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Optical clock interrogation protocols, based on laser-pulse spectroscopy, suffer from probe-induced frequency
shifts and their variations induced by laser power. The original hyper-Ramsey probing scheme, which was
proposed to alleviate those issues, does not fully eliminate the shift, especially when decoherence and relaxation
by spontaneous emission or collisions are present. We propose to solve the fundamental problem of frequency
shifts induced by the laser probe by deriving the exact canonical form of a multipulse generalized hyper-
Ramsey resonance, including decoherence and relaxation. We present a universal interrogation protocol based
on composite laser-pulse spectroscopy with phase modulation eliminating probe-induced frequency shifts at all
orders in the presence of various dissipative processes. Unlike frequency shift extrapolation based methods, a
universal interrogation protocol based on ±π/4 and ±3π/4 phase-modulated resonances is proposed which does
not compromise the stability of the optical clock while maintaining an ultrarobust error signal gradient in the
presence of substantial uncompensated ac Stark shifts. Such a scheme can be implemented in two flavors: either
by inverting clock state initialization or by pulse order reversal even without a perfect quantum state initialization.
This universal interrogation protocol can be applied to atomic, molecular, and nuclear frequency metrology, mass
spectrometry, and the field of precision spectroscopy. It might be designed using magic-wave-induced transitions,
two-photon excitation, and magnetically induced spectroscopy or it might even be implemented with quantum
logic gate circuit and qubit entanglement.
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I. INTRODUCTION

Atomic optical clocks are recognized to be ideal platforms
for highly accurate frequency measurements, leading to very
stringent tests of fundamental physical theories [1], such as
relativity [2,3], detection of gravitational waves [4], possible
variation of fundamental constants with time [5], or the
search for dark matter [6]. Depending on the selected atomic
species used to achieve stable and accurate optical frequency
standards, single trapped ion clocks [7,8] and neutral atom
lattice clocks [9–11] have been characterized over many years,
reducing systematic uncertainties to a fractional frequency
change well below 10−16, surpassing current microwave
atomic frequency standards. These promising standards are
based on ultranarrow electric-dipole-forbidden transitions. For
ions, examples are spin-forbidden transitions using quantum
logic spectroscopy [12], or electric-quadrupole or octupole
transitions, as in the single 171Yb+ ion clock which has recently
demonstrated a relative 3 × 10−18 systematic uncertainty [13].
Optical lattice clocks with alkaline-earth-like atoms are based
on a doubly forbidden transition weakly allowed in fermions
(odd isotopes) by a level mixing due to the hyperfine structure.
171Yb and 87Sr optical lattice clocks are now reaching relative
stabilities in the 10−16 range [14] and relative accuracies
of 2 × 10−18 [15], potentially leading to a redefinition of
the second for the next decade [16,17]. Strongly forbidden
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transitions, with vanishing spin-orbit coupling due to zero
nuclear spin, have been studied more recently in bosonic
species (88Sr, 174Yb, 24Mg), but they require a two-photon
excitation technique [18,19] or a magnetically induced spec-
troscopy [20–23], which are both limited by important ac
Stark shifts or Zeeman frequency shifts. Because the quest for
extreme precision in ultrahigh-resolution spectroscopy is still
progressing, it will ultimately require new laser stabilization
protocols, reducing systematic uncertainties to very low levels,
pushing precision even further. Among these uncertainties,
frequency shifts from the laser probe itself are always present
and might become a severe limitation for the next generation
of fermionic and bosonic quantum clocks with fractional
frequency change below 10−18.

Ramsey spectroscopy [24] was first modified by including a
frequency step during the laser pulses in order to compensate
the probe-induced frequency shift [25]. However, when the
shift is not fully compensated, a frequency shift remains, with
a linear dependence to the error on the compensation. Then,
composite laser pulse techniques, so-called hyper-Ramsey
(HR) spectroscopy, previously developed in nuclear magnetic
resonance and quantum computation [26–28], were applied
with electromagnetic phase-modulated resonances [29–31] in
order to provide nonlinear elimination of residual uncom-
pensated light-shift contributions and laser power variations
[32–35]. Such an HR spectroscopy has been successfully
applied on the ultranarrow electric octupole transition of the
single 171Yb+ ion, reducing ac Stark shifts by four orders of
magnitude, and has proven to be shielded from small pulse area
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variations [36]. To completely remove the third-order weak
dependence of the HR clock frequency shift on light-shift
uncompensated parts, a modified hyper-Ramsey technique
(MHR) was experimentally implemented within a bosonic 88Sr
lattice clock, demonstrating the suppression of the 2 × 10−13

probe Stark shifts to below 10−16, drastically expanding the
acceptance bandwidth of imperfect shift compensation [37].

However, it has been pointed out that the reliability of in-
terrogation schemes against uncompensated probe frequency
shifts and laser power variations might be severely limited
by decoherence, compromising the improvements of further
metrological performances [38].

We manage to overcome this fundamental obstacle by
building an ultrarobust clock-laser stabilization scheme taking
into account atomic decoherence and relaxation by both
spontaneous emission and weak collisions. The error signal
is synthesized by repeating and combining several atomic
population excitation fraction measurements, interleaved by
a controllable population inversion between clock states. The
paper is organized as follows: We begin by presenting the
two-level optical Bloch equations which are used to describe
coherent interaction between laser and atoms including several
dissipative processes which may disrupt the clock transition.
The Bloch vector resulting from a multipulse generalized
hyper-Ramsey (GHR) resonance is first expressed in a canoni-
cal form with a clock frequency shift. Note that our formal
analytic (GHR) resonance pattern can integrate additional
NMR rotation composite pulse protocols [26] to remove
any potential additional errors if desired. The corresponding
error signal line shape is then derived and the associated
clock frequency shift is obtained by a combination of phase-
modulated (GHR) resonances. We introduce a general 2D
diagram approach for frequency shift reconstruction allowing
a global map analysis of decoherence and relaxation effects.
The main part of this paper is dedicated to a universal laser
interrogation protocol using a combination of multiple (GHR)
error signals based on π/4,3π/4 phase steps and quantum
state initialization generating a laser frequency locking point
which is immune to probe-induced frequency shifts. We
finally explore and compare the sensitivity of the original
HR interrogation protocol, such as applied to the single ion
171Yb+ clock [36], to our universal laser frequency stabilization
technique for different radiative configurations of a two-level
clock transition.

