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We calculate the kinetic-energy release distributions of fragments produced for electron-impact dissociation
of the vibrationally excited molecular hydrogen ion H2

+ and its isotopologues D2
+ and T2

+. Here we apply
the adiabatic-nuclei convergent close-coupling method and compare results with several different methods,
including the δ approximation. Results are presented for a number of dissociative excitation transitions and
dissociative ionization as a function of the initial vibrational state of the molecule. We confirm that the square
root approximation is a good approximation for the adiabatic-nuclei kinetic-energy release cross sections of H2

+.
Agreement with experiment, where available, is good.
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I. INTRODUCTION

Electron-impact dissociative ionization or excitation of
molecular ions

e− + AB+ → A+ + B+ + 2e− (1)

→ A+ + B + e− (2)

→ A + B+ + e− (3)

produces fragments with a kinetic-energy release (KER)
distribution. These collision processes are among the most
important for determining fusion and low-temperature plasma
dynamics and properties and can also be used to control plasma
conditions [1,2]. Information about the KER distribution
is used to determine energy deposition and reactivity in
the respective media, which is important in the fields of
radiotherapy [3–6] and astrophysics [7].

The KER distributions correspond to excitations to the
vibrational continuum and are the fragment single-differential
cross sections. Many experimental measurements of the
KER cross sections have been used to extract scattering
cross sections [8–18], identify dissociative processes [8–18],
and determine experimental conditions [18–20], molecular
structure [21,22], and collision dynamics [21]. The KER cross
sections can be extracted from a complete close-coupling
calculation that includes all degrees of freedom (electronic,
vibrational, and rotational). Several theoretical methods have
been utilized to give an approximate KER cross section. Stibbe
and Tennyson [23] derived a form of the adiabatic-nuclei
cross section for vibrationally resolved excitations, utilizing
electronic T -matrix elements. A modified form of this T -
matrix approach, and the square root approximation, were
implemented by Zammit et al. [24] in the study of positron-H2

scattering.
The molecular hydrogen ion H2

+ is the most convenient
starting point for developing a KER model, as it is the simplest
molecular system and still exhibits all processes (1)–(3). It is
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commonly present in fusion and astrophysical plasmas where
its dissociative processes play an important role in determining
plasma properties.

There has been a limited number of theoretical calculations
of the H2

+ KER cross sections, likely due to the complexity of
calculating accurate collision data for molecules. Dunn [25]
utilized the δ (reflection) approximation and the first Born
approximation electronic excitation cross sections of Peek [26]
to calculate H2

+ KER cross sections that are valid only in the
high incident electron energy limit. El Ghazaly et al. [18] used
the more accurate square root approximation, with excitation
cross sections derived from the oscillator strengths of Ramaker
and Peek [27], yielding results in reasonable agreement
with experiment. The lack of theoretical KER cross sections
calculated using accurate collision data motivates the present
work. Recently, Zammit et al. [28,29] applied the convergent
close-coupling (CCC) method to model electron collisions
with H2

+ and its isotopologues. The CCC results were in
good agreement with measurements of proton-production and
dissociative ionization cross sections. Utilizing these results,
here we calculate the KER cross sections using the T -matrix,
square root, and δ approximation methods and compare their
agreement with each other and with the measurements of El
Ghazaly et al. [18]. Atomic units are used throughout this
paper unless specified otherwise.

