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Electron mass stopping power in H2
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Calculations of electron mass stopping power (SP) of electrons in H2 have been performed using the convergent
close-coupling method for incident electron energies up to 2000 eV. Convergence of the calculated SP has been
established by increasing the size of the close-coupling expansion from 9 to 491 states. Good agreement was
found with the SP measurements of Munoz et al. [Chem. Phys. Lett. 433, 253 (2007)].
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I. INTRODUCTION

Interaction of high-energy particles (x-rays, protons, and
ions) with matter leads to the production of a large number of
secondary electrons. It is well established that the secondary
electrons play an important role in DNA damage [1,2]. Assess-
ment and modeling of radiation damage, therefore, requires
accurate account of the secondary electron interactions with
atoms and molecules. Furthermore, electron impact processes
play an important role in studies of planetary atmospheres
[3], interstellar medium [4], fusion, and industrial plasmas [5].
Given the large number of reaction channels involved in such
processes, theoretical techniques are viewed as the most appro-
priate to obtain the required collision data, while experiment
provides crucial tests for theoretical models. For electron-atom
collisions present-day advanced theoretical methods [6–8] can
provide detailed results for electron scattering cross sections
for many atoms to high accuracy. The situation is different for
electron-molecule collisions where reaction channels leading
to molecular vibrations, rotations, and dissociation present
additional challenges and progress was largely limited to
low-energy scattering [9,10].

In this paper we are interested in the electron mass
stopping power (SP) for molecular hydrogen. The SP (or
energy loss function) is an important parameter of interest
in medical research [11,12], environmental and technological
applications [13,14] where energy deposition of electrons
is of primary importance. The H2 SP is of special interest
in astrophysics [4,15–17] as molecular hydrogen is the
most abundant molecule in the universe, particularly in the
interstellar space and in the atmospheres of gas giants and the
outermost planets of the solar system.

The calculations of the SP have been performed for
a number of molecules using the Bethe formula [18–20]
combined with the Bragg’s additivity rule [21] with results
available, for example, from the NIST database [22] above
1000 eV. The Bethe formula is expected to be accurate at
high incident electron energies (>1000 eV). An extension of
the Bethe formula to low and intermediate energies has been
attempted in a number of studies using the concepts of target
effective atomic number and mean excitation energy [23–25].
However, an accurate evaluation of the SP in molecules at
energies below 1000 eV requires a complete set of electron
impact cross sections for all important reaction channels
including excitation, ionization and dissociation. A number of
studies have used a compilation of cross sections for molecular

hydrogen to estimate the SP [17,26,27]. Such collision data
sets were based on the experiment available at the time,
semiempirical ionization cross sections, and the Born-Bethe
excitation cross-section results extended to low energies by
phenomenological techniques.

Experimental determination of the electron SP in molecular
hydrogen have been conducted by Munoz et al. [28] in the
energy range 15–5000 eV. In the experiment the measurement
of the energy loss spectra have been used to determine the
mean excitation energy. The latter was combined with the
total inelastic cross sections (obtained from available total
and elastic cross sections) to obtain an estimate of the SP.
At energies above 1000 eV reasonable agreement (within
20%) was found with the NIST molecular hydrogen results
calculated with the Born-Bethe theory [22], where the NIST
data were the only results used for comparison. Given the
observed discrepancy between the experiment and Born-Bethe
results for the electron SP in methane [29] and total cross
sections for a number of diatomic molecules [30,31], a fresh
look at the calculations of total cross sections and SP at
intermediate and high energies is highly desirable.

Molecular hydrogen is the simplest neutral molecule and is
a natural starting point for application of advanced theoretical
techniques to SP calculations in molecules. We have recently
obtained a comprehensive set of electron-impact elastic,
excitation, ionization, and total cross sections for e−-H2

scattering over a wide energy range (0.1–300 eV) [32,33] using
the convergent close-coupling (CCC) method. Here we extend
the CCC calculations to higher energies (2000 eV) where
comparison with the Born-Bethe theory results is possible.
These cross sections allow the modeling of various processes
related to the interaction of electrons with H2 molecules, and
in particular to evaluate the SP and mean excitation energy.
We, therefore, are in position to examine the robustness of
the experimental approach for determining the SP, verify the
accuracy of the approximate techniques utilized in previous
studies, and provide the first fully ab initio calculations of the
SP for low and intermediate incident electron energies.