II. CANONICAL FORM FOR ANALYTICAL MULTIPULSE
(GHR) RESONANCE EXPRESSION

To design a universal interrogation protocol for fermions
and bosons, we first derive the exact analytical expression
of a phase-modulated generalized hyper-Ramsey (GHR)
resonance along with the clock frequency shift expression,
including dissipative processes [39,40]. The atomic transition,
shown in Fig. 1 , includes a decoherence term γc, a spontaneous
emission rate denoted �, and an excited state population
relaxation ξ induced by weak collisions. Bloch variables are
used to describe the fraction of population excitation after
successive optical composite pulses with area θl indexed by
l = 1, . . . ,k, . . . ,n, including a free evolution time T at index
l = k. Light pulse duration τl �=k , Rabi frequency �l , laser

FIG. 1. Composite laser pulse spectroscopy probing a fermionic
or a bosonic clock transition perturbed by dissipative processes. Opti-
cal pulses are defined by a generalized area θl (l = 1,2, . . . ,k, . . . ,n),
the frequency detuning δl , the field amplitude �le

iϕl including a
phase-step modulation ϕl , a pulse duration τl , and a single free
evolution time T applied somewhere at the desired l = k pulse. The
general clock frequency detuning is defined by δl = δ − �l where a
residual error in precompensation of laser-probe-induced frequency
shift is �l . The laser-induced decoherence is called γc, relaxation by
spontaneous emission is labeled �, and ξ is the relaxation rate of the
population difference due to collisions.

detuning δl , and phase ϕl of the coherent electromagnetic field
can be modified independently over the entire sequence. The
general set of time-dependent optical Bloch equations for a
two-level {|g〉,|e〉} quantum system for the lth pulse is given
by [41–46]

U̇l = −γcUl + δlVl − �l sin ϕlWl,

V̇l = −δlUl − γcVl + �l cos ϕlWl, (1)

Ẇl = �l sin ϕlUl − �l cos ϕlVl − (� + 2ξ )Wl − �,

where δl = δ − �l is the generalized clock frequency de-
tuning, with δ being the laser frequency detuning from the
unperturbed clock resonance. A frequency offset is added
to the detuning δ during all light pulses, but not during the
free evolution time T , to bring back the observed central
fringe near δ = 0 [25]. �l is the part of the frequency shift
not compensated by the applied frequency offset. Optical
coherence and population difference are related to density
matrix elements by Ul ≡ ρge + ρ∗

ge, Vl ≡ i(ρge − ρ∗
ge), and

Wl ≡ ρee − ρgg . Population conservation is given by the
relation ρgg + ρee = 1. The complete three-vector components
M(θl) ≡ (U (θl),V (θl),W (θl)) solution to the previous set of
equations is [42,44]

M(θl) = R(θl)[Ml(0) − Ml(∞)] + Ml(∞), (2)

where we introduce for convenience a generalized pulse
area θl = ωlτl and a generalized Rabi frequency ωl (see
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Appendix A for all definitions). The rotation matrix R(θl),
taking into account decoherence and relaxation terms, is
written as follows:

R(θl) = e−γcτl e−βlτl ,

βl =
⎛⎝ 0 δ −�l sin ϕl

−δ 0 �l cos ϕl

�l sin ϕl −�l cos ϕl �γ

⎞⎠, (3)

with �γ = γc − (� + 2ξ ). Ml(0) ≡ (Ul(0),Vl(0),Wl(0))
stands for the system’s state before the lth pulse. The
exponential matrix R(θl) can be exactly expressed as a
square matrix of time-dependent matrix elements Rmn(θl)
(m,n = 1,2,3) (refer to Appendix A for all details).
Steady-state solutions Ml(∞) ≡ (Ul(∞),Vl(∞),Wl(∞)) are
directly obtained by switching off time-dependent derivatives
in Eq. (1) for the three vector components. The free evolution
matrix R(θk) at index l = k without laser field reduces to

R(θk = δT ) = e−γcT

⎛⎝ cos δT sin δT 0
− sin δT cos δT 0

0 0 e�γT

⎞⎠. (4)

The corresponding stationary solution Mk(∞) ≡
(Uk(∞),Vk(∞),Wk(∞)) is also found by switching off
the laser field �k = 0 in Eq. (1) during free evolution time.

The complete solution of Bloch-vector components for
a full sequence can ultimately be expressed in a reduced
canonical form:

M(θ1, . . . ,θn) ≡ A + B(�) cos(δT + �), (5)

which is the generalization to n pulses of the expression
established for n = 3 [33]. The offset term A is given by

A =
n∑

p=k+1

⎡⎣⎛⎝←−
n∏

l=p

R(θl)

⎞⎠[Mp−1(∞) − Mp(∞)]

⎤⎦
+Mn(∞) + he−(�+2ξ )T

⎛⎝R̃13

R̃23

R̃33

⎞⎠. (6)

The amplitude term B(�) components are given by

Bi(�i) = e−γcT |Ci |
√

1 + tan2 �i i ∈ {1,2,3}, (7)

and the phase-shift term � components are written as

�i = − arctan[Si/Ci] i ∈ {1,2,3},

S ≡
⎛⎝R̃11g − R̃12f

R̃21g − R̃22f

R̃31g − R̃32f

⎞⎠, C ≡
⎛⎝R̃11f + R̃12g

R̃21f + R̃22g

R̃31f + R̃32g

⎞⎠, (8)

where R̃mn (m,n = 1,2,3) are the matrix elements of the
compiled matrix R̃ and (f,g,h) components are given by

R̃ =
←−−

n∏
l=k+1

R(θl),

(9)⎛⎝f

g

h

⎞⎠ =
k∑

p=1

⎛⎜⎝
←−
k−1∏
l=p

R(θl)

⎞⎟⎠[Mp−1(∞) − Mp(∞)],

TABLE I. Composite laser-pulses interrogation protocols ignor-
ing dissipative processes. The clock frequency shift including residual
error in precompensation of probe-induced frequency shifts � is
given by δ̃ν(�/�). Pulse area θl is given in degrees and phase steps
ϕl+,ϕl− are indicated in subscript parentheses in units of radians.
The standard Rabi frequency for all pulses is � = π/2τ where τ is
the pulse duration reference. Free evolution appears at index k = 2,
denoted θk = δT . Reverse composite pulses protocols are denoted by
(†).

Protocol [Ref.] Composite pulses θl (ϕl+,ϕl−) δ̃ν(�/�)

R [24]
90( π

2 ,− π
2 ) 	 δT 
 90(0,0)

(†)90(0,0) 	 δT 
 90(− π
2 , π

2 )

1
πT

�

�

HR [32,33]
90( π

2 ,− π
2 ) 	 δT 
 180(π,π )90(0,0)

(†)90(0,0)180(π,π ) 	 δT 
 90(− π
2 , π

2 )

4
πT

(
�

�

)3

MHR [37]
90( π

2 ,0) 	 δT 
 180(π,π )90(0,− π
2 )

(†)90(− π
2 ,0)180(π,π ) 	 δT 
 90(0, π

2 )
0

GHR( π

4 ) [34]
90(0,0) 	 δT 
 180( π

4 ,− π
4 )90(0,0)

(†)90(0,0)180(− π
4 , π

4 ) 	 δT 
 90(0,0)
0

GHR( 3π

4 ) [34]
90(0,0) 	 δT 
 180(3 π

4 ,−3 π
4 )90(0,0)

(†)90(0,0)180(− 3π
4 , 3π

4 ) 	 δT 
 90(0,0)
0

where backward arrows indicate a matrix product from right
to left with growing indices. The generalized hyper-Ramsey
canonical expression describing the population transfer from
|g〉 to |e〉 clock states is given by the third component of the
Bloch variables. Various composite pulse protocols and their
time-reversed counterparts reported in Table I can be simulated
using Eq. (5).

A high-order expression of the clock frequency shift δν ≈
−�|δ→0/2πT affecting the extremum of the central fringe
pattern of the GHR resonance from Eq. (5) is presented
in Appendix B. Ignoring dissipative processes, analytical
expressions have already been derived for Ramsey and hyper-
Ramsey protocols in Refs. [33,35]. The typical nonlinear
response of a GHR resonance line shape to probe-induced
frequency shifts is usually asymmetric leading to off-center
line locking when a laser frequency modulation technique
is applied. In the next section, we present the phase-step
modulation of the resonance shape which eliminates the effect
of that asymmetry on the true position of the central fringe.