II. THEORY

The molecular CCC method for e−-H2
+ scattering has

been described in detail by Zammit et al. [28–30]. Here we
give a brief overview. The theory is formulated in spherical
coordinates, with the origin at the geometrical center of the
nuclei. Calculations have been performed in the adiabatic-
nuclei approximation [30,31]. This approximation applies
the Born-Oppenheimer approximation to the total scattering
wave function, effectively reducing the electron-molecule
scattering problem to one involving only the electronic degrees
of freedom. We formulate the scattering system electronic
Schrödinger equation in the body (molecule fixed) frame
at a fixed internuclear distance R and substitute a close-
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coupling expansion constructed from a set of target electronic
(Sturmian) pseudostates. Substitution of this expansion into
the Schrödinger equation leads to a set of momentum-
space Lippmann-Schwinger close-coupling equations for the
electronic T matrix. These equations are solved via a K-
matrix formulation, which enforces unitarity. Expanding the
projectile wave function in partial waves allows one to solve the
close-coupling equations per partial-wave of total (electronic)
orbital angular momentum projection M , spin S, and parity
�. The electronic body-frame T -matrix elements are then
transformed to the laboratory frame using standard techniques
[30,31]. Here we perform (semiclassical) orientation averaging
of the differential and integrated cross sections [32], which is
equivalent to summing over all rotational excitations from the
rotational ground state, analytically. By performing calcula-
tions at many internuclear distances R, information of the
nuclear motion (KER, rotational, and vibrational excitations)
can be obtained via postprocessing of the electronic fixed-
nuclei T -matrix elements.

Fixed-nuclei electronic excitation cross sections in the total
spin channel S are obtained from the electronic T -matrix
elements T S

f Lf Mf ,iLiMi
(R; Ein) for electronic transitions i →

f , via

σS
f,i(R; Ein) = 4π3 qf (R)

qi

∑
Lf ,Li

Mf ,Mi

∣∣T S
f Lf Mf ,iLiMi

(R; Ein)
∣∣2

,

(4)

where the projectile momenta are calculated from the incident
energy Ein and excitation energy εf,i :

qf (R) = √
2[Ein − εf,i(R)], (5)

qi =
√

2Ein. (6)

The spin-averaged cross sections are given by

σf,i =
∑

S

2S + 1

4
σS

f,i . (7)

The T -matrix elements are solved for a sufficient number
of partial waves to achieve convergence with the use of an
analytic Born subtraction technique [28,33]. Cross sections
for the dissociative ionization (DI) process (1) are calculated
by summing over all positive-energy states

σDI,i(R; Ein) =
∑
εf >0

σf,i(R; Ein), (8)

where εf is the energy of state f .
For the case of the H2

+ molecule, practically all excited
electronic state potential-energy curves are repulsive [34–36]
and hence all electronic excitations lead to dissociation. In
Fig. 1 we present the potential-energy curves obtained from the
spherical formulation, as a function of internuclear separation.
We compare with the exact results obtained using a spheroidal
formulation of the electronic H2

+ problem [37]. In spheroidal
coordinates, the H2

+ structure problem is separable and can be
solved analytically. The energies obtained from the spherical
structure model are in excellent agreement with the exact
results for the higher-energy states that are more hydrogenic.
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FIG. 1. Potential-energy curves of the 1sσg , 2pσu, 2pπu, and
2sσg states obtained from the spherical (points) and spheroidal (lines)
electronic structure calculations.

The two lowest-energy states are more difficult to describe with
single-center orbitals, particularly at larger internuclear sepa-
rations. The spherical calculations were driven to convergence
near the equilibrium separation R = 2.0a0 and are sufficiently
accurate for scattering calculations up to R = 5.5a0. We have
implemented an extrapolation technique wherever scattering
data are required at larger R.

Following the adiabatic-nuclei (AN) approximation [31],
cross sections for transitions between vibrational bound states
χnvn

(R) and continuum states χn(R; Ek), where Ek is the
fragment kinetic energy, summed over all final rotational states
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FIG. 2. Vibrational weights pvi
of H2

+: FC factors [28], BD
weights [40], and EG weights [18], as a function of vibrational state
number vi .
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FIG. 3. Comparison of the 2pσu (left) and 2pπu (right) BD-
weighted normalized KER cross sections with the model calculations
of El Ghazaly et al. [18]. These results have been calculated using
the same approximate excitation cross sections used by El Ghazaly
et al. [18] (parabolic for 2pσu and flat for 2pπu).

