the state 4(−3)+g , when all electron spins get oriented
antiparallel to the magnetic field direction and the electronic
total angular momentum projection is equal to M = −3,1 and

1To avoid a contradiction with the Pauli principle, and thus
the appearance of the Pauli forces, it is further assumed that all

TABLE II. Total energies and equilibrium distances (in a.u.) for
spin S = 1/2 states of the He2

+ ion in a magnetic field B = 100 a.u.,
in parallel configuration calculated with a trial function (9). For
M = −1 the configuration, m1,m2,m3 = −1,0,0 was used in the
trial function. The energy of the spin-3/2 state (M = −3 with
m1,m2,m3 = 0,−1,−2) included for comparison.

S = 1/2 S = 3/2

M = 0 M = −1 M = −3

g u g u g

E (a.u.) 76.13 76.27 69.57 66.84 −22.46
R (a.u.) 1.85 0.79 0.279 0.79 0.432

to show that the system is stable towards all possible decays
or dissociation. Further, it is naturally assumed that 4(−3)+g

is the ground state. Due to extreme technical complexity, we
do not discuss other states of He2

+ and leave the question
about evolution of the type of the ground state with magnetic
field changes for a future publication. However, for a strong
magnetic field of B = 100 a.u., we carried out variational
calculations for the energy of the spin S = 1/2 states with
M = 0,−1, both gerade and ungerade. A comparison with the
energy of the spin S = 3/2 state, indicates indeed, that for
this magnetic field, the spin S = 3/2 realizes the (unstable)
ground state of He2

+, see Table II. Since our study is limited
to the question of the existence and stability of this system in
a certain state, our main attention is devoted to the exploration
of all possible decay channels. A natural assumption about the
optimal (equilibrium) configuration with minimal total energy
is one which is achieved in the parallel configuration, where
the internuclear axis connecting the two massive α particles
(He nuclei) is situated along the magnetic line.

Another aim of the article is to continue to study the He−

atomic ion in spin-quartet state 4(−3)+ for strong magnetic
fields B � 1 a.u., which was initiated in Ref. [3]. This study is
necessary due to the possible decay mode He2

+ into He− + α.
The consideration is nonrelativistic, based on a variational

solution of the Schrödinger equation. The magnetic field
strength is restricted to magnetic fields B � 10 000 a.u.
(=2.35 × 1013 G) below the relativistic Schwinger limit. Also,
it is based on the Born-Oppenheimer approximation of zeroth
order: The particles of positive charge (α particles) are
assumed to be infinitely massive.

Atomic units are used throughout (h̄ = me = e = 1). The
magnetic field B is given in a.u., with B0 = 2.35 × 109 G.
For energies given in eV, the conversion 1 a.u. = 27.2 eV was
used. All energies which are mentioned in the article are the
total energies (with spin terms included) if it is not indicated
otherwise.

II. He2
+ HAMILTONIAN

The nonrelativistic Hamiltonian for a three-electron di-
atomic molecule with fixed nuclei A,B in uniform constant

three electrons have different magnetic quantum numbers, i.e.,
m1 = 0, m2 = −1, m3 = −2.
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FIG. 1. Geometrical setting and notations for the He2
+ molecular

ion in the presence of a magnetic field B aligned parallel to the
molecular axis.

magnetic field B = Bez, directed along z axis with vector
potential in the symmetric gauge A = 1

2 B × r is given by

H = −
3∑

i=1

⎛
⎝1

2
∇2

i +
∑

η=A,B

Zη

riη

⎞
⎠ +

3∑
i=1

3∑
j>i

1

rij

+ B2

8

3∑
i=1

ρi
2 + B

2
(L̂z + 2Ŝz) + ZAZB

R
, (1)

where ∇i is the 3-vector of the momentum of the ith electron,
Zη is the charge of the nucleus η = A,B, the terms −Zη/ri η,

correspond to the Coulomb interactions of the electrons with
each charged nuclei (ri η = |r i η| is the distance between the
ith electron and the η nuclei), the three terms 1/rij (j > i =
1 . . . 3) are the interelectron Coulomb repulsive interactions
(ri j are the distances between the i,j th electrons), and the term
+ZAZB/R is the classical Coulomb repulsion energy between
the nuclei, where R is the internuclear distance (see Fig. 1
for notations). The Hamiltonian (1) includes the paramagnetic
terms 1

2 B · li the spin Zeeman term B · si for the interaction
of the magnetic field with the spin, and the diamagnetic term
B2

8 ρi
2, with ρi

2 = x2
i + y2

i for each electron, i = 1,2,3. If the
magnetic field is directed along the z direction and parallel
to the internuclear axis, the component of the total angular
momentum along the z-axis M , the total spin S, the z projection
of the total spin Sz, and the total z parity �z are conserved
quantities. Sometimes in the text the spectroscopic notation
ν2S+1M�z (with standard labels �,�,	 . . . for |M| = 0,1,2,
etc.) is used for the electronic states. Here ν stands for the
degree of excitation for given (fixed) symmetry. In our case of
a homonuclear diatomic molecule, an additional subscript g or
u (gerade or ungerade) indicates a symmetric or antisymmetric
state with respect to the permutation of the identical nuclei.

III. GROUND STATE IN A STRONG MAGNETIC FIELD
(GENERALITIES)

Before approaching concrete calculations, a description of
the ground state of a Coulomb system of k electrons and several
heavy charged centers in a strong magnetic field should be
given. In fact, a complete qualitative picture was presented in

the pioneering works by Kadomtsev-Kudryavtsev [17–20] and
Ruderman [21,22]:

(i) All spins of electrons are oriented antiparallel to the
magnetic field direction. Hence, the total electronic spin
projection is − k

2 .
(ii) All heavy centers are situated on a magnetic line. Hence,

there is no gyration.
(iii) Electronic magnetic quantum numbers are different

and take values 0,−1,−2, . . . ,−(k − 1); hence, the total
magnetic quantum number of the system M = − k(k−1)

2 . This
configuration does not contradict to the Pauli principle and
implies vanishing Pauli forces.

We are not familiar with a rigorous proof of the validity of
these observations in general.

For hydrogen atom, k = 1, validity of this observation, see
item (iii), was explicitly checked by Ruder et al. [25] and
for other one-electron systems in Ref. [1]; it was shown that
the ground state corresponds to M = 0. For a helium atom,
it was checked in Ref. [26], where the ground state was of
(1s02p−1) type, thus M = −1, and for a lithium atom, it was of
(1s02p−13d−2) type, thus M = −3 [27], as well as for He− [3].
For two-electron molecules H2,HeH+,He2

++, it was checked
that lowest energy occurs at M = −1 compared to M = 0,−2;
see Refs. [2,23,28].