III. ERROR SIGNAL GENERATION WITH
PHASE-MODULATED (GHR) RESONANCE

A laser frequency stabilization scheme based on antisym-
metric laser phase steps is able to synthesize a dispersive
error signal locking the laser frequency to the center of the
perturbed clock transition [29,31]. This technique is applied
by measuring experimentally the population transfer P|g〉→|e〉
between clock states. The phase-modulated Ramsey scheme
requires the relative phase of the second optical Ramsey pulse
to be shifted by ±π/2 with respect to the first pulse.

For simplicity, we now focus on the third Bloch variable
component related to population difference and we will omit
indices in subsequent expressions. The error signal �E for
a particular protocol is built by taking the difference between
two Bloch-vector components M(θ1, . . . ,θn) with appropriate
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phase-steps modulation (ϕl+,ϕl−) of a specified pulse area θl .
The resulting line shape for population transfer between clock
states is

�E ≡ M(θ1, . . . ,θn)(ϕl+) − M(θ1, . . . ,θn)(ϕl−)

= [P|g〉→|e〉(ϕl+) − P|g〉→|e〉(ϕl−)]. (10)

The new phase-modulated line shape can also be rewritten in
yet another phasor canonical form as

�E ≡ Ã + B̃(�̃) cos(δT + �̃), (11)

where offset Ã, amplitude B̃, and phase shift �̃ are explicitly
given in Appendix C. The error signal shape for the third
component related to the population difference exhibits a
dispersive feature versus clock frequency detuning, unlike the
GHR resonance curve [33]. From the condition �E|δ=δ̃ν = 0
due to imperfect probe-induced frequency shift compensation,
it is straightforward to derive an analytical form of the
frequency-shifted locking point δ̃ν as

δ̃ν = 1

2πT

(
−�̃|δ→0 ± arccos

[
− Ã|δ→0

B̃(�̃)|δ→0

])
. (12)

The robustness of various error signals to a modification of
pulse area and uncompensated frequency shifts has already
been numerically studied in detail when decoherence is non-
negligible [38]. The fundamental consequence for all optical
interrogation schemes is a rapid loss of the laser frequency
locking-point stability inducing, for example, additional con-
straints concerning the MHR protocol [38]. To explore in more
depth the instability of frequency locking points caused by
dissipative processes, clock frequency shifts for various inter-
rogation protocols have been extracted from general offset and
amplitude terms established in the previous section, Eq. (11)
and Eq. (12). They are investigated with the help of 2D contour
and density plot diagrams presented in the next section.

IV. 2D DIAGRAMS FOR CLOCK FREQUENCY SHIFT
RECONSTRUCTION

The influence of decoherence or relaxation by spontaneous
emission on HR and GHR probing schemes is analyzed using
2D contour and density plot diagrams shown in Figs. 2 and 3.
All clock-frequency shifts δ̃ν are plotted using Eq. (12)
versus uncompensated frequency shifts and large pulse area
variations. Because ac Stark shifts increasing quadratically
with pulse area might still be manageable by applying a larger
laser frequency step for precompensation of the central fringe
frequency shift [25], diagrams are also exploring regions of
several π/2 laser pulse area units. Note that the error signal
contrast is always maximized for odd values of multiples
of �τ = π/2 pulses and vanishing for even values. Colored
values of clock-frequency shifts have been deliberately limited
between −2 mHz and +2 mHz for constraint below 10−18

relative accuracy. The white background represents some
regions where the residual shift exceeds a few 10−18 levels
of relative accuracy.

The dependence of the HR error signal �E[HR] on
uncontrollable modifications of laser parameters, ignoring
dissipative processes, is presented in Figs. 2(a1) and 2(a2). The
2D contour and density plots exhibit some stable regions where

the third-order dependence of the clock shift δ̃ν[HR] is well
below 500 μHz over 100 mHz of uncompensated frequency
shifts (pink and violet region along the vertical axis). The
clock-frequency-shift compensation can be made more robust
over a wider range of residual frequency shifts by increasing
the pulse area from π/2 to a magic value near 2.95π/2 as
shown in Fig. 2(a2). At this particular value, all contour
plots (black thin isoclinic lines delimiting regions) present
vanishing first-order derivative versus pulse area variation
making the frequency locking point even more stable to
small laser power modification. Noteworthy frequency locking
points are also observed near the value of 1.2π/2 or near
2.6π/2. Around these values, the clock frequency shift is
changing abruptly from positive to negative values for small
errors in compensation of probe-induced frequency shifts.
When there is decoherence, a modification of the δ̃ν[HR]
clock-frequency shift is observed in Figs. 2(b1), 2(b2) leading
to a linear increase of the shift up to 2 mHz over 100 mHz of
uncompensated frequency shifts. However, a small frequency
stability island (small pink and violet region) emerges in
Fig. 2(b2) for a pulse area near ∼3.25π/2. When decoherence
and relaxation by spontaneous emission are both present as
shown in Figs. 2(c1), 2(c2), the clock frequency shift is
reversed with a negative slope of 2 mHz over 400 mHz of
uncompensated frequency shifts.

We have also studied the influence of decoherence on
Eq. (12) with GHR(π/4) and GHR(3π/4) protocols pre-
sented in Table I. Clock frequency shift δ̃ν[GHR(π/4)] and
δ̃ν[GHR(3π/4)] responses to laser parameter modifications
are reported in 2D contour and density plot diagrams in
Figs. 3(a1), 3(a2) and 3(b1), 3(b2). It is worthwhile to note
that if decoherence is vanishing, GHR(π/4) and GHR(3π/4)
are indeed very efficient and lead to a complete suppression
of probe-induced frequency shifts δ̃ν = 0 at all orders (see
Table I). This is why the figure equivalent to Figs. 2(a1), 2(a2)
is not shown. If the laser linewidth is not negligible, generating
decoherence γc, robustness of GHR protocols to laser power
variation and uncompensated frequency shifts are strongly
degraded leading to Fig. 3. The radiative case � �= 0 leads to
an important increase of clock frequency shifts δ̃ν[GHR(π/4)]
and δ̃ν[GHR(3π/4)] and is not considered here.

The simultaneous observation of Figs. 3(a2) and 3(b2)
shows that frequency locking-point regions of instability
marked by different colored density plots are of opposite sign.
It is thus possible to reconstruct another synthetic frequency
shift δ̃ν[syn] to reliably suppress probe-induced shifts and
their variations for GHR(π/4) and GHR(3π/4) interrogation
schemes. Taking the half sum of the two clock frequency shifts
δ̃ν[GHR(π/4)] and δ̃ν[GHR(3π/4)] shown in Figs. 3(c1),
3(c2) displays small frequency locking-point stability islands
near the π/2 and 3π/2 pulse area (pink and violet regions
along the horizontal axis). This synthetic residual frequency
shift becomes much less sensitive to variations in laser power
and probe shifts [38].