Previously we have applied the CCC method to study
antiproton stopping power for a number of atomic targets [34],
hydrogen, and water molecules [35]. Here we extend stopping
power calculations to light (electron) projectiles. The paper is
organized as follows. In the next section we describe the CCC
method and SP calculations for e−-H2 collisions. Results and
discussion are given in Sec. III and conclusions are formulated
in Sec. IV.
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II. THEORETICAL METHOD

Application of the CCC method to electron scattering
from molecular hydrogen has been discussed in detail in
Refs. [32,33,36]. Only a brief overview is presented here.

A. CCC method

The molecular CCC method [37] is formulated in a single-
center coordinate system and utilizes the Born-Oppenheimer
approximation of the scattering wave function. All calculations
are performed in the fixed-nuclei approximation. The inter-
nuclear distance R is chosen to be the average internuclear
distance of the H2 ground state, R = 1.448 a0. Due to the
separation of the electronic and nuclei degrees of freedom the
problem reduces to the solution for electronic wave functions
only. The body frame with the z axis aligned along the
internuclear line and the origin at the midpoint between the
two nuclei of H2 has been used to obtain the electronic target
wave functions. These will be used to form a close-coupling
expansion of the total electronic scattering wave function. For
the brevity of notation we suppress the explicit dependence on
R in all formulas.

Molecular electronic target states �N
n (x1,x2) are con-

structed via a diagonalization procedure of the electronic
Hamiltonian HT in a basis constructed from appropriately
symmetry-adapted two-electron configurations for each set of
terms of the conserved quantum numbers (mt,πt,st), where mt

is the total target angular momentum projection, st is the spin,
and πt is the parity:

�N
n (x1,x2) =

∑
αβ

C
(n)
αβ φα(r1)φβ(r2)X(sn,vn), (1)

where the 1 and 2 indices are used for the target space, x is
used to denote both the spatial and spin coordinates, and the
two-electron spin function is given by

X(s,v) =
∑
m1m2

Csv
1
2 m1

1
2 m2

χm1 (σ1)χm2 (σ2), (2)

and Clm
l1m1l2m2

is a Clebsch-Gordon coefficient.
The one-electron functions in Eq. (1) are characterized by

the orbital angular momentum projection mα and parity πα =
(−1)lα , and expressed as

φα(r) = 1

r
ϕkαlα (r)Ylαmα

(r̂), (3)

where the radial part is taken as the Laguerre basis functions,

ϕkl(r) =
√

αl(k − 1)!

(k + l)(k + 2l)!
(2αlr)l+1e−αlrL2l+1

k−1 (2αlr). (4)

Here αl are the exponential falloff parameters, L2l+1
k−1 are the

associated Laguerre polynomials and k ranges from 1 to Nl ,
the number of functions for a given value of l.

The resulting set of target (pseudo)states {�N
n }, n =

1, . . . ,N satisfy 〈
�N

n′
∣∣HT

∣∣�N
n

〉 = εN
n δn′n, (5)

where εN
n is the energy of the state �N

n .

These target states are used to perform a multichannel
expansion of the total electronic scattering wave function

�
N(+)
i (x0,x1,x2) = Aψ

N(+)
i (x0,x1,x2)

= A
N∑

n=1

f N(+)
n (x0)�N

n (x1,x2), (6)

where the 0 index is used to denote the projectile space and
(+) denotes outgoing spherical wave boundary conditions. The
antisymmetrization operator is A = 1 − P01 − P02 and P0i is
the space exchange operator.