IV. TRIAL FUNCTIONS (GENERAL)

The variational method is used to study the state 4(−3)+g of
the He2

+ molecular ion (with infinitely massive centers) placed
in a uniform magnetic field parallel to the molecular z axis. In
general, the wave function of the electronic Hamiltonian (1)
with two identical nuclei can be written in the form

ψ(r1,r2,r3) = (1 + σN PAB)A[ φ(r1,r2,r3)χ ], (2)

where χ is a three-electron spin eigenfunction corresponding
either to a total electronic spin S = 1/2 or S = 3/2. Here
r1,2,3 are position vectors of the first, second, and third
electrons, respectively; see Fig. 1. The function φ(r1,r2,r3) is
a three-particle orbital function, and PAB is the permutation
operator of the two identical nuclei (σN = ±1 for gerade
and ungerade states, respectively). The operator A is the
three-particle antisymmetrizer:

A = 1 − P12 − P13 − P23 + P231 + P312. (3)

Here, Pij represents the permutation i ↔ j , and Pijk stands
for the permutation of 123 into ijk. For strong magnetic fields
which are typically present in the atmosphere of neutron stars,
a natural expectation is that the ground state corresponds to
the case when all electron spins are aligned antiparallel to
the magnetic field, i.e., Sz = −3/2, and thus with the three-
electron spin eigenfunction χ being totally symmetric. In this
case, when Sz = −3/2, the trial function is written as

ψSz=−3/2(r1,r2,r3)

= (1 + σN PAB)A[φ(r1,r2,r3)]β(1)β(2)β(3), (4)

with φ(r1,r2,r3) being a properly chosen orbital function,
which then antisymmetrized by A. Here β(i), i = 1,2,3 is
spin-down function of ith electron (see below).
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On the other hand, for states of the total spin projection
Sz = −1/2 (S = 1/2) we have two linearly independent spin
eigenfunctions:

χ1 = 1√
2

[β(1)α(2)β(3) − α(1)β(2)β(3)] , (5)

χ2 = 1√
6

[2β(1)β(2)α(3)−β(1)α(2)β(3)−α(1)β(2)β(3)],

(6)

where α(i)(β(i)), i = 1,2,3 are spin-up (spin-down) functions
of the ith electron. So, the general form of a spin projection
Sz = −1/2 function has the form

� = φ1(r1,r2,r3)χ1 + φ2(r1,r2,r3)χ2, (7)

where φ1(r1,r2,r3) and φ2(r1,r2,r3) are orbital functions. In
particular, we can choose these functions to be proportional
and write

� = φ(r1,r2,r3)(χ1 + aχ2), (8)

where a is a variational parameter.2 Thus, the trial function for
states of spin Sz = −1/2 can be written as [cf. (2)]

ψSz=−1/2(r1,r2,r3) = (1+σN PAB)A[ φ(r1,r2,r3)(χ1+aχ2)],

(9)

with φ(r1,r2,r3) being a properly chosen orbital function.

V. TRIAL FUNCTIONS (COORDINATE PARTS)

Variational trial functions are designed following phys-
ical relevance arguments. In particular, we construct wave
functions which allow us to reproduce both the Coulomb
singularities of the potential and the correct asymptotic
behavior at large distances (see, e.g., Ref. [30]). Following
such criterion, we propose the function

φ(r1,r2,r3) =
3∏

k=1

(
ρ

|mk |
k eimkφk e−αk,ArkA−αk,BrkBe− B

4 βkρ
2
k

)
× eα12r12+α13r13+α23r23 , (10)

which is a type of product of Guillemin-Zener-type molecular
orbital functions multiplied by the product of Landau-type
orbitals for an electron in a magnetic field. Here αk,A,αk,B
and βk , k = 1,2,3 are parameters. In the case of the fully
polarized state S = 3/2 and in order to avoid a contradiction
with the Pauli principle, it is further assumed that all electrons
have different magnetic quantum numbers in a certain minimal
way: m1 = 0, m2 = −1, m3 = −2; hence, the total electronic
quantum number is M = −3. It was already discussed in
Ref. [2] that this assumption seems obviously correct in
the case of atoms and atomic ions, where the electrons are
sufficiently close to each other, but not that obvious for the case
of molecules for which the electrons are spread in space. All of
them (or, at least, some of them) can be in the same quantum
state, with the same spin projection and magnetic quantum

2A similar treatment was used for the study of the Li atom in a
magnetic field in Ref. [29].

number. This situation was observed for H2 and H3
+, where in

a domain of large magnetic fields the ground state was given by
the state of maximal total spin but with the electrons having
the same zero magnetic quantum number (see Ref. [2] and
references therein). However, for very strong fields the state
of minimal total energy always corresponds to the situation
described above with all electrons having different magnetic
quantum numbers.

In (10) the variational parameters αk,A,αk,B (k = 1,2,3)
have the meaning of screening (or antiscreening) factors
(charges) for the nucleus A,B respectively, as is seen from
the kth electron. The variational parameters βk are screening
(or antiscreening) factors for the magnetic field seen from kth
electron, and the parameters αij ,i < j = 1 . . . 3 “measure” the
screening (or antiscreening) of the interelectron interaction.
In total, the trial function (10) has 12 variational parameters
in addition to the internuclear distance R which can also be
considered as a variational parameter.

The calculation of the variational energy using the
trial function (4)–(10) involves two major parts: (i) nine-
dimensional numerical integrations which were implemented
by an adaptive multidimensional integration routine (cubature)
[31] and (ii) a minimizer which was implemented with the
minimization package TMINUIT from CERN-lib (an old version
of TMINUITMINIMIZER in the ROOT system [32], which allows
fixing or releasing parameters, was recovered and adapted
to our purposes). The nine-dimensional integrations were
carried out using a dynamical partitioning procedure: The
domain of integration is manually divided into subdomains
following the profile of the integrand. Then each subdomain
is integrated using the routine CUBATURE. In total, we have a
subdivision to ∼2000 subregions for the numerator and ∼2000
for the denominator in the variational energy. With a maximal
number of sampling points ∼2 × 108 for the numerical
integrations (it guarantees the relative accuracy ∼10−3 to
10−4 in integration) for each subregion, the time needed for
one evaluation of the variational energy takes 5 × 104 s with
96 processors. It was checked that this procedure stabilizes
the estimated accuracy to be reliable in the first two decimal
digits. However, in order to localize a domain, where minimal
parameters are, the minimization procedure with much fewer
sample points was used in each subdomain and a single
evaluation of the energy usually took ∼15–20 min. Once a
domain is roughly localized, the number of sample points was
increased by factor ∼102 and minimization was repeated. Final
evaluation was made with 2 × 108 sampling points and for the
strongest fields B = 100,1000,10 000 a.u. it was even 5 × 108

with a subdivision of seven subintervals in each z domain.
Typically, a minimization procedure required several hundred
evaluations. Computations were performed in parallel with a
cluster KAREN (ICN, UNAM) with 96 Intel Xeon processors
at ∼2.70 GHz.