2D diagrams help in generating some stable regions by
combining frequency-shift measurements when dissipative
processes are present, but the process requires a post-data
treatment and the synthetic laser frequency locking point is
never absolutely protected against residual probe shifts and
laser power variations degrading the clock stability.
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FIG. 2. 2D contour and density plot diagrams of the δ̃ν[HR] clock frequency shift based on Eq. (12) versus uncompensated frequency
shifts �/2π (horizontal axis) and pulse area variation �τ (vertical axis). Left graphs are over a large detuning acceptance bandwidth and
right graphs are expanded between π/2 and 3π/2 pulse areas. (a1), (a2) Ideal case. (b1), (b2) Decoherence γc = 2π × 50 mHz. (c1), (c2)
Decoherence and relaxation γc = 2π × 50 mHz, � = 2π × 100 mHz. The standard Rabi frequency for all pulses is � = π/2τ where τ is the
pulse duration reference. Pulse duration reference is set to τ = 3/16 s, free evolution time is T = 2 s, and uncompensated frequency shift is
�l ≡ � (l = 1,3,4).

V. UNIVERSAL ELIMINATION PROTOCOL OF
PROBE-FIELD-INDUCED FREQUENCY SHIFTS

Although a recent frequency-shift extrapolation-based
method based on multiple (HR) schemes with different
free evolution times was proposed to reduce imperfect

compensation of probe-induced shifts well below a fractional
frequency change of 10−18 [38], the existence of an absolute
interrogation protocol directly canceling these shifts on the
dispersive error signal shape at all orders even in presence
of decoherence, relaxation by spontaneous emission, and
collisions has not yet been established.
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FIG. 3. 2D contour and density plot diagrams of the δ̃ν[GHR(π/4)] and δ̃ν[GHR(3π/4)] clock frequency shifts based on Eq. (12)
under decoherence γc = 2π × 50 mHz versus uncompensated frequency shifts �/2π (horizontal axis) and pulse area variation �τ (vertical
axis). Left graphs are over a large detuning acceptance bandwidth and right graphs are expanded between π/2 and 3π/2 pulse areas.
(a1), (a2) δ̃ν[GHR(π/4)] diagram. (b1), (b2) δ̃ν[GHR(3π/4)] diagram. (c1), (c2) Synthetic frequency shift δ̃ν[syn] = 1

2 {δ̃ν[GHR(π/4)] +
δ̃ν[GHR(3π/4)]}. Other parameters are identical to Fig. 2.

To solve the problem, we propose in Fig. 4 a universal inter-
rogation protocol denoted GHR(π/4,3π/4) based on mixing
GHR(π/4) and GHR(3π/4) schemes from Table I, interleaved
or not by a controllable population inversion between clock
states. Symmetric properties of the interrogation scheme might
be even exploited with some quantum logic gate circuits

using entanglement of prepared qubits [47], reducing the
number of measurements required to generate the correct laser
frequency locking point. Unlike the synthetic frequency-shift
realization presented in Fig. 3(c2) which requires combining
two separated clock frequency shift evaluations potentially
degrading the clock stability, our universal protocol generates

023408-6



UNIVERSAL INTERROGATION PROTOCOL WITH ZERO . . . PHYSICAL REVIEW A 96, 023408 (2017)

FIG. 4. Universal laser frequency interrogation schemes for ultrarobust frequency locking points based on a combination of error signals
generated by GHR(π/4) and GHR(3π/4) protocols from Table. I. (a) Interrogation protocol including a controllable population inversion
between clock states. (b) Equivalent mirror-like interrogation protocol obtained by applying the transformation t → −t and ϕ → −ϕ on
the scheme from (a). (c) Synthetic universal interrogation protocol by combining parts of (a) and (b) schemes, which eliminates population
initialization in the upper state.

a direct laser frequency locking point as a strong error signal
gradient robust even to substantial uncompensated frequency
shifts.

The universal interrogation protocol GHR(π/4,3π/4)
breaks down into three different layouts of composite optical
pulses as shown in Figs. 4(a)–4(c). The initial combination of
GHR(π/4) and GHR(3π/4) protocols from Table I, presented
in Fig. 4(a), includes a population inversion between clock
states. Phase steps are applied only during the third pulse inter-
action following a free evolution time. A similar interrogation
scheme can be realized using reverse composite pulses as in
Fig. 4(b) with mirror-like protocols denoted by † type from
Table I. In such a case, while ignoring stationary states, a time
and phase reversal symmetry transformation can be applied on
the scheme presented in Fig. 4(a) to recover an identical line
shape obtained with Fig. 4(b) and mirror-like protocol [33]. A
new frequency locking point can still be synthesized as shown
in Fig. 4(c) mixing some parts of the two previous protocols
while eliminating population initialization in the upper state.
Such an alternative scheme might be seen as a sort of spin
echo hybrid technique [48] removing some uncontrollable

variations of laser parameters with time order pulse reversal. In
all cases, the new error signal �E[GHR(π/4,3π/4)] requires
a specific number of atomic population fraction measurements
to generate a robust laser frequency locking point depending
on the nature of the dissipative processes impacting the atomic
transition. The ideal laser frequency locking point with no
correction for uncompensated probe induced frequency shifts
is provided by the use of ±π/4 and ±3π/4 phase steps which
cancel exactly steady-state solutions from Bloch solutions [see
for example Eq. (D2) in Appendix D].

When an ideal two-level system is considered, error signals
based on MHR and GHR protocols require only 2 population
fraction measurements generating a very stable frequency
locking point with full elimination of residual clock frequency
shifts δ̃ν as reported in Table I. For a pure decoherence case
affecting the frequency locking point stability as shown in
Fig. 3(a2) and Fig. 3(b2), a combination of 4 atomic population
fraction measurements with ±π/4 and ±3π/4 phase steps and
one single state initialization [half part of the universal protocol
from Fig. 4(a) or Fig. 4(b) called † type] is sufficient to totally
cancel the probe-induced frequency shifts. The normalized
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error signal denoted �E⇓(⇑) ≡ �E[GHR(π/4,3π/4)] (or
equivalently † type) is generated as follows:

�E⇓(⇑) = 1
2 {�E[GHR(π/4)]−�E[GHR(3π/4)]}⇓(⇑),

(13)
�E

†
⇓(⇑) = 1

2 {�E†[GHR(π/4)]−�E†[GHR(3π/4)]}⇓(⇑),

where ⇓ (⇑) means the protocol is applied with population
initialization in either ground state |g〉≡ ⇓ or excited state
|e〉≡ ⇑.

For simultaneous activation of spontaneous emission and
decoherence, the error signal thus requires 8 atomic popu-
lation measurements divided into 4 measurements with state

initialization in |g〉 and |e〉 [see Fig. 4(a)]. The dispersive error
signal �E⇓⇑ ≡ �E[GHR(π/4,3π/4)] (�E

†
⇓⇑) now becomes

�E⇓⇑ = 1
2 (�E⇓ − �E⇑) = F⇓⇑[M(0),θ1,θ3] sin(δT ),

(14)
�E

†
⇓⇑ = 1

2 (�E
†
⇓ − �E

†
⇑) = F

†
⇓⇑[M(0),θ1,θ3] sin(δT ),

where amplitude functions F [M(0),θ1,θ3] can be derived from
Appendix D.