The total electronic wave function is a solution of the
Schrödinger equation

(E(+) − H )�N(+)
i = 0, (7)

where H = K0 + V + HT is the total (electronic) Hamiltonian
of the scattering system, K0 is the projectile electron kinetic
energy operator and V is the projectile-target interaction po-
tential. Substitution of the expansion (6) into the Schrödinger
equation leads to a set of momentum-space Lippmann-
Schwinger close-coupling equations for the T matrix〈

k(−)
f �N

f

∣∣T N
∣∣�N

i k(+)
i

〉 = 〈
k(−)

f �N
f

∣∣V ∣∣ψN(+)
i

〉
, (8)

where |k(±)〉 is a projectile electron distorted wave with energy
εk = k2/2.

Expanding the projectile wave function in partial waves

|k(±)〉 = 1

k

∑
L,M

iLe±iδLY ∗
LM (k̂)|kL〉, (9)

where δL is the distorting phase shift and the sum is taken
to some maximum value of Lmax, allows formulation of a
set of close-coupling equations for the partial-wave T matrix.
These equations are written separately for each total symmetry
(M,�,S) specified by the total angular momentum projection
M, parity �, and spin S,

T M�S
f Lf Mf ,iLiMi

(kf ,ki)

= V M�S
f Lf Mf ,iLiMi

(kf ,ki) +
N∑

n=1

∑
L′M ′

∑∫
k

dk

×
V M�S

f Lf Mf ,nL′M ′ (kf ,k)T M�S
nL′M ′,iLiMi

(k,ki)

E(+)−εk−εN
n +i0

, (10)

and are solved by standard techniques [36,38].
The projectile-target interaction potential V is not spher-

ically symmetric and results in the coupling of partial-wave
T -matrix elements with different values of the projectile
angular momentum L. As the size of the projectile partial-
wave expansion (9) increases the size of the close-coupling
equations (10) grows dramatically. This is also the case
when the number of target states used in the close-coupling
expansion (6) is increased. The principal problem of applying
the close-coupling method to electron-molecule scattering is
demonstrating convergence in the cross sections with increas-
ing size of the partial wave and close-coupling expansions.

Comparison with experiment requires transformation of
the body-frame T matrix to the laboratory frame, which is
done utilizing an appropriate orientation averaging of the
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cross sections [36]. The resulting partial-wave integrated cross
sections (ICS) for a transition from an initial state i to the final
state f are given by

σM�S
f,i = kf

ki

1

4π

∑
Lf ,Li

Mf ,Mi

∣∣FM�S
f Lf Mf ,iLiMi

∣∣2
, (11)

where

FM�S
f Lf Mf ,iLiMi

= − (2π )2(kf ki)
−1iLi−Lf

× T M�S
f Lf Mf ,iLiMi

(kf ,ki). (12)

Note that for elastic scattering the physical T matrix is
extracted from the distorted-wave T matrix [36]. The spin-
averaged cross section summed over partial waves is given by

σf i =
∑
S

2S + 1

2(2si + 1)

∑
M�

σM�S
f i . (13)

Convergence of the excitation cross sections with respect to
the partial-wave expansion can be improved by using the Born
top-up or analytical Born subtraction procedure. This method
relies on the fact that for large partial waves the excitation T

matrix is well approximated by the first term on the right-hand
side of the Lippmann-Schwinger equation (10). The excitation
cross sections are then obtained as

σ S
f i =

∑
M�

(
σM�S

f i − σM�
f i

) + σ AB
f i , (14)

where σ AB
f i and σM�

f i are the orientation averaged analytical
and partial-wave Born ICS [37]. In the present calculations
the maximum total angular momentum projection and the
maximum projectile angular momentum are chosen to be
the same, and Mmax = Lmax = 8 proved to be sufficient to
provide convergent results by comparison with also conducted
calculations with Mmax = Lmax = 6.

The use of Sturmian (Laguerre) functions as the underlying
one-electron basis allows us to model both the bound and
continuum spectra of the target by a finite-size expansion in
the set of states {�N

n }. As the size N of the expansion increases
these states provide an accurate representation of the low-lying
bound states of the target and an increasingly dense square-
integrable representation of the target continuum, which allows
the CCC method to model all possible electronically driven
reaction channels including ionization. Such an approach has
been extensively used in electron-atom scattering [6,39], while
conversely in electron-molecule scattering, such an approach
has only been applied to a limited number of problems
[33,37,40,41]. For e−-H2 scattering the previous most detailed
results have been obtained with the close-coupling expansion
comprising the seven lowest nondegenerate states [42–44]. We
have shown already that such a small expansion is insufficient
to accurately model e−-H2 excitation processes [33], here we
demonstrate this for the SP.