VI. DECAY CHANNELS AND DISSOCIATION

In this section, we analyze different decay channels of the
Sz = −3/2, M = −3 state 4(−3)+g of the He2

+ molecular
ion in a magnetic field in the range 1 a.u. � B � 10 000 a.u.

Possible decay channels that we consider for the system
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TABLE III. Variational results for the total energy and equilibrium distance of the spin-quartet state 4(−3)+g with total angular momentum
projection M = −3 of the He2

+ molecular ion in a magnetic field and comparison with the total energy of different subsystems. For helium
atom the ground-state energy ET [13(−1)+] [33] for B � 100 a.u. was used, while for B � 1000 a.u., the ansatz (16) was used (see Sec.
VIII). Energies for He− in the state 4(−3)+ at B = 100–10 000 a.u. were calculated for the present study using the trial function (13) (see
Sec. VII), while for B = 1 a.u. it was taken from Ref. [3]. For He+ the energies are from the scaling relation (11) with use of data from
Ref. [34] (with electron-spin-Zeeman contribution included). For He2

2+ energies from Ref. [36], and for He2
3+ results from Ref. [1] with

the (single)-electron-spin-Zeeman contribution added. All molecular systems assumed parallel configuration as optimal. All energies are
in a.u.

B He2
+[4(−3)+g] He− He+ He2

3+ He2
2+ He

(a.u.) ET Req ET [4(−3)+] ET (1s0) ET (1σg) ET (3�+
u ) ET [13(−1)+]

1 −4.02 2.18 −3.04 −2.4410 −3.3745 −2.9655
100 −22.46 0.432 −13.38 −9.5605 −8.2581 −16.9917 −13.1048
1000 −53.98 0.196 −28.18 −20.2707 −19.6338 −40.2462 −27.1738
10 000 −114.9 0.098 −55.41 −39.5107 −43.1165 −87.255 −53.2011

(ααeee) placed in a magnetic field are

He2
+ → He + He+ (a)

→ He− + α (b)
→ He + α + e (c)
→ He+ + He+ + e (d)
→ He2

2+ + e (e)
→ He2

3+ + e + e (f ).

A few remarks emerge immediately: In the cases where there
are free electrons3 in the decay channel [channels (c)–(f)]
we can assume that the electrons are in the ground state
n = 0,sz = −1/2,m < 0 which yields E = 0 (regardless of
the magnetic quantum number m carried by the electron, where
the spin contribution is included). In the Born-Oppenheimer
approximation, the energy of a free α particle in a magnetic
field is zero by assumption. Also, it is known that the helium
atom exists for any magnetic field strength. For magnetic
fields 0 � B � 0.75 a.u. the spin-singlet state 110+ is the
ground state. For B � 0.75 a.u., the spin-triplet state (with
M = −1) 13(−1)+ becomes the ground state. For the He
atom in a magnetic field B � 100 a.u., the corresponding total
energies collected in Table III were taken from Refs. [26,33].
Such energies were calculated for the infinite nuclear mass
approximation and include the spin contributions B sz for each
electron. For magnetic fields B = 1000 and 10 000 a.u., a
simple variational ansatz with five variational parameters was
used to estimate the value of the energy of the spin-triplet state
of helium (see Sec. VIII below for more details).

To obtain the energy of the He+ ion, we use the basic result
of Surmelian and O’Connel for hydrogen-like atoms

E(Z,B) = Z2E(1,B/Z2), (11)

and use the data of Ref. [34] for the binding energies
of hydrogen in a magnetic field (recalling that instead of

3For the total energy of a free electron Ee (excluding the spin
contribution) in the magnetic field in the symmetric gauge, the z

component of the angular momentum Lz is conserved and the electron
Landau levels are Ee = h̄ωB (n + 1/2), where n = nρ + |m|+m

2 =
0,1,2 . . . All m � 0 states are degenerate. Here ωB = eB

mec
is the

cyclotron frequency.

the total energy ET , in Ref. [34] the authors reported the
energies Eb = (1 + m + |m|)γ /2 − E, which coincide with
the binding energies ε = γ /2 − E for m < 0). The Zeeman
contribution to the total energy B sz due to the spin of the
electron is not taken into account in the results appearing in
Ref. [34]. Such contribution for the case of a spin antiparallel
to the magnetic field (sz = − 1

2 ) is Espin = −B/2 a.u. and was
added to the results collected in Table III to obtain the total
energies of He+.

In the molecular system (ααe) (He2
3+ molecular ion),

accurate variational calculations in equilibrium configuration
parallel to the magnetic field for the ground state 1σg

were carried out in detail in Refs. [1,35] for the range of
magnetic fields 100 a.u. � B � BSchwinger where BSchwinger =
4.414 × 1013 G is the nonrelativistic limit. It was found that
for magnetic fields 102 � B � 103 a.u. the system He2

3+ is
unstable toward decay to He+ + α. Thus, in principle we can
neglect in our considerations the decay channel (e) above.
Nonetheless, at B � 104 a.u., this compound becomes the
system with the lowest total energy among the one-electron
helium (helium-hydrogen) chains (for details, see Ref. [1]).

For the molecular system (ααee) He2
2+ molecular ion, this

molecule was studied in detail in Ref. [36] in the domain
of magnetic fields B = 0 − BSchwinger. It was shown that the
lowest total energy state depends on the magnetic field strength
and evolves from the spin-singlet 1�g metastable state at 0 �
B � 0.85 a.u. to a repulsive spin triplet 3�u (unbound state)
for 0.85 � B � 1100 a.u. and then to a strongly bound triplet
state 3�u state. Hence, there exists quite a large domain of
magnetic fields where the He2

2+ molecule is unbound and
represented by two atomic helium ions in the same electron
spin state but situated at an infinite distance from each other.