Note that an additional protocol presented in Fig. 4(c) can
synthesize another ultrastable frequency locking point while
avoiding population initialization in both quantum states. We
apply now a linear combination of error signals from two

FIG. 5. Comparison of normalized line shapes and signal amplitudes of the three-Bloch-vector component (U,V,W ) versus clock frequency
detuning δ/2π for protocols �E⇓⇑ of Figs. 4(a), 4(b) (left panels) and �E⇓⇓ of Fig. 4(c) (right panels). (a1) Bloch component �E(U )⇓⇑ and
(a2) �E(U )⇓⇓. (b1) Bloch component �E(V )⇓⇑ and (b2) �E(V )⇓⇓. (c1) Bloch component �E(W )⇓⇑ and (c2) �E(W )⇓⇓. The standard Rabi
frequency for all pulses is � = π/2τ where τ is the pulse duration reference. Pulse duration is τ = 3/16 s with free evolution time T = 2 s.
We have ignored probe-induced frequency shifts and dissipative processes for comparison between amplitude curves.
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opposite sequences of composite laser pulses that are reversed
in time ordering as

�E⇓⇓ = 1
4 (�E

†
⇓ + �E⇓) = F⇓⇓[M(0),θ1,θ3] sin(δT ),

(15)

where amplitude function F [M(0),θ1,θ3] can be derived
from Appendix E. Note that such an error signal �E⇓⇓
is remarkable over a few additional features. It produces a
zero crossing point with enhanced immunity to residual offset
variations independent of a perfect quantum state initialization.

We have reported all Bloch-vector component error signal
line shapes with normalized amplitudes for �E⇓⇑ and �E⇓⇓
in Fig. 5 ignoring dissipative processes. Curves from the
right panels are normalized respectively to the ones from
left panels showing very different signal strengths in real and
imaginary parts of the optical coherence under identical choice
of laser parameters. Notice that if a simultaneous laser probe
transmission monitoring is allowed with the first universal
protocol �E⇓⇑, a parallel implementation of a feedback loop
control may be realized by recording imaginary and real
parts of the optical coherence [see Eq. (D5) in Appendix D
and Figs. 5(a1), 5(b1)] as an additional hint signal to steer
any probe frequency drift in the correct direction over long
periods of time. The second universal protocol �E⇓⇓ does
even not require any elimination of residual optical coherence
after the entire interrogation process because nonvanishing
real and imaginary parts of any optical coherence, which may
interfere with the laser probe during the pulse spectroscopy
[49], are exhibiting the same dispersive line shape locked at
the unperturbed clock frequency [see Eq. (E2) in Appendix E].

We have respectively reported in Figs. 6(a)–6(a) typical
error signal patterns �E[HR], �E[MHR], and �E⇓⇑ versus
the clock detuning under simultaneous action of decoherence
and relaxation. It is clearly demonstrated that the laser
frequency locking point generated by �E⇓⇑ is ultrarobust
against dissipation and residual uncompensated probe-induced
frequency shifts compared to other schemes. The robustness of
the normalized error signal slope to uncompensated frequency
shifts and pulse area variation is presented in Fig. 7(a). The
�E⇓⇑ (�E

†
⇓⇑) acceptance bandwidth is two times larger than

the �E[HR] error signal under identical laser parameters. A
very large ±10% error on the laser field amplitude slightly
modifies the slope but does not degrade the frequency locking
range where the slope does not drop to zero. We have also
checked that all universal interrogation schemes do not need
to rely on a perfect 100% initialization of the excited state.
Investigating various analytical �E⇓⇑ (�E

†
⇓⇑) error signal

shape expressions (see Appendix D), nonideal population
inversion between quantum states, for example due to large
frequency shifts induced by a π pulse excitation, will lead
only to a linear reduction in size amplitude of the generated
error signal with no deterioration of the laser frequency locking
point robustness.

We finally report in Fig. 7(b) the sensitivity of δ̃ν[HR] and
δ̃ν[�E⇓⇑] clock frequency shifts to residual uncompensated
probe shifts for pulse area variations of �θ/θ = ±10% and
various dissipative processes configurations already displayed.
The δ̃ν[HR] clock frequency shift measurement affecting
the central fringe minimum for the HR protocol is shown

FIG. 6. Error signal shapes versus clock frequency detuning δ/2π

for three different uncompensated frequency shifts �/2π . The laser
frequency locking point is delimited by a bounding box around
δ → 0. (a) �E[HR], (b) �E[MHR], and (c) �E⇓⇑. Resilience of
the frequency locking point to various uncompensated probe-induced
frequency shifts �/2π is demonstrated for the last scheme. Pulse
area variation is set to �θ/θ = ±10% (shadow regions). Dissipative
parameters of the two-level system used as an atomic frequency
reference are fixed to γc = 2π × 50 mHz, � = 2π × 100 mHz, and
ξ = 0. The standard Rabi frequency for all pulses is � = π/2τ where
τ is the pulse duration reference. Pulse duration is τ = 3/16 s with
free evolution time T = 2 s.
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FIG. 7. Compared robustness of �E[HR] and �E⇓⇑ schemes
with �θ/θ = ±10% error in the laser field amplitude. (a) Accep-
tance bandwidth of normalized �E[HR] and �E⇓⇑ (�E

†
⇓⇑) error

signal slopes versus uncompensated probe shifts �/2π . (b) �E⇓⇑
(blue dots) and �E[HR] (solid line) clock frequency shifts when
decoherence, relaxation by spontaneous emission, and collisions are
toggled on-off. All other parameters are identical to Fig. 6.

in Fig. 7(b). It is worth noting the perfect cancellation
of the locked frequency shift δ̃ν[�E⇓⇑] reported as blue
dots, even in the presence of decoherence and relaxation.
Table II summarizes absolute robustness of different error
signal laser frequency locking points to various combinations
of dissipative parameters γc,�,ξ , for a closed two-level system.
Table III reports the ultimate clock frequency shift sensitivity
from different error signal laser frequency locking points
to a systematic error in the laser phase-stepping process
by δϕ/ϕ = ±1% under a strong pulse area variation by
�θ/θ = ±10% and for three different values of uncompen-
sated frequency shifts. From this analysis, the �E[MHR]
error signal presents a systematic parasitic shift even when a
complete elimination of residual frequency shifts � is realized.
The result is also consistent with a previous numerical work
which was only for a pure decoherence effect [38]. Based
on our complete GHR line-shape solution, we have been

TABLE II. Absolute robustness of various error signal laser
frequency locking points to individual or multiple {} dissipative
parameters γc,�,ξ for a closed two-level system. The number of
atomic state population measurements N required to build the error
signal is also indicated. A perfect phase stepping of the laser for all
protocols is considered here. Note if � �= 0, then γc = �/2 to be
consistent with a pure radiative process.

Error signal N γc ξ {γc,ξ} {γc,�} {γc,�,ξ}
�E[HR] �E[GHR(π/4)]
�E[MHR] �E[GHR(3π/4)]

2 NO NO NO NO NO

�E⇓(⇑), �E
†
⇓(⇑) 4 � � � NO NO

�E⇓⇑, �E
†
⇓⇑, �E⇓⇓ 8 � � � � �

able to identify that the �E[HR] error signal also recovers
a small parasitic shift due to a small imperfect phase-step
modulation. We note that for uncompensated frequency shifts
larger than �/2π � 1 Hz, the HR slope has abruptly changed
in sign as expected from Fig. 7(a) leading to a rapid loss of
clock stability. However the larger acceptance bandwidth for
universal schemes �E⇓⇓ and �E⇓⇑ allows for maintaining
a robust error signal gradient even for larger uncompensated
probe-induced frequency shifts. They still ultimately suffer
from a weak linear dependance to these uncompensated
frequency shifts because a small error in phase steps breaks
the perfect rejection of steady-state solutions when combining
several atomic population fraction measurements.