B. Calculation details

To establish convergence of the close-coupling expansion
we have performed calculations in a number of models by

increasing the size of the calculations from 9 to 491 states,
with degenerate states mt = ±|mt| counted separately. We
use the acronym “CC” for models that include only bound
states and “CCC” for those that also include pseudostates
modeling ionization channels. The largest CCC(491) model
was obtained with an underlying Laguerre basis constructed
from Nl = 17 − l functions for l � 3. This model has 491
states and includes 92 bound states of H2 plus 399 continuum
pseudostates with energies up to 1000 eV. Comparison with
the result obtained with the CC(92) model, that includes
only the 92 bound states, allows us to determine the importance
of the ionization channels. We have performed two other
calculations that have a smaller underlying Laguerre basis
with Nl = 15 − l functions. The larger of the two models
CCC(427), included functions with l � 3, while the CCC(259)
model included functions with l � 2. The calculation in the
CCC(259) model has been performed with the projectile partial
wave expansion Mmax = Lmax = 6 to verify the convergence
with respect to the partial wave expansion.

A good agreement between the two largest models,
CCC(491) and CCC(427), would indicate the convergence of
the obtained collision data with respect to the discretization of
the target continuum. Comparison with the CCC(259) model
gives an indication of the convergence with respect to including
target states constructed from orbitals with larger angular
momentum l. Due to the unitarity of the close-coupling method
the convergence with the underlying Laguerre basis orbital
angular momentum l is fast [45]. The states with the largest
orbital angular momentum values for a given structure model
have cross sections that are somewhat too large as they model
excitation to states with higher l values (not included in the
expansion), however, the cross sections summed over all states
are particularly rapidly convergent. Finally, we also present
results obtained with the first nine states of H2. Comparison
between the results of the CC(92) and CC(9) models will
indicate the importance of the high-lying bound states in the
SP calculations.

The CCC calculations reported in Refs. [32,33] have been
conducted up to 300 eV. Here we extend the CCC(491) model
to 700 eV. The exchange interaction between the projectile and
target electrons and interchannel coupling become progres-
sively less important as the incident electron energy increases.
For energies above 500 eV we have conducted calculations
with the CCC(491) model neglecting exchange and retaining
only singlet states. The collision cross sections have also
been obtained using the first Born approximation (FBA) to
determine the incident electron energy for which interchannel
coupling becomes negligible.

C. Stopping power

Here we use the results of the CCC calculations to obtain
the SP, or energy loss per unit path length, of electrons in H2

using the following relation

− 1

ρ

dE

dx
≡ QSP = Na

M
σsp, (15)

where Na is the Avogadro number, ρ is the density of the
target, and M is the molar mass. Following our previous work
[34], the stopping cross section in the CCC method can be
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obtained as

σsp =
NT∑
n=1

(εn − ε0)σn, (16)

where σn is the electron impact excitation cross section from
the ground state (indexed n = 0) of H2 with energy ε0 to a
final state n with energy εn at an incident electron energy
Ei . For clarity of presentation, we have dropped an explicit
dependence on the incident electron energy Ei in all equations.
The sum in Eq. (16) goes over all NT open (energy accessible)
target states in the close-coupling expansion including positive
energy pseudostates. Retaining in the sum on the right-hand
side of Eq. (16) only the negative energy pseudostates (relative
to the H+

2 ground state at R = 1.448 a0) we can obtain an
estimate of the SP due to the bound spectrum of H2 while
including only the positive energy pseudostates allows us to
determine the SP due to the ionization channels.