VII. He− REVISITED

In order to have a complete understanding about the stability
of the molecular He2

+ ion in magnetic fields, we need to extend
the study on the He− atomic ion [three electron atomic system
(α,e,e,e)] in magnetic fields to the regime of very strong fields
B � 1a.u. In this section, we review the basic notions for
the study of the He− ion in magnetic fields. In Ref. [3] it
was found that the ground state of He− in a magnetic field is
realized by a spin-doublet 2(−1)+ at 0.74 a.u. � B � 0.13 a.u.
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and it becomes a fully polarized spin-quartet 4(−3)+ for larger
magnetic fields. Thus, we will extend that study of the He− ion
in strong magnetic fields, in the fully polarized, spin quartet
S = 3/2, state only. For more details, the reader is referred to
Ref. [3].

The nonrelativistic Hamiltonian for an atomic system of
three-electron and one infinitely massive center of charge Z

in a magnetic field (directed along the z axis and taken in the
symmetric gauge) is

H = −
3∑

k=1

(
1

2
∇2

k + Z

rk

)
+

3∑
k=1

3∑
j>k

1

rkj

+ B2

8

3∑
k=1

ρk
2 + B

2
(L̂z + 2Ŝz), (12)

where ∇k is the 3-vector momentum of the kth electron, rk

is the distance between the kth electron and the nucleus,
ρk is the distance of the kth electron to the z axis, and rkj

(k,j = 1,2,3) are the interelectron distances. L̂z and Ŝz are
the z components of the total angular momentum and total
spin operators, respectively. Both L̂z and Ŝz are integrals of
motion and can be replaced in (1) by their eigenvalues M and
Sz respectively. For He− the nuclear charge is Z = 2. The
total spin Ŝ and z-parity �̂z are also conserved quantities. The
spectroscopic notation ν2S+1M�z is used to mark the states,
where �z denotes the z parity eigenvalue (±), and the quantum
number ν labels the degree of excitation. For states with the
same symmetry, for the lowest energy states at ν = 1 the
notation is 2S+1M�z . We always consider states with ν = 1
and Sz = −S assuming they correspond to the lowest total
energy states of a given symmetry in a magnetic field.

A. Trial functions

The spin S = 3/2 state 4(−3)+ of the system (α,e,e,e) in a
magnetic field is described by the trial function

ψ(	r1,	r2,	r3) = A[ φ(	r1,	r2,	r3) ], (13)

where A is the three-particle antisymmetrizer (3) and
φ(	r1,	r2,	r3) is the explicitly correlated orbital function

φ(	r1,	r2,	r3) =
(

3∏
k=1

ρ
|Mk |
k eiMkφk e−αkrk− B

4 βkρ
2
k

)

×eα12r12+α13r13+α23r23 , (14)

where Mk is the magnetic quantum number and αk , βk , and
αkj are nonlinear variational parameters for each electron k =
1,2,3. In total, the trial function (13) contains nine variational
parameters. The function (13) is a properly antisymmetrized
product of 1s Slater-type orbitals, the lowest Landau orbitals,
and the exponential correlation factors ∼exp(α rkj ).

The spin 3/2 state 4(−3)+ of the system (α,e,e,e) in a
magnetic field is described by the trial function (13) with M1 =
0, M2 = −1, M3 = −2. Due to the spin Zeeman contribution,
the energy of this (spin S = 3/2) state decreases rapidly and
monotonically with the magnetic field increase and becomes
the (stable) ground state for B � 0.7 a.u.

In Ref. [3], we made a study of the (α,e,e,e) atomic system
in magnetic fields B � 100 a.u. Here we extend that study for

magnetic fields up to B = 10 000 a.u. In particular, we improve
the value of the total energy at B = 100 a.u. from ET =
−13.29 a.u. (as quoted in Ref. [3]) to ET = −13.38 a.u., i.e.,
by ∼0.1 a.u. (see Table III).

The variational method used to find the energy of the system
with the trial function (13) involves two major procedures
of numerical minimization and integration. This was already
described above for the case of the He2

+ molecular ion (see
Sec. V). In particular, for strong magnetic fields, a reliable min-
imization depends on the accuracy of the variational energies,
i.e., on the accuracy of the numerical nine-dimensional inte-
grations. Our strategy to find the minimal energy was first to
make approaching minimizations with relatively low accuracy
in the integrations and then followed by a manual scanning of
the energy dependence on each variational parameter with high
accuracy in the numerical integrations. For our final results, we
used a partition of the integration domain into 4800 subregions
for the numerator and 4800 subregions for the denominator
using 5 × 108 sample points for each numerical integration. A
single evaluation of the energy takes about 14 h of wall clock
time using a cluster KAREN (ICN, UNAM) with 120 processors.

Our results for the spin 3/2 state 4(−3)+ of the system
(α,e,e,e) in magnetic fields B = 100,1000,10 000 a.u. are
collected in Table III below. These results indicate that as the
magnetic field increases, the total energy of the He− ion in the
4(−3)+ state decreases, but at a slower rate in comparison to
the total energy of the He2

+ molecular ion in the 4(−3)+ state.
Also, our results confirm that as the magnetic field increases,
the total energy of the He− ion in the 4(−3)+ state decreases
more rapidly than the total energy of the He atom in the spin
triplet state 13(−1)+ and, therefore, becoming more stable
toward decay into He− → He + α [see below for our extended
calculations of the He atom in the spin triplet state 13(−1)+].

VIII. He ATOM IN STRONG MAGNETIC
FIELDS REVISITED

The assertion on the stability of the molecular ion He2
+

in strong magnetic fields requires a full understanding of the
helium atom and other helium species in the presence of a
strong magnetic field. It is known that the helium atom exists
for any magnetic field strength. Its ground state is realized
by a singlet spin state 11S at zero and small magnetic fields
0 � B � 0.75 a.u. For larger magnetic fields, the ground state
is realized by the fully polarized spin triplet state 13(−1)+
[26]. Despite the fact that the helium atom in magnetic fields
is one of the most studied systems, all such studies that we
are familiar with are limited to magnetic fields up to B =
100 a.u. (see, e.g., Ref. [26]). For higher magnetic fields (up
to the Schwinger limit Brel = 4.414 × 1013 G ∼ 18783 a.u.),
the relativistic corrections to the energy seem to be relatively
small. Thus, we extend the study of the helium atom up to the
largest magnetic field B = 104 a.u. considered in the present
study. In particular, a full understanding of the He atom in the
spin triplet (ground) state 13(−1)+ at magnetic fields 10 000 �
B � 100 a.u. is necessary.