VI. CONCLUSIONS

We have first established the analytical expression of the
Bloch-vector evolution in the presence of decoherence and
relaxation during a light pulse interaction. We then deduced
the analytical equation of the Bloch-vector evolution of a
two-level atom subjected to a series of light pulses of different
lengths, laser detunings, field amplitudes, and phases. This
allowed us to determine the error signal and shift of a probe
laser frequency locked on a narrow optical transition biased
by a probe-induced shift using various interrogating schemes,
such as HR, MHR, or GHR techniques. It is shown that these
techniques do not allow a full cancellation of the shift in
the presence of dissipative processes. We have then proposed
universal protocols based on composite pulses and ±π/4 and

TABLE III. Estimation of various laser frequency locking-point
frequency shifts |δ̃ν| (absolute value) to a systematic error in laser
phase steps by δϕ/ϕ = ±1%. Dissipative atomic parameters are fixed
to � = 2π × 100 mHz and γc = �/2 under pulse area variation by
�θ/θ = ±10% for three residual uncompensated frequency shifts
�/2π . All frequency shifts are given in units of mHz.

Error signal �/2π = 0 �/2π = 440 �/2π = 1500

�E[MHR] |δ̃ν| � 100 |δ̃ν| � 100 |δ̃ν| � 1000
�E[HR] |δ̃ν| � 10 |δ̃ν| � 10 out of range
�E⇓⇓ |δ̃ν| = 0 |δ̃ν| � 1 |δ̃ν| � 10
�E⇓⇑ |δ̃ν| = 0 |δ̃ν| � 0.1 |δ̃ν| � 1
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±3π/4 phase modulation. The synthesized laser frequency
locking point is absolutely robust against pulse area errors
and uncompensated probe-induced frequency shifts in the
presence of laser-induced decoherence and relaxation caused
by both spontaneous emission and weak collisions. Here a
composite laser-pulse interrogation protocol demonstrates a
very efficient elimination of field-induced frequency shifts
with noninteracting particles through large constraints in laser
parameters. These schemes can be implemented in two flavors:
either by inverting clock state initialization or by pulse order
reversal, and are still competitive compared with HR and MHR
schemes to a systematic imperfection in laser phase stepping
process during the error signal reconstruction. We have indeed
not considered other important technical problems such as
local oscillator phase noise, rapid laser power fluctuation, or
electronic servo bandwidth restriction which are out of the
scope of this paper. However such noise sources should reduce
the locked frequency stability but not necessarily its accuracy.

Our frequency measurement protocol might be applied to
weakly allowed or forbidden atomic transitions and might be
very useful for the next generation of 1D and 3D optical
lattice clocks [50,51] probed by direct laser excitation or
by high-power magic-wave-induced transitions [52], magneti-
cally induced spectroscopy [21–23], or based on hyper-Raman
Ramsey spectroscopy [53]. Laser spectroscopy protected
against probe-field-induced frequency shifts will perform
better high-resolution frequency measurements by suppressing
spurious phase shifts from the excitation pulses in precision
spectroscopy [54,55], Doppler-free two-photon spectroscopy
[56–58], tracking the tiniest changes in molecular vibrational
frequencies based on clocks sensitive to potential variation
in the electron-to-proton mass ratio [59–62], fundamental
physics tests and metrology with hydrogen molecular ions
[63], future nuclear clocks based on γ transitions [64,65],
observing some unexpected clock frequency shifts related
to mass defect effects [66], and in the recent application of
Ramsey-type mass spectrometry [67,68].

Thus, a new generation of optical generalized hyper-
Ramsey quantum clocks may achieve an unprecedented
breakthrough in extreme precision measurements for the next
targeted 10−19 level of relative accuracy.
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APPENDIX A: TIME-DEPENDENT MATRIX ELEMENTS

The analytic solution of generalized composite laser pulses
used to design our universal protocol is explicitly expressed
along with an in-depth analysis of the error signal construction
and how the proposed protocol exploits symmetrization to
provide robustness against probe-induced frequency shifts
and various dissipative processes. Some important results

based on a combination of specific phase-modulated (GHR)
resonances realize a very robust clock laser stabilization
scheme against decoherence. The generalized hyper-Ramsey
resonance is described within the density matrix formalism
including decoherence. The optical Bloch equations presented
in the main text [see Eq. (1)] describe the laser field interaction
with a two-state quantum system. The general solution M(θl)
is derived in a matrix form including Ml(∞) steady-state
solutions written as [42,44]

M(θl) = R(θl)[Ml(0) − Ml(∞)] + Ml(∞),

Ml(∞) = − �

D

⎛⎝δl�l cos ϕl − γc�l sin ϕl

γc�l cos ϕl + δl�l sin ϕl

γ 2
c + δ2

l

⎞⎠, (A1)

D = γc�
2
l + (� + 2ξ )

(
γ 2

c + δ2
l

)
,

where the clock frequency detuning is defined by δl = δ − �l

(�l is the uncompensated part of the probe-induced frequency
shift) and the generalized pulse area is θl = ωlτl . The square
evolution matrix R(θl) requires exponentiation of the βl matrix
[Eq. (3)]. These square matrix elements Rmn(θl) following
Refs. [44,46] are given by

R11(θl) = e−γcτl
(
a0 − a2

[
δ2
l + �2

l sin2 ϕl

])
,

R12(θl) = e−γcτl
(
a1δl + a2�

2
l sin ϕl cos ϕl

)
,

R13(θl) = e−γcτl (a2[δl�l cos ϕl − �γ�l sin ϕl]

− a1�l sin ϕl),

R21(θl) = e−γcτl
( − a1δl + a2�

2
l sin ϕl cos ϕl

)
,

R22(θl) = e−γcτl
(
a0 − a2[δ2

l +�2
l cos2 ϕl]

)
,

R23(θl) = e−γcτl (a2[δl�l sin ϕl + �γ�l cos ϕl]

+ a1�l cos ϕl),

R31(θl) = e−γcτl (a2[δl�l cos ϕl + �γ�l sin ϕl]

+ a1�l sin ϕl),

R32(θl) = e−γcτl (a2[δl�l sin ϕl − �γ�l cos ϕl]

− a1�l cos ϕl),

R33(θl) = e−γcτl
(
a0 + a1�γ − a2

[
�2

l − �γ 2
])

, (A2)

where �γ = γc − (� + 2ξ ). Auxiliary time-dependent func-
tions a0 ≡ a0(θl),a1 ≡ a1(θl),a2 ≡ a2(θl) are given by [41,44]

a0(θl) = [(SD3 − T D2) sin θl + (SD2 + T D3) cos θl]e
ρlτl

+ (
D0ηl + g2

l

)
Reηlτl ,

a1(θl) = [(SD1 − T ωl) sin θl + (Sωl + T D1) cos θl]e
ρlτl

+D0Reηlτl ,

a2(θl) = [S sin θl + T cos θl]e
ρlτl + Reηlτl , (A3)

and relations between derivatives as [44]

ȧ0(θl) = δ2
l �γ a2(θl),

ȧ1(θl) = a0(θl) − g2
l a2(θl), (A4)

ȧ2(θl) = a1(θl) + �γa2(θl),
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with an auxiliary variable for convenience:

a3(θl) = a0(θl) − a2(θl)δ
2
l . (A5)

We introduce the following notation:

g2
l = �2

l + δ2
l ,

D0 = ηl − �γ,

D1 = ρl − �γ, (A6)

D2 = ωl(2ρl − �γ ),

D3 = (
ρ2

l − ω2
l − ρl�γ + g2

l

)
,

and

R = 1

(ρl − ηl)2 + ω2
l

,

S = (ρl − ηl)

ωl

(
(ρl − ηl)2 + ω2

l

) ,

T = −1

(ρl − ηl)2 + ω2
l

.