Jf can be expressed in the form

dσS
f,ivi

dEk
= 4π3

∑
Lf ,Li

Mf ,Mi

∣∣∣∣〈χf |
√

qf

qi

T S
f Lf Mf ,iLiMi

|χivi
〉R

∣∣∣∣
2

. (9)

The bound and continuum vibrational wave functions χ (R)
satisfy the Schrödinger equation

d2χ

dR2
+ 2μ

(
Ek − J (J + 1) − m2

n

2μR2
− εn(R)

)
χ = 0, (10)

where εn(R) is the interaction potential between fragments,
i.e., the electronic state potential energy minus the dissociation
energy, J is the rotational quantum number, mn is the orbital
angular momentum projection of the electronic state n, and μ

is the reduced mass of the dissociative products. For H2
+, μ

is half the proton mass. We remove the explicit dependence of
the vibrational functions on J , by taking J = 0 for mn = 0 and
J = 1 for mn = ±1. For the calculation of the continuum wave
functions we use the accurate potential-energy curves obtained
from the spheroidal formulation [37]. The energy normalized
continuum functions are obtained by solving Eq. (10) using
the Numerov method. They have the asymptotic form

lim
R→∞

χf (R; Ek) =
√

2μ

kπ
sin(kR + δ) (11)

and satisfy the property
∫ ∞

0
χf (R; Ek)χf (R; E′

k)dR = δ(Ek − E′
k). (12)

The bound vibrational wave functions χnvn
(R) are obtained

via diagonalization of the ground electronic state Hamiltonian
in a basis of nuclear functions

φn( �R) = 1

R
ϕnJ (R)YJmJ

( �̂R), (13)

where ϕnJ are the Laguerre basis functions as described in
[28,29]. Here we utilize the 1sσg potential-energy curve from
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FIG. 4. The BD-weighted partial wave KER cross sections for the
2pσu and 2pπu states at 50- and 500-eV incident energies, calculated
using the square root approximation and T -matrix method.

Wolniewicz and Poll [38]. The closure property

∑
vn

χnvn
(R)χnvn

(R′) +
∫ ∞

0
χn(R; Ek)χn(R′; Ek)dEk

= δ(R − R′) (14)

is used to sum over all final vibrational states to obtain the AN
cross section

σf,ivi
= 〈χivi

|σf,i |χivi
〉R, (15)

which describes scattering from the vi vibrational level of the
initial electronic state i to all rovibrational levels of the final
electronic state f .

Stibbe and Tennyson [23] derived a form of the KER cross
section that requires the use of off-shell T -matrix elements to
account for the varying proportions in which the dissociation
energy can be split among the dissociation products and
the outgoing electron. By neglecting the differences in the
vibrational energy levels the KER cross sections of [23] can
be simplified to the form of Eq. (9), where only on-shell
T -matrix elements are used. We hereafter refer to this method
of calculation as the T -matrix method.

A. Square root approximation

Evaluation of Eq. (9) is computationally expensive due
to the large number of numerical integrations that must be
performed. Following El Ghazaly et al. [18], we replace
the constants and the T -matrix elements in Eq. (9) with the
square root of the electronic excitation cross section at incident
electron energy Ein:

dσf,ivi

dEk
= |〈χf |√σf,i |χivi

〉R|2. (16)
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FIG. 5. Normalized KER cross sections of the 2pσu state of H2
+

at Ein = 50 and 500 eV. The first three rows present scattering on the
vi = 0, 3, and 9 states and the final row presents the BD-weighted
sum over the vi = 0–18 states, compared with the model calculations
of El Ghazaly et al. [18].

This form requires only a single integration and makes KER
calculations much faster. Construction of the DI KER cross
section in the square root approximation formally requires a
summation over positive-energy states as in Eq. (8). However,
due to the complexity of resolving R-dependent cross sections
for specific states when their respective potential-energy
curves cross, we instead calculate the DI KER cross section
via

dσDI,ivi

dEk
= |〈χf |√σDI,i |χivi

〉R|2. (17)
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FIG. 6. Same as in Fig. 5 but for the 2pπu state of H2
+.

The square root technique was implemented by Zammit
et al. [24] to obtain vibrationally resolved excitation cross
sections for positron scattering on H2, yielding results practi-
cally identical to those obtained with the T -matrix method.
El Ghazaly et al. [18] constructed model e−-H2

+ KER
distributions by replacing the excitation cross sections in
Eq. (16) with simple R dependences obtained from photonic
excitations of H2

+ and compared with their experimental
measurements with reasonable success.