A. Hamiltonian

The nonrelativistic Hamiltonian which described the he-
lium atom with an infinitely massive nucleus of charge Z = 2
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in a magnetic field oriented along the z axis is given by

H = −
2∑

k=1

(
1

2
∇2

k + Z

rk

)
+ 1

r12

+ B2

8

2∑
k=1

ρk
2 + B

2
(L̂z + 2Ŝz), (15)

where the symmetric gauge A = 1
2 B × r was used, and ∇k is

the 3-vector momentum of the kth electron, rk is the distance
between the kth electron and the nucleus, ρk is the distance
of the kth electron to the z axis, and r12 is the interelectron
distance. L̂z and Ŝz are the z components of the total angular
momentum and total spin operators, respectively. Both L̂z and
Ŝz are integrals of motion and can be replaced in (15) by
their eigenvalues M and Sz respectively. The total spin Ŝ and
z-parity �̂z are also conserved quantities. The spectroscopic
notation ν2S+1M�z is used to mark the states, �z denotes the
z parity eigenvalue (±), and the quantum number ν labels the
degree of excitation. For states with the same symmetry, for
the lowest energy states at ν = 1 the notation is 2S+1M�z .

B. Trial functions

To study the ground state of the Hamiltonian (15), we use
the variational method with trial functions chosen according
to the criterion of physical relevance. The trial functions for
the low-lying states of (15) can be written as

� = (1 + σeP12)
(
ρ

|m1|
1 eim1φ1ρ

|m2|
2

× eim2φ2e−α1r1−α2r2− B
4 (β1ρ

2
1 +β2ρ

2
2 )+α12r12

)
, (16)

where P12 is the permutation operator for the electrons (1 ↔ 2),
σe = ±1 corresponds to the spin singlet (σe = 1) and the
spin triplet (σe = −1) eigenstates, and m1,2 are the magnetic
quantum numbers of electrons (1,2 respectively). The trial
function (16) depends on five variational parameters which
account for effective screened charges of the nucleus α1,2

(as seen by electrons 1, 2), of the electrons moving in the
magnetic field β1,2, and of one of the electrons as seen from the
other α12.

The ground state of the helium atom at strong magnetic
fields is realized by the spin triplet state 13(−1)+ correspond-
ing to σe = −1 and m1 = 0, m2 = −1 (M = m1 + m2) in
(16). This simple ansatz gives an energy ET = −12.8215 a.u.
at B = 100 a.u., which compared to the most accurate result
ET = −13.1048 a.u. in Ref. [33] indicates that the relative
difference provided by this trial function is ∼2%. The total
energy of the triplet state 13(−1)+ decreases as the magnetic
field increases. For a magnetic field B = 1000 a.u. our varia-
tional trial function gives an energy of ET = −27.1738 a.u.,
while at B = 10 000 a.u. it gives an energy of ET = −53.2011
a.u. It is worth noticing that the total energy of helium in the
spin triplet state 13(−1)+ lies higher than the total energy of
the He− ion in the fully polarized state 4(−3)+, and the energy
difference increases with an increase of the magnetic field.

The variational method used to find the energy of the
helium atom with the trial function (16) involves two
major procedures of numerical minimization (MINUIT) and
multidimensional numerical integration (CUBATURE). Because

of the axial symmetry of the problem, the dimensionality
reduces to five. The integrations are performed in double
cylindrical coordinates (z1,ρ1,z2,ρ2,φ) (where φ is the
relative azimuthal angle between the electrons). The manual
partitioning includes five subdomains in each z coordinate,
three subdomains in each ρ coordinate, and one domain for
φ. The maximal number of sample points used to evaluate the
numerical integrations is 5 × 107. Our results for this system
are presented in Table III (see below).

IX. RESULTS

A. Field-free case: Low-lying states

We have carried out variational calculations for the field-
free ground state 2�+

u state as well as for the weakly
bound excited state 2�+

g state of He2
+. The aim of this

study is mainly to have an estimate of the accuracy of
our variational calculations. Previous studies on one- and
two-electron Coulomb systems in strong magnetic fields have
shown that simple trial functions of the type (10) which are
built following the criterion of physical adequacy have led to
very accurate results for such systems (see Refs. [1,2]).

The results for the energy of the states 2�u and 2�g using
the trial function (9) are collected in the Table I. From such
results, and comparing to the most accurate results to date for
such states [37,38], we can conclude that the energies obtained
with our 10-parameter trial function have a relative accuracy of
∼1%. It is worth to note that the level of accuracy provided by
the trial function (9) is sufficiently high to observe the shallow
minimum of the 2�g state, though the equilibrium distance
seems to be slightly shifted in comparison to the results of
Ref. [38].

In a magnetic field one can expect a relatively slow
decrease in accuracy as the magnetic field increases. A
similar comparison for the energies of the helium atom in a
magnetic field B � 100 a.u. obtained (a) with the two-electron,
five-parameter trial function (16) and (b) with the more
accurate energies using a Gaussian basis set method with
∼4300 two-particle functions [33] leads to the conclusion that
even at B = 100 a.u. the relative accuracy is ∼2%. Thus, we
can estimate that our results for the He2

+ ion in magnetic
fields B � 100 a.u. have an accuracy of ∼2% with a small
decrease for higher magnetic fields. To confirm this conjecture,
a separate study would be necessary.

B. B = 1 a.u.

We begin our analysis for the total energy and equilibrium
distance for the spin S = −3/2 state with M = −3 corre-
sponding to the Hamiltonian (1) for a magnetic field B = 1 a.u.

For this magnetic field, the total energy of the spin-quartet,
M = −3 state obtained with the trial function (4)–(10) is
E

He2
+

T [4(−3)+] = −4.02 a.u. with an equilibrium distance
Req = 2.18 a.u. (see Table III). The lowest energy state of
He corresponding to the triplet state, and M = −1, has a total
energy EHe

T [13(−1)+] = −2.9655 a.u., and the total energy of
the ground state of He+ ion is EHe+

T (1s0) = −2.4410 a.u. From
these considerations, it is clear that for this magnetic field the
state 4(−3)+g of He2

+ is unstable toward decay [channel (a)]
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to

He2
+[4(−3)+g

] → He[13(−1)+] + He+(1s0) , (17)

since the total energy of the subproducts EHe
T [13(−1)+] +

EHe+
T (1s0) = −5.4065 a.u. is essentially lower than the total

energy of the spin-quartet M = −3 state of He2
+. It is also

noteworthy to mention that the lowest state of He+ with
|m| = 2 has a total energy of EHe+

T (3d−2) = −0.7930 a.u.