(A7)

The three roots of the matrix (one real root ηl and two complex
ones ρl ± iωl) are by Cardan’s cubic solutions leading to
damping terms ηl,ρl and a generalized angular frequency ωl

written as

ηl = 1

3

(
�γ − C − �0

C

)
,

ρl = 1

3

(
�γ + C

2
+ �0

2C

)
,

ωl =
√

3

6

(
−C + �0

C

)
,

�0 = �γ 2 − 3g2
l ,

�1 = − 2�γ 3 + 9g2
l �γ − 27δ2

l �γ,

C =
3

√√√√�1 +
√

�2
1 − 4�3

0

2
.

(A8)

APPENDIX B: CLOCK FREQUENCY SHIFT δν FROM
RESONANCE LINE SHAPES

Using exact analytic expressions to solve the Bloch equa-
tions for a single given Rabi pulse, the expression for a full
sequence of n pulses can be generalized to

M(θ1, . . . ,θn) =
n∑

p=1

⎡⎣⎛⎝←−
n∏

l=p

R(θl)

⎞⎠[Mp−1(∞) − Mp(∞)]

⎤⎦
+Mn(∞), (B1)

where state initialization means M0(∞) ≡ M1(0) by conven-
tion. Such an expression can be rewritten to the canonical
form presented in the paper [see Eq. (5)] using some phasor
expressions while fixing index k for the free evolution time.
Any composite laser-pulse sequence can indeed be recast such
as

M(θ1, . . . ,θn) ≡ A + B(�) cos(δT + �), (B2)

as long as we consider a unique pulse switching off the laser
field used as a pivot in the factorization process. The population
transfer P|g〉→|e〉 is related to the third component of the Bloch
components M(θ1, . . . ,θn) as

P|g〉→|e〉 = 1 + W (θ1, . . . ,θn)

2
. (B3)

To establish the frequency shift of the resonance curve
associated with the population transfer P|g〉→|e〉, tracking the
extremum of Eq. (B2) is required. The condition is given by
∂P|g〉→|e〉/∂δ|δ→0 = 0 which leads to the first-order expression
as

δν = − �|δ→0

2π (T + ∂δ�|δ→0)
, (B4)

where ∂δ means a derivation with respect to the unperturbed
clock detuning δ. When high-order corrections are taken into
account in Eq. (B4), the phase shift has to be replaced by
� → � + � + � where

� = − arctan

[
∂δB(�)

(T + ∂δ�)B(�)

]
, (B5a)

� = arcsin

[
∂δA√

[∂δB(�)]2 + [(T + ∂δ�)B(�)]2

]
. (B5b)

High-order terms given by Eq. (B5a) and Eq. (B5b) can
handle a possible distortion of the line shape when the free
evolution time T is not so large compared to pulse duration.

APPENDIX C: CLOCK FREQUENCY SHIFT δν̃ FROM
ERROR SIGNAL LINE SHAPES

The error signal given by Eq. (11) used to lock the laser
frequency is generated by taking the difference between two
phase-modulated resonances as

�E = P|g〉→|e〉(ϕl+) − P|g〉→|e〉(ϕl−). (C1)

For instance the shift δν of the frequency locking point from
the error signal due to an imperfect light-shift compensation
is given by the relation

�E|δ=δ̃ν = 0. (C2)

To evaluate the clock frequency shift associated with different
phase-step modulations, we use Eq. (C2) to determine the
analytical form of the frequency-shifted locking point as

δ̃ν = 1

2πT

(
−�̃|δ→0 ± arccos

[
− Ã|δ→0

B̃(�̃)|δ→0

])
(C3)

with a new phase-shift expression:

�̃ = arctan

[
B(�)(ϕl+) sin �(ϕl+) − B(�)(ϕl−) sin �(ϕl−)

B(�)(ϕl+) cos �(ϕl+) − B(�)(ϕl−) cos �(ϕl−)

]
(C4)

including new offset and amplitude parameters as

Ã = A(ϕl+) − A(ϕl−),

B̃(�̃) = [B(�)(ϕl+) cos �(ϕl+) − B(�)(ϕl−) cos �(ϕl−)]

×
√

1 + tan2 �̃. (C5)
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APPENDIX D: ERROR SIGNAL �E⇓⇑ (�E†
⇓⇑) LINE SHAPE

The proposed universal protocol interleaving ±π/4 and
±3π/4 laser-phase steps with a Bloch-vector initialization in
each quantum state allows for an exact cancellation of all
cosine terms in the error signal pattern. It is leaving a pure
dispersive signal �E ≡ �E[GHR(π/4,3π/4)] while provid-
ing a perfectly robust locking point at the unperturbed clock
frequency δ = 0 against residual probe-induced frequency
shifts. The error signal shape is evaluated explicitly based on a
GHR protocol defined by 4 composite pulses (θl) (l = 1,2,3,4)
where phase steps are applied only within θ3 and with a
free evolution time when l = k = 2 fixing θ2 = δT . Due to
pulse parameters that are defined by δl ≡ δ − � during laser
interaction, �l ≡ � = π/2τ , and a choice of successive pulse
durations as τ,T ,2τ,τ , a standard relation R(θ1) = R(θ4) is
obtained.

The dispersive error signal �E based on Fig. 4(a) is then
computed by successive differences between Bloch-vector
components alternating negative and positive ϕ3 = π/4,3π/4
phase steps reducing to the compact expression

�E =R(θ1)�R(θ3)R(δT )M(θ1), (D1)

where we have introduced

�R(θ3) = R(θ3)(+ π
4 ) − R(θ3)(− π

4 )

− [
R(θ3)(+3 π

4 ) − R(θ3)(−3 π
4 )

]
. (D2)

Bloch-vector component initialization for the first pulse is
here M1(0) = (0,0,W (0)). Note that successive differences
between Ml(±ϕl ) steady states and from cross-product terms
of the form R(θ3)(±ϕl )Ml(±ϕl ) cancel together exactly due to the
particular choice of phase steps.