B. The δ approximation

The integrand in Eq. (9) is highly oscillatory except in the
vicinity of the continuum function’s classical turning point
Rc. Accordingly, the integral can be approximated by the
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FIG. 7. The KER cross sections of the 2pσu, 2pπu, 2sσg ,
3pσu, 3dσg , and 3dπg states and DI for H2

+ at 30-, 50-, 100-,
and 500-eV incident electron energies, calculated using the square
root approximation. The individual channels presented here were
calculated using BD weights. The FC-, BD-, and EG-weighted
PP KER cross sections are also presented in comparison with the
measurements of El Ghazaly et al. [18].

contribution at this point by replacing the continuum wave
function with an appropriately normalized δ function

χf vf
(R; Ek) = 1√∣∣dεf /dR

∣∣δ(Ek − εf (R)). (18)

Gislason [39] developed an approximate calculation of the
overlap 〈χf |χivi

〉, by expanding the effective potential εf (R)
and the bound vibrational wave function χivi

(R) about Rc.
By taking just the first-order term they recover the correctly
normalized δ approximation. The normalization constant can
also be derived by requiring the continuum functions to satisfy

∫ ∞

0
|〈χf |χivi

〉|2dE = 1. (19)

In the δ approximation the KER cross section becomes

dσf,ivi

dEk
= 1

|dεf /dR|δ(Ek − εf (R))σf,i(R)|χivi
(R)|2. (20)

C. Vibrational weighting

Many scattering measurements have been taken with H2
+

populated in a range of vibrationally excited states [40]. Hence
cross sections need to be weighted according to a vibrational
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FIG. 8. Upper and lower bounds on the EG-weighted PP KER
cross section for 30-, 50-, 100-, and 500-eV incident electrons. The
results are compared with the measurements of El Ghazaly et al. [18].

distribution

dσ̃f,i

dEk
=

∑
vi

pvi

dσf,ivi

dEk
, (21)

where pvi
are normalized weights for the distribution of initial

target vibrational levels ∑
vi

pvi
= 1. (22)

We perform calculations using the Franck-Condon (FC)
factors [28,29,41] and the vibrational populations measured
by von Busch and Dunn [40] and El Ghazaly et al. [18], which
we refer to hereafter as BD and EG weights, respectively. We
present these vibrational distributions in Fig. 2.

D. Summation over electronic states

Measurements of the H2
+ KER cross sections contain

contributions from all open electronic transitions. El Ghazaly
et al. [18] measured KER cross sections for H2

+ by the
detection of protons. When they are integrated over Ek, the
vibrationally weighted proton-production (PP) cross section
σ̃PP = σ̃DE + 2σ̃DI is obtained. Here DE designates the dis-
sociative excitation (2) and (3) processes. To compare with
experiment we must construct the PP KER cross section

dσ̃PP

dEk
=

∑
εf <0

dσ̃f,i

dEk
+ 2

dσDI,i

dEk
. (23)

It can be shown that for each of the three methods detailed
above, integration of the vibrationally weighted KER cross
section (21) over Ek yields the vibrationally weighted AN
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TABLE I. Weights measured by El Ghazaly et al. [18] for the
initial vibrational states vi of H2

+. Also presented are the upper and
lower bounds we placed on the EG weights by taking the bounds
given by experimental uncertainty (see Fig. 2) and renormalizing to
satisfy Eq. (22).

Renormalized bounds

vi EG weights [18] Upper Lower

0 0.14620 0.14258 0.15063
1 0.18290 0.17703 0.19010
2 0.16090 0.15639 0.16642
3 0.13740 0.13429 0.14120
4 0.10700 0.10560 0.10870
5 0.06770 0.06822 0.06705
6 0.05480 0.05584 0.05351
7 0.03870 0.04027 0.03677
8 0.02860 0.03038 0.02640
9 0.02750 0.02930 0.02528
10 0.01230 0.01407 0.01011
11 0.01030 0.01201 0.00819
12 0.01080 0.01253 0.00867
13 0.00600 0.00748 0.00418
14 0.00040 0.00870 0.00000
15 0.00170 0.00263 0.00056
16 0.00170 0.00263 0.00056
17 0.00170 0.00263 0.00056
18 0.00170 0.00263 0.00056
19 0.00170 0.00263 0.00056