(including the contribution from the spin Zeeman term) and,
for this case, the state 4(−3)+ of He2

+ is stable toward the
(M-conserved) decay into

He2
+[

4(−3)+g

]
� He[13(−1)+] + He+(3d−2), (18)

since the total energy of the subproducts is EHe
T [13(−1)+g] +

EHe+
T (3d−2) = −3.7585 a.u. Thus, He2

+ in the state 4(−3)+g

is a metastable state.
For this magnetic field He2

+[4(−3)+g] is also unstable
toward decay into two He+(1s0) ions plus an electron infinitely
separated [decay channel (d)]. This separated system has a total
energy −4.8820 a.u. On the other side, following the results
summarized in Table III, He2

+[4(−3)+g] is stable toward
decays into He−[4(−3)+] + α [channel (b)] or He[13(−1)+] +
α + e [channel (c)]. Decay channels (e) and (f) are not possible
since the systems He2

2+ and He2
3+ either do not exist or are

unstable. For B = 1 a.u., the lowest energy state of the two
electron molecular ion He2

2+ corresponds to a purely repulsive
spin-triplet (unbound) state 3�u (for 0.85 � B � 1100 a.u.

this system does not exist in the four-body bound state; it
exists in a form of two separated helium ions He+ situated at an
infinitely large distance from each other), and the one electron
molecular ion He2

3+ in its ground state 1σg is unstable toward
decay into He+ + α.

C. B = 100 a.u.

We continue our analysis for a magnetic field B = 100 a.u.
For this magnetic field, the total energy of the quartet
state with M = −3 belonging to the Hamiltonian (1) is
E

He2
+

T [4(−3)+g] = −22.46 a.u. with an equilibrium distance
Req = 0.432 a.u. (see Table III).

For this magnetic field, the lowest energy state of He is
the triplet state with magnetic quantum number M = −1, and
has a total energy EHe

T [13(−1)+] = −13.1048 a.u., while the
total energy of the ground state of the He+ ion is EHe+

T (1s0) =
−9.5605 a.u. (including the spin Zeeman contribution). From
this, we can conclude that the state 4(−3)+g is still unstable
toward decay (17), since the total energy of the subproducts
is EHe

T [13(−1)+] + EHe+
T (1s0) = −22.6653 a.u., which is

slightly smaller than the total energy of the quartet M = −3
state of He2

+. However, it is clear from this comparison that for
some B > 100 a.u. the state 4(−3)+ of He2

+ becomes stable
toward decay into He + He+ (see below).

Following the results summarized in Table III, we con-
clude that He2

+[4(−3)+g] is stable toward decays into
He−[4(−3)+] + α [channel (b)] or He[13(−1)+] + α + e

[channel (c)] or He+(1s0) + He+(1s0) + e [channel (d)] since
the total energies of the corresponding separated subsystems
in all these channels are above the total energy of the quartet
state. Decay channels (e) and (f) are also not possible, since for

this magnetic field the lowest energy state of the two electron
molecular ion He2

2+ corresponds to a purely repulsive triplet
state 3�u, and the system He2

3+ in its ground state 1σg is
unstable toward decay into He+ + α.

D. B = 1000 a.u.

Our variational result for the total energy of the quartet state
with M = −3 belonging to the Hamiltonian (1) for a magnetic
field B = 1000 a.u. is E

He2
+

T [4(−3)+g] = −53.98 a.u. with an
equilibrium distance Req = 0.196 a.u. (see Table III).

Now, for the main decay channel (a) the total energy of the
subproducts is EHe

T [13(−1)+] + EHe+
T (1s0) = −47.4445 a.u.

which lies higher than the total energy of the quartet state
of He2

+, and thus, the molecular ion He2
+ is stable toward

decay to He2
+ → He + He+. The dissociation energy for this

channel is 6.54 a.u. = 177.8 eV at B = 1000 a.u.

For the case of channel (b), a direct comparison of the total
energies of He2

+ and He− at B = 1000 a.u. (for He− we
made an extension of the results in Ref. [3] at B = 1000 a.u.)
indicates that He2

+ is also stable toward decay to He2
+

�

He− + α with a dissociation energy of ∼701.8 eV. For the
case of channel (c) He2

+ → He + α + e, the total energy of
the subproducts of this decay is larger than the total energy
of the He2

+ ion in the quartet state. So, the system is also
stable toward this decay channel with a dissociation energy
of ∼729.1 eV. For the case of channel (d) He2

+ → He+ +
He+ + e, the total energy of the subproducts of this decay is
larger than the total energy of the He2

+ ion in the quartet state.
The dissociation energy in this case is ∼365.5 eV. For the case
of channel (e) He2

+ → He2
2+(3�+

u ) + e , at B = 1000 a.u.

the total energy of the subproducts of this decay is larger than
the total energy of the He2

+ ion in the quartet state. However,
we should remember that for this magnetic field the ground
state of the two-electron molecular ion He2

2+ is realized by a
repulsive spin triplet state 3�u state [for 0.85 � B � 1100 a.u.

this system exists in the form of two helium ions He+ situated
at an infinitely large distance from each other, i.e., case (d)],
and the strongly bound triplet state 3�u state becomes the
ground state at B � 1100 a.u. (see Ref. [36]).

For the case of channel (f) He2
+ → He2

3+(1σg) + 2e , at
B = 1000 a.u. the total energy of the subproducts of this decay
is larger than the total energy of the He2

+ ion in the quartet
state, and the corresponding dissociation energy is ∼934.2 eV.
For this magnetic field the ion He2

3+ is stable toward He2
3+ →

He+ + α and it is the most bound one-electron system made
from protons and/or α particles for B > 1000 a.u.

E. B = 10 000 a.u.

Our variational result for the total energy of the quartet state
with M = −3 belonging to the Hamiltonian (1) for a magnetic
field B = 10 000 a.u. is E

He2
+

T [4(−3)+g] = −114.9 a.u. with
an equilibrium distance Req = 0.098 a.u. (see Table III). At
this magnetic field, the numerical integrations with different
accuracies (maximal number of points) indicate that the energy
has a relative accuracy of 0.1 a.u. This may result in differences
of a few eV in the transition energies.