When steady states are vanishing Ml(∞) ≡ 0, Eq. (D1) can
be directly reduced to the single product expression:

�E = R(θ1)�R(θ3)R(δT )R(θ1)M1(0). (D3)

A symmetrization occurs for �R(θ3) and comes from exploit-
ing ±π/4,±3π/4 phase combinations between successive
sequences of composite laser pulses, ϕ → −ϕ for cosine terms
and ϕ → π − ϕ for sine terms, leading to a simple Pauli-like
matrix:

�R(θ3) = 2a2(θ3)e−2γcτ�2

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠. (D4)

The final compact expression of the error signal is rewritten as

�E = AW (0)

⎛⎝Cu cos(δT ) + Su sin(δT )
Cv cos(δT ) + Sv sin(δT )

−Sw sin(δT )

⎞⎠, (D5)

where A = 2a2(θ3)�2e−γc(4τ+T ). Matrix elements Su,v,w and
Cu,v,w are reduced in a compact form using relations from
Eq. (A4) as

Su = �δ1[a1(θ1)ȧ2(θ1) − a3(θ1)a2(θ1)],

Sv = �
[
ȧ1(θ1)ȧ2(θ1) + a1(θ1)a2(θ1)δ2

1

]
,

Sw = �2[[ȧ2(θ1)]2 + a2(θ1)2δ2
1

]
,

Cu = �
[
a1(θ1)a2(θ1)δ2

1 + a3(θ1)ȧ2(θ1)
]
,

Cv = �δ1[ȧ1(θ1)a2(θ1) − a1(θ1)ȧ2(θ1)],

Cw = 0, (D6)

with the unperturbed clock detuning corrected by probe-
induced shifts as δ1 = δ − �.

The normalized error signal connected to the third Bloch-
vector component �E⇓(⇑) ≡ �E(W )⇓(⇑) is extracted by tak-
ing differences between several population excitation fraction
measurements. When only a decoherence term γc is active,
all steady states are indeed vanishing. The normalized error
signal is given by Eq. (13) with population initialization in
either ground state |g〉≡ ⇓ or excited state |e〉≡ ⇑. We then
have

�E⇓(⇑) = − 1
4A⇓(⇑)(0)

[
ȧ2(θ1)2 + a2(θ1)2δ2

1

]
sin(δT ), (D7)

with A⇓(⇑)(0) = �2AW (0) and where we apply W (0)⇓(⇑) =
−1 (+1) respectively. This is always a dispersive curve
centered at the unperturbed optical clock frequency which
is completely free from probe-induced frequency shifts at all
orders.

When the decoherence term γc and relaxation terms �,ξ

are simultaneously present, steady states are nonvanishing.
However, when two sets of Eq. (D1) interleaved by population
initialization in both states are applied, the difference following
Eq. (14) gives an identical error signal expression eliminating
steady states as

�E⇓⇑ = − 1
8A⇓⇑(0)

[
ȧ2(θ1)2 + a2(θ1)2δ2

1

]
sin(δT ), (D8)

with A⇓(⇑)(0) = �2A(W (0)⇓ − W (0)⇑). The resulting disper-
sive pattern versus the unperturbed clock frequency detuning
δ is given by Eq. (D8) taking W (0)⇓(⇑) = −1 (+1) for a full
population inversion between quantum states.

It is also possible to read the sequence of composite
pulses from left to right or from right to left by applying a
time-reversal symmetry t → −t and phase inversion ϕ → −ϕ

on the diagram shown in Fig. 4(a) leading to another equivalent
scheme presented in Fig. 4(b). We derive an alternative error
signal called �E†, following the mirror-like protocol shown in
Fig. 4(b). We simply apply a permutation of laser parameters
between pulse areas θ2 ↔ θ3 still keeping R(θ1) = R(θ4)
which directly leads to another error signal expression as

�E† = − R(θ1)R(δT )�R(θ3)M(θ1). (D9)

We still generate the normalized error signal �E
†
⇓(⇑) following

Eq. (13) when only decoherence is present or the normalized
error signal �E

†
⇓⇑ following Eq. (14) when decoherence and

relaxation are both activated. We obtain error signal line shapes
that are identical to Eqs. (D5)–(D8).
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APPENDIX E: ERROR SIGNAL �E⇓⇓ LINE SHAPE

An ultimate ultrastable universal interrogation protocol interleaving ±π/4 and ±3π/4 laser phase steps with a Bloch-vector
initialization in only one single quantum state allows for an exact cancellation of all cosine terms in the error signal pattern.
We show here that by combining two GHR protocols with a sequence of composite pulses that are reversed in time ordering,
as shown in Fig. 4(c), similar dispersive shapes are recovered eliminating population initialization in the upper state. We focus
on the ultrastable error signal which relies on a combination of �E and �E† based on the protocol reported in Fig. 4(c). We
obtain a dispersive line shape that does not require initialization population in both states, even insensitive to nonvanishing real
and imaginary part of any initial optical coherence U (0),V (0) �= 0 when starting the interrogation protocol, as follows:

�E ≡ �E + �E† = R(θ1)�R(θ3,δT )M(θ1), (E1)

where the commutator is �R(θ3,δT ) = [�R(θ3),R(δT )]. We derive exact expressions for matrix components as

�E = A

⎛⎜⎝−[
a1(θ1)2δ2

1 + a3(θ1)2
]
U (0) − S1V (0) + S2W (0) − ��δ1

D [−a3(θ1)S4 + a1(θ1)S5]

S1U (0) + [
a1(θ1)2δ2

1 + ȧ1(θ1)2
]
V (0) + S3W (0) − ��

D
[
a1(θ1)δ2

1S4 + ȧ1(θ1)S5
]

S2U (0) − S3V (0) − �2
[
ȧ2(θ1)2 + a2(θ1)2δ2

1

]
W (0) + ��2

D
[
a2(θ1)δ2

1S4 + ȧ2(θ1)S5
]
⎞⎟⎠ sin(δT ), (E2)

with A = 4a2(θ3)�2e−γc(4τ+T ). We demonstrate that protocol shown in Fig. 4(c) is even more robust than protocols shown
Figs. 4(a) and 4(b) because all Bloch-vector matrix components are multiplied by a sine term eliminating uncompensated
probe-induced frequency shifts.

We introduce reduced variables Si (i = 1,2,3,4,5) as follows:

S1 = a1(θ1)δ1[a3(θ1) − ȧ1(θ1)], S2 = �δ1[a1(θ1)ȧ2(θ1) − a2(θ1)a3(θ1)], S3 = �[a1(θ1)a2(θ1)δ2
1 + ȧ1(θ1)ȧ2(θ1)],

S4 = eγcτ − a3(θ1) − a1(θ1)γc − a2(θ1)
(
γ 2

c + δ2
1

)
, S5 = a1(θ1)δ2

1 + γc[eγcτ − ȧ1(θ1)] − ȧ2(θ1)
(
γ 2

c + δ2
1

)
. (E3)

We finally derive a new ultrastable normalized error signal �E⇓⇓ based on population transfer following Eq. (15) with U (0) =
V (0) = 0 as

�E⇓⇓ = −1

8
A�2

[[
ȧ2(θ1)2 + a2(θ1)2δ2

1

]
W (0)⇓⇓ − �

D
[
a2(θ1)δ2

1S4 + ȧ2(θ1)S5
]]

sin(δT ). (E4)

The resulting dispersive pattern versus the unperturbed clock frequency detuning δ is given by Eq. (E4) taking only W (0)⇓⇓ = −1.
If we neglect a small correction on signal contrast due to decoherence and relaxation terms in Eq. (E4), we retrieve a line-shape
expression which is identical to Eq. (D7) and Eq. (D8) and does not require a population inversion between quantum states.
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