To facilitate comparison with the experiment [28] and Born-
Bethe calculations [22] it is useful to define a mean excitation
energy

Ē = σsp

σinel
, (17)

where the total inelastic (reaction) cross section is given by

σinel =
NT∑
n=1

σn, (18)

and is equal to the difference between the total σtot and elastic
σel scattering cross sections. The SP (15) can now be written as

− 1

ρ

dE

dx
= Na

M
Ēσinel = Na

M
Ē(1 − η)σtot, (19)

where η = σel/σtot. This form of the electron mass SP (19)
is consistent with the analysis of Munoz et al. [28]. They
determined the mean excitation energy Ē from their measured
energy-loss spectrum, and obtained the total inelastic cross
sections (18) from recommended total scattering cross sections
and the values of parameter η obtained from fitting to the data
of van Wingerden et al. [46]. Note, however, that while Eq. (19)
offers a useful alternative for the experimental evaluation of
the SP, in the present calculations both Eqs. (15) and (19)
necessarily produce the same values of the SP.

The SP calculated in this work refer to the electronic
excitations of H2. Within the fixed-nuclei approximation
adopted in the present CCC calculations we neglect an explicit
account of vibrational and rotational excitations. Explicit
account of rovibrational excitations is of importance only at
very low energies, well below the first excitation threshold,
and will be considered elsewhere. The dissociative processes
are accounted for indirectly in the present technique, as
in the fixed-nuclei approximation the calculated excitation
cross sections describe scattering to all rovibrational levels
of electronic excited states, including dissociation.

III. RESULTS AND DISCUSSION

We present convergence studies for the electron mass SP
in Fig. 1. We find very good agreement between CCC(491),
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FIG. 1. Convergence studies of the mass stopping power for
electron scattering on the ground state of H2. CCC and CC models
are described in the text.

CCC(427), and CCC(259) results that establishes the con-
vergence of our calculations with an accuracy of better than
5%. At high energies, 500 eV and above, the no-exchange
approximation becomes sufficiently accurate. From 1000 eV
the FBA becomes valid and is in good agreement with the
Born-Bethe results [22]. The CC(92) model significantly
underestimates the SP at energies larger than 30 eV. This
demonstrates the importance of the ionization channels for
SP calculations. Comparison between the CC(92) and CC(9)
models shows the importance of excitations to the highly
excited bound states.

The results of the CCC(491) model have been combined
at high energies with no-exchange CCC(491) and FBA
results. These combined data, labeled as CCC are presented
in Table I and Fig. 2 together with its partition on the
bound and ionization components. In Fig. 3 the CCC results

TABLE I. Mass stopping power (SP) in units of MeV cm2/g and
mean excitation energy (Ē) in units of eV for electron (of incident
energy Ei) scattering on the ground state of H2 calculated using the
CCC method.

Ei (eV) SP Ē Ei (eV) SP Ē

11 135.6 10.3 50 987.0 17.5
12 134.1 10.3 60 1040.6 18.1
13 228.1 11.3 70 1075.0 18.7
14 268.8 11.5 90 1085.0 19.5
15 321.7 11.9 100 1079.7 19.8
16 346.8 12.3 130 1027.0 20.6
17 388.5 12.7 160 964.2 21.2
18 416.3 13.0 200 880.0 21.8
19 453.9 13.3 250 780.1 22.1
20 482.4 13.6 300 700.0 22.3
22 527.4 14.0 500 495.7 22.8
25 614.5 14.7 700 384.8 22.9
30 727.6 15.6 1000 294.0 23.1
35 808.5 16.1 1500 208.5 22.9
40 871.7 16.6 2000 162.7 22.7
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FIG. 2. The bound and ionization components the mass stopping
power (SP) for electron scattering on the ground state of H2 calculated
using the CCC method.

are compared with the estimates of the SP obtained by
Gumus [25], Takayanagi and Nakata [26], Miles et al. [27],
and Dalgarno et al. [17] and the experiment of Munoz
et al. [28]. Previous estimates of the SP were based on the
phenomenological extension of the Bethe formula to low and
intermediate energies [25] and evaluation of the available
experimental and theoretical data for excitation and ionization
cross sections [17,26,27]. These studies utilized theoretical
results that were predominately based on Born-Bethe theory
with phenomenological modifications at low energies. Given
the large (>20%) uncertainties of the experimental e−-H2