For the main decay channel (a), the total energy of the
subproducts is EHe

T [13(−1)+] + EHe+
T (1s0) = −92.7118 a.u.
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FIG. 2. Total energy ET of the He2
+ ion in the spin-quartet state

4(−3)+ as a function of the magnetic field B; the continuous line is
the fit ET (B) = −2.7582 log2(B) + 18.078 log(B) − 47.4006.

which lies higher than the total energy of the quartet state of
He2

+, and thus, the molecular ion He2
+ is stable toward decay

to He2
+ → He + He+. The corresponding dissociation energy

for this channel is 22.2 a.u. = 603.5 eV at B = 10 000 a.u.

For the case of channel (b), a direct comparison of the total
energies of He2

+ and He− at B = 10 000 a.u. (in Sec. VII,
we carried out an extension of the results in Ref. [3] for
He− up to B = 10 000 a.u.) indicates that He2

+ is also stable
toward decay to He2

+
� He− + α with a dissociation energy

of ∼1618 eV. For the case of channel (c) He2
+ → He + α + e,

the total energy of the subproducts of this decay is larger
than the total energy of the He2

+ ion in the quartet state. So,
the system is also stable toward this decay channel with a
dissociation energy of ∼1678 eV. For the case of channel (d)
He2

+ → He+ + He+ + e, the total energy of the subproducts
of this decay is larger than the total energy of the He2

+ ion
in the quartet state. The dissociation energy in this case is
∼976 eV. For the case of channel (e) He2

+ → He2
2+(3�+

u ) +
e , at B = 10 000 a.u. the total energy of the subproducts of
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FIG. 3. Equilibrium distance of the He2
+ ion in the spin-quartet

state 4(−3)+ as a function of the magnetic field, the continuous line
is the fit Req(B) = 0.01262 log2(B) − 0.24654 log(B) + 1.29830.

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 200  400  600  800  1000

-100

0

100

200

300

400

500

600

700

800

900

1000

 E
di

ss
  (

a.
u.

)

 E
di

ss
  (

eV
)

B (a.u.)

(a) He2
+ → He(13(-1)+) + He+(1s0)

(b) He2
+ → He-(4(-3)+) + α
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(d) He2
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FIG. 4. Dissociation energies of the He2
+ ion in the spin-quartet

state4(−3)+g as a function of the magnetic field 10 � B � 1000 a.u.
toward different decay channels.

this decay is larger than the total energy of the He2
+ ion in

the quartet state, and the corresponding dissociation energy is
∼752 eV.

For the case (f) He2
+ → He2

3+(1σg) + 2e , at B =
10 000 a.u. the total energy of the subproducts of this decay is
larger than the total energy of the He2

+ ion in the quartet state,
and the corresponding dissociation energy is ∼1953 eV.

The total energy of the He2
+ ion in the quartet state 4(−3)+g

as a function of the magnetic field is presented in Fig. 2. This
figure shows that as the magnetic field is increased, the system
becomes more bound. The internuclear equilibrium distance
of the He2

+ ion in the quartet state 4(−3)+ as a function of the
magnetic field is presented in Fig. 3. This figure shows that
as the magnetic field is increased, the system becomes more
compact. We have plotted in Figs. 4 and 5 the dissociation
energies, (i.e., difference of total energies between the state
4(−3)+g of He2

+ and the energy of the final products) for the
different decay channels described in Sec. VI. This plot shows
that the ion He2

+ in the state 4(−3)+ becomes more bound
with respect to all dissociation channels as the magnetic field
increases and, more important, that the dissociation energies
at B ∼ 1000 a.u. lie in the window 0.1–1 keV, which is the
window of observed absorption features in the spectrum of the
isolated neutron star 1E1207.4-5209 (see Refs. [8,9]).

In order to have a hint about the critical magnetic field at
which the state 4(−3)+g of He2

+ becomes the ground state of
the Coulomb system (ααeee), we have collected in Table IV
a list of atomic and molecular Coulomb systems made out
of hydrogen and/or α particles, as well as the lithium atom,
and the corresponding critical magnetic fields at which the
ground state is realized by a state with all spins oriented
antiparallel to the magnetic field. A simple analysis of this table
indicates that for atomic systems [with more than one electron
(He,He−,Li)] the critical magnetic field is rather weak, being
Bcrit ∼ 0.75–2.21 a.u. For molecular-type systems, there seem
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FIG. 5. Dissociation of the He2
+ ion in the spin-quartet state

4(−3)+g as a function of the magnetic field 10 � B � 10 000 a.u.
towards different decay channels (same as Fig. 4 but extended up to
B = 10 000 a.u.).

to be two typical ranges of values for the critical magnetic field,
i.e., Bcrit ∼ 10–20 a.u. and Bcrit ∼ 1000–2000 a.u., which is
much larger than for the atomic-type systems. Perhaps this
phenomenon can be explained by the fact that electrons in a
molecular system are further apart than in the case of atoms. So,
if this tendency is also valid for the case of the He2

+ molecular
ion, then it is very likely that the state 4(−3)+g becomes the
ground state for magnetic fields B � 1000 a.u. Of course, a
detailed study of other states of the He2

+ molecular ion is
needed in order to establish this conjecture.

F. Spin-1/2 states

As for the spin S = 1/2 states of He2
+, we have calculated

the total energy of some states with M = 0,−1 for both gerade
and ungerade parities at the magnetic field B = 100 a.u. (see

TABLE IV. Critical magnetic field for different Coulomb systems
for which the ground state becomes a state with maximal electronic
spin: All electron spins are antiparallel to the magnetic field. Results
taken from Refs. [1–3,26,36].

System Ground state M Sz Bcrit (a.u.)

He+ 1s0 0 −1/2 �0
He2

3+ 1σg 0 −1/2 �10
He 13(−1)+ −1 −1 �0.75
H2

3�u −1 −1 �12.3
He2

2+ 3�u −1 −1 �1100
H3

+ 3�u −1 −1 �20
H4

2+ 3�u −1 −1 �2000
HeH+ 3�u −1 −1 �15
He3

4+ 3�u −1 −1 �1000
He− 4(−3)+ −3 −3/2 �0.74
Li 4(−3)+ −3 −3/2 �2.21

TABLE V. He2
+ in a strong magnetic field. State 4(−3)+g

variational parameters for the trial function (10), α parameters are
in [a.u.]−1. For the evaluation of the variational total energy, 5 × 108

was the maximal number of sample points used for the numerical
integration in each subdomain in the manual partitioning. Triple
cylindrical coordinates were used with two subdomains in each of
the three ρ coordinates and seven subdomains in each of the three z

coordinates. The integration routine CUBATURE [31] was used.