electronic excitation cross section

σ̃f,i =
∑
vi

pvi
σf,ivi

, (24)

where σf,ivi
is given in Eq. (15). Hence, integration of the

PP KER cross section (23) over Ek yields σ̃PP as required
for comparison with El Ghazaly et al. [18]. Note that the DI
cross sections [18,42] are an order of magnitude lower than
the PP cross sections and are smaller than the experimental
error bars of σ̃PP [34,35,43,44]. Hence the results of DE, total
inelastic, and PP cross sections can be compared with each
other reasonably well. Despite the small contribution to σ̃PP,
at some fragment energies the DI process makes the dominant
contribution to the PP KER cross sections.

III. RESULTS

KER calculations of e−-H2
+ scattering have been per-

formed for incident energies from 30 to 500 eV, using the
δ, square root, and T -matrix methods as detailed in Sec. II.
We calculate KER cross sections for excitation to the 2pσu,
2pπu, 2sσg , 3pσu, 3dσg , and 3dπg states, as well as the
DI KER cross section, and compare the various methods.
The discrete electronic states with even larger energies than
those mentioned above make negligible contributions to the
PP KER cross sections and hence are not presented here [28].
El Ghazaly et al. [18] provided measurements of H2

+ and D2
+

KER cross sections for Ein = 30, 50, 100, and 500 eV. Relative
H2

+ KER measurements were also presented by Caudano and
Delfosse [45] and when scaled to the measurements of El
Ghazaly et al. [18] they were in good agreement. For this
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FIG. 9. The BD-weighted 2pσu and 2pπu and DI KER cross
sections for 50-eV electrons scattering on individual vibrational levels
of H2

+, demonstrating that the low-lying vibrational states make the
largest contribution at high Ek.

reason we omit comparison with Caudano and Delfosse [45]
and compare our results with the more precise measurements
and model calculations of El Ghazaly et al. [18].

A. Comparison of methods

El Ghazaly et al. [18] calculated BD-weighted KER cross
sections using Eqs. (16) and (21), by assuming a parabolic
σf,i(R) with respect to R for the 1sσg → 2pσu transition and
a flat σf,i(R) for the 1sσg → 2pπu transition. In Fig. 3 we
present our BD-weighted KER cross sections for the 2pσu

and 2pπu states using the same approximations. These results
are normalized to have unit area under the curve to allow for
comparison with [18]. The agreement of our calculations with
the El Ghazaly et al. [18] model is very good. The minor
discrepancy for the 2pπu results is due to the use of different
potential-energy curves.

From here onward we utilize the collision data calculated by
Zammit et al. [28,29]. To make a direct comparison between
the square root and T -matrix methods, we calculate the partial
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FIG. 10. The FC factors pvi
[28] for H2
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+ as a
function of vibrational state energy.

wave KER cross section using both methods without analytic
Born subtraction. We present these calculations at Ein = 50
and 500 eV for the BD-weighted 2pσu and 2pπu states in
Fig. 4. We find excellent agreement between the two methods
of calculation, except minor discrepancies at very low Ek.
The level of agreement between the two methods at Ein = 30
and 100 eV is the same. Similar agreement between the two
methods was also found in the calculation of vibrationally
resolved excitations for positron-H2 scattering by Zammit et al.
[24]. As the use of the square root method is much simpler
computationally, we will use it in what follows to compare
with the δ approximation and with experiment.

In Fig. 5 we present the normalized KER cross sections
for excitation to the 2pσu state of H2

+ by 50- and 500-eV
electrons scattering on the vi = 0,3,9 vibrational states
and the BD-weighted sum over the vi = 0–18 states. For
each, the square root and δ approximations are compared
and the BD-weighted results are also compared with the model
calculations of El Ghazaly et al. [18]. The δ and square
root approximation results are in good agreement for the
vi = 0 ground state, but the discrepancy becomes greater for
highly excited vibrational states. The cumulative effect is that
the δ approximation adequately reproduces the square root
results at higher Ek, where the largest contribution comes
from lower vibrational states, but fails at low Ek where the
largest contribution is from higher vibrational states. Our
calculations are in better agreement with the El Ghazaly et al.
[18] model calculations at 500 eV than at 50 eV, because their
approximate excitation cross sections are valid only in the
high-Ein limit. The disagreement at Ein = 50 eV demonstrates
the importance of using accurate collision data in the KER
calculations. In Fig. 6 the same results are presented for the
2pπu state. The comparisons between the δ and square root
methods are the same as those described for the 2pσu state. In
addition, we have verified that the square root and T -matrix
methods are in excellent agreement for the 2pσu and 2pπu