excitation cross sections and difficulty in producing reliable
cross sections from Born-Bethe theory at low energies the
uncertainties in these SP estimates are expected to be large.
This is clearly seen in Fig. 3 where the differences between
the previous SP estimates are particularly large below 100 eV.
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FIG. 3. Mass stopping power for electron scattering on the ground
state of H2. The CCC results are described in the text. Experimental
data are due to Munoz et al. [28]. The estimates of the SP are
due to Gumus [25], Takayanagi and Nakata [26], Miles et al. [27],
Dalgarno et al. [17], and the Born-Bethe results are from the NIST
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FIG. 4. Mean excitation energy Ē for electron scattering on the
ground state of H2. The CCC results are described in the text.
Experimental data are due to Munoz et al. [28].

The CCC results agree best with the estimate of Dalgarno et al.
[17]. The CCC results, the previous estimates of Dalgarno et al.
[17], Gumus [25], Takayanagi and Nakata [26], Miles et al.
[27], and the experiment [28] show the maximum value for SP
at around 75 eV, which is a similar position to the maximum
for methane-based tissue equivalent gas mixture [29]. The
experiment of Munoz et al. [28] has uncertainty of 13%. We
find that the CCC results are somewhat below the experiment
for incident electron energies less than 50 eV, but in good
agreement at higher energies. The disagreement below 50 eV
is rather unexpected and deserves some attention.

It is important to emphasize that Munoz et al. [28] have not
measured the SP directly. They derived the mean excitation
energy from the measured energy loss spectra and used it to
estimate the experimental SP via Eq. (19). This procedure
required an estimate of the total and elastic cross sections that
come with their own uncertainties. It is, therefore, preferable
to compare directly with the quantity being measured. We
extracted the mean excitation energy values from the data
presented by Munoz et al. [28] and assigned 9% uncertainty to
the experimental values, the same as the uncertainty reported
at 100 eV. The results of the CCC calculations for Ē are given
in Table I and are compared with the experiment in Fig. 4.
We find very good agreement with our calculations from the
lowest measured energy point at 15 eV up to 300 eV. At larger
energies our values are about 10% higher than the experiment
and are just above the experimental error bars. The measured
mean excitation energy remains approximately constant above
100 eV with the value of 20.3 ± 1.8 eV [28]. Our results show
a similar behavior but the constant value of 23 eV at energies
larger than 400 eV.

The mean excitation energy enters as a parameter in the
Born-Bethe procedure for the determination of the SP. The
value of 19.2 eV was adopted in the Born-Bethe method
[22] and is calculated from the oscillator strength distribution.
Similar calculations using the oscillator strengths obtained
in the CCC(491) model give the value of 20.9 eV in the
length form and 19.4 eV in the velocity form. The difference
between the length and velocity forms gives an indication of

022709-5



FURSA, ZAMMIT, THRELFALL, SAVAGE, AND BRAY PHYSICAL REVIEW A 96, 022709 (2017)

0

 10

 20

 30

 40

 10  100

C
ro

ss
 s

ec
tio

n 
(u

ni
ts

 o
f a

02 )

Energy (eV)

Total CS Munoz et al.

Total CS CCC

Elastic CS Munoz et al.

Elastic CS CCC

Inelastic CS Munoz et al.

Inelastic CS CCC
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the uncertainty of the present calculations due to the accuracy
of the target wave functions, which we therefore estimate to
be about 7%.

Given the good agreement between the CCC results and
measured mean excitation energy in the 15–50 eV region, the
discrepancy for the SP in this energy region should be due
to the total and elastic cross sections used by Munoz et al.
[28]. In Fig. 5 we compare total and elastic cross sections
obtained in the CCC(491) calculations with the values used by
Munoz et al. [28]. For the total cross sections we find generally
better agreement than for the elastic cross sections. For the
latter the discrepancy in the 15–50 eV region is manifest.
From our previous studies [32], we note that our converged
CCC(491) model results are in excellent agreement with other
measurements [47–50] available for this energy range. Note,
however, that the origin of the apparent discrepancy for the SP
in Fig. 3 is ultimately not due to the values of the elastic and
total scattering cross sections used by Munoz et al. [28], but
due to the too optimistic uncertainties of the experimental data
in the 15–50 eV region.