Magnetic field B in a.u.

Parameter 100 1000 10 000

α1,A 0.93175 1.975 3.59
α1,B 3.34641 3.9 4.28
α2,A 1.41717 1.9 2.5
α2,B 2.0076 3.059 4.36
α3,A 1.53986 2.09 2.32
α3,B 1.03391 1.82 3.1
α12 0.58803 0.46 0.38
α13 0.23269 0.16 0.08
α23 0.17702 0.15 0.2
β1 0.81948 0.93 0.98
β2 0.87464 0.94 0.983
β3 0.90583 0.957 0.989
Req (a.u.) 0.43177 0.1985 0.098
ET (a.u.) −22.460 −53.978 −114.908

Table II). It is clear from such results that for high magnetic
fields B > 100 a.u., these states will lay much higher in energy
than the fully polarized S = 3/2 state that we consider in
our study. For spin S = 1/2 states, the contribution to the
total energy coming from the spin-Zeeman term is E

Sz=−1/2
Zeeman =

−B/2 a.u., while it is E
Sz=−3/2
Zeeman = −3/2B a.u. for the spin

S = 3/2 fully polarized state. Thus, considering only the spin-
Zeeman contribution to the total energy, the states with spin

TABLE VI. He− in a strong magnetic field. State 4(−3)+g

variational parameters for the trial function (14), α parameters are
in [a.u.]−1. For the evaluation of the variational total energy, 5 × 108

was the maximal number of sample points used for the numerical
integration in each subdomain in the manual partitioning. Triple
cylindrical coordinates were used with two subdomains in each of
the three ρ coordinates, five subdomains in two z coordinates, and
three subdomains in the third z coordinate which integrated over the
half line. The integration routine CUBATURE [31] was used.

Magnetic field B in a.u.

Parameter 100 1000 10 000

α1 2.86366 4.30183 5.32027
α2 1.91669 3.09290 3.79174
α3 1.20906 1.67689 2.48690
α12 −0.13497 0.06847 0.37195
α13 −0.12987 0.02558 −0.04966
α23 −0.11967 0.05634 −0.08924
β1 0.84414 0.92115 0.97709
β2 0.91848 0.95373 0.99092
β3 0.96952 0.98367 0.99470
E −13.3772 −28.1756 −55.4053
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TABLE VII. He atom in a strong magnetic field. Spin triplet
state 13(−1)+ variational parameters for the trial function (16), α

parameters are in [a.u.]−1.

Magnetic field B in a.u.

Parameter 100 1000 10 000

α1 2.107315 3.085664 4.589369
α2 2.952063 4.151930 5.887318
α12 0.145703 0.117778 0.227942
β1 0.895958 0.958737 0.986090
β2 0.825659 0.930747 0.977742
E −12.8215 −27.1738 −53.2011

S = 1/2 are about 	ET ∼ B a.u. higher that the spin S = 3/2
states.

Finally, and for the sake of completeness, we present in
Tables V, VI and VII the variational parameters corresponding
to the systems He2

+, He−, and He for magnetic fields 100,
1000, and 10000 a.u.

X. CONCLUSIONS

We have studied the stability of the molecular Coulomb
system formed by two infinitely massive α particles and three
electrons (ααeee) in the range of magnetic fields 0 � B �
10 000 a.u., in a state where all electron spins are oriented
antiparallel to the magnetic field direction; hence, Sz = −3/2.
It was further assumed that in the ground state, in order to
suppress the appearance of the Pauli force, all electrons should
have different magnetic quantum numbers; in particular, if
these are equal to m1 = 0, m2 = −1, m3 = −2, the total
magnetic quantum number M = −3. This choice looks
natural physically. The parallel configuration, for which both
the molecular axis and the magnetic field direction coincide,
was adopted as the optimal configuration with minimal total
energy. The stability toward possible decay channels was
studied variationally, using trial functions (4) and (10). We
found that for all studied magnetic fields 1 � B � 10 000 a.u.,
there exists a well-pronounced minimum in the potential curve
of total energy versus the internuclear distance R at some R =
Req. The equilibrium distance Req decreases with the magnetic
field increase; hence, the system becomes more compact at
large magnetic fields. At the same, time the total energy is
getting more negative, while the binding energy increases,
making the system more bound. For B � 120 a.u., the He2

+

molecular ion in the state 4(−3)+g becomes stable towards
all possible decay channels [see Fig. 4]. In other words, the
molecular system He2

+ becomes the most bound helium specie

with three electrons. It also hints at the possible relevance
of other helium chains like He2, He3, or even the hybrid
molecules like the neutral HeH, for the chemistry in a strong
magnetic field.

Studying the evolution of the ground state with the magnetic
field change in different Coulomb systems, with different
number of electrons, we found that there is always a specific,
well-defined state of maximal total spin projection, which
becomes the ground state at large magnetic fields. For one-
electron systems, this state has Sz = −1/2 and M = m1 = 0.
For two-electron systems, it has Sz = −1 and M = −1 with
m1 = 0,m2 = −1; see Table II. For two studied three-electron
systems, Li and He−, it was the state Sz = −3/2 and M = −3
[3]. It seems natural to assume that this state will be the
ground state for He2

+ for a certain critical magnetic field;
see Sec. III. In order to find this critical magnetic field, it is
necessary to explore other states of He2

+, in particular, spin-
quartet gerade and ungerade states with different total electron
angular momentum 4(0,−1,−2,−4)+g,u. This will be done
elsewhere.

Concluding we have to state that at B = 1000 a.u., the
dissociation energy with respect to the main decay channel
He2

+[4(−3)+] → He[13(−1)+] + He+(1s0) reaches Ediss 

6.54 a.u. (∼178 eV), while the dissociation energy for the
decay channel (b) into He− + α is ∼25.8 a.u. 
 702 eV and
the dissociation energy for the decay channel (c) into He +
α + e is ∼26.8 a.u. 
 729 eV. Thus, the two latter energies
are in the energy window for one of the absorption features
observed for the isolated neutron star 1E1207.4-5209.

We found that in a strong magnetic field B � 120 a.u.,
the molecular ion He2

+ is the most bound system among the
atomic and molecular systems containing helium and up to
three electrons. Thus, this molecule may play a particularly
important role in the description of atmosphere of strongly
magnetized neutron stars, as was hinted at in Ref. [15].
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