individual vibrational level partial-wave KER cross sections.
The larger discrepancy between our results and the El Ghazaly
et al. [18] model for the 2pπu state than for the 2pσu state
is likely due to our use of different potential-energy curves.
The BD-weighted 2pσu results display a peak near the origin
that comes from the highest excited vibrational levels. The
largest contribution to the low-Ek KER cross section comes
from large values of R, which are sampled only by the higher
vibrational levels. At these internuclear separations the 2pσu

state becomes degenerate with the ground 1sσg state, resulting
in an increased excitation probability and therefore a larger
KER cross section. This effect is not present in the 2pπu

results because of the higher asymptotic energy of this state.

B. Proton-production KER cross sections

In Fig. 7 we present the BD-, EG-, and FC-weighted PP
KER cross sections for Ein = 30, 50, 100, and 500 eV and
compare with the experimental measurements of El Ghazaly
et al. [18]. We also show the individual BD-weighted KER
cross sections of the 2pσu, 2pπu, 2sσg , 3pσu, 3dσg , and
3dπg states of H2

+ as well as the DI KER cross section.
All calculations have been performed using the square root
approximation, which we confirmed above to be a very good
approximation of the T -matrix method. These figures illustrate
the relative contributions of each state to the PP KER cross
section. As noted by El Ghazaly et al. [18] and in our previous
investigations [28,29] into e−-H2

+ scattering, the 2pσu state
makes the largest contribution, followed by the 2pπu state
and DI. The remaining states make very little contribution
to the PP KER cross section. The PP KER cross sections
calculated using the different vibrational weights are in good
agreement with each other for Ek greater than 4 eV, but are
in significant disagreement at lower Ek, demonstrating the
sensitivity of the low-Ek KER cross section to the choice of
vibrational distribution. At each Ein our results are in good
qualitative agreement with those of El Ghazaly et al. [18] and
at Ein = 50 eV our results are in good quantitative agreement.

El Ghazaly et al. [18] extracted DI cross sections as a
function of incident electron energy from the high-fragment-
energy tail of the KER cross sections, reasoning that the DI
KER cross section extends well beyond the DE processes.
Here, however, we have demonstrated that the 2pσu state
makes a significant contribution to the high-fragment-energy
tail. At 30-eV incident energy the 2pσu state makes the
dominant contribution and at 500 eV it still accounts for
approximately one-third of the high-fragment-energy tail. The
underlying CCC DI cross sections used in this work were
compared [28] with the measurements of El Ghazaly et al.
[18] and Peart and Dolder [42]. The CCC cross sections are in
good agreement with those of Peart and Dolder [42], but those
of El Ghazaly et al. [18] are substantially higher, likely due to
the contribution from the 2pσu state.

In Fig. 8 we present upper and lower bounds for the EG-
weighted PP KER cross sections, constructed by weighting the
cross sections with the renormalized maximum and minimum
values of the EG weights shown in Fig. 2. The EG weights,
along with the renormalized bounds, are presented in Table I.
The upper bound weights have a larger contribution from the
higher vibrational levels than the lower bound weights. The
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uncertainty in the vibrational distribution has no significant
effect in the region Ek > 3 eV, but for Ek < 3 eV it has a
strong effect. At all four incident energies the EG-weighted
PP KER cross sections are in better agreement with those of
El Ghazaly et al. [18] when we take the lower bound of the
vibrational distribution. In particular, the agreement for Ein =
50 and 500 eV is very good. This demonstrates the sensitivity
of the results to uncertainties in the vibrational distribution.
Our results suggest that the actual vibrational population in
the experiment of El Ghazaly et al. [18] had smaller weights
for the highest vibrational states than what was reported.