The elastic cross sections presented in Fig. 5 have been
obtained from the parameter η and total cross sections
presented in Table 2 of Munoz et al. [28]. The parameter
η (the ratio of elastic to total scattering cross sections),
has been fitted by Munoz et al. [28] to a simple function
η = exp[−0.511 ln(Ei) + 1.219] using the semiempirical data
from van Wingerden et al. [46] and utilized in Eq. (19) to obtain
the SP. The data of van Wingerden et al. [46] for energies less
that 100 eV are based on experimental data of Srivastava et al.
[51]. The uncertainty in the latter measurements is 18%. The
same 18% uncertainty have been applied to the Munoz et al.
[28] elastic cross sections presented in Fig. 5. The uncertainty
of the total cross sections has been estimated by Munoz et al.
[28] to be 5%. From the total and elastic cross sections and
their uncertainties one can determine the total inelastic cross
section and its uncertainty. The standard error analysis gives
for the absolute uncertainties

�inel =
√

�2
tot + �2

el. (20)
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FIG. 6. Mass stopping power for electron scattering on the ground
state of H2. The CCC results are described in the text. Experimental
data are due to Munoz et al. [28]. Modification of the absolute values
and uncertainties of the experimental data of Munoz et al. [28] is
described in the text.

The total inelastic cross sections as obtained from the Munoz
et al. [28] data and its uncertainties are also presented in Fig. 5
and compared with the results of the CCC calculations. At low
energies the uncertainty in the total inelastic cross section is
particularly large and exceeds 100% of the experimental value
at the lowest energy (15 eV). As the incident electron energy
increases the absolute value of the elastic cross section drops
much faster than the total cross section and the uncertainty
in the latter becomes the dominant contribution to �inel.
The uncertainty of the SP can now be obtained from the
uncertainties of the mean excitation energy and the total
inelastic cross sections

�SP = QSP

√
(�Ē/Ē)2 + (�inel/σinel)2. (21)

Given the excellent agreement between the CCC elastic
cross section [32,33] and a number of elastic cross-section
measurements [47–50] we have replaced the elastic cross
sections used by Munoz et al. [28] with the CCC cross
sections in the 15–100 eV energy region, assigned a 5%
uncertainty to these values, and recalculated the SP utilizing
the Munoz et al. [28] measured mean excitation energy and
their estimate of the total cross section. The SP uncertainties
have been obtained as described above with �tot/σtot = 5%
and �Ē/Ē = 9% at all energies and �el/σel = 5% below and
at 100 eV, and �el/σel = 18% above 100 eV. In Fig. 6 we
present the comparison of the modified experimental data and
the CCC calculations for the SP. As expected, the experimental
uncertainties are large at energies less than 50 eV and the CCC
results are now within the error bars.

IV. CONCLUSIONS

The electron mass SP in H2 has been calculated using
the CCC method. The convergence of the SP has been
established by increasing the size of the close-coupling
expansion from 9 to 491 states. The ionization channels
have been found to make major contributions to the SP. We
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estimate that the uncertainties of the CCC SP and mean
excitation energy are better than 9%, which is due to the
convergence of the close-coupling expansion (5%) and the
underlying target structure accuracy (7%). The accuracy of
the present CCC results is a significant improvement over
previous SP estimates produced from available experimental
e−-H2 cross sections and Born-Bethe theory [17,25–27]. We
find generally reasonably good agreement with these estimates
of the SP, in particular with the data of Dalgarno et al.
[17]. Good agreement with measurements of Munoz et al.
[28] is found over the energy range 15–2000 eV, though an
apparent discrepancy in the 15–50 eV region was identified.
We determined that this discrepancy is due to the too optimistic
experimental uncertainties in this energy region. Comparison
with the directly measured mean excitation energy showed
excellent agreement in the same energy region. We have
confirmed for H2 that the procedure used by Munoz et al.
[28] to calculate the SP is sufficiently reliable when accurate

elastic and total cross sections are used, however, it can lead to
large experimental uncertainties for incident electron energies
up to few times the ionization potential.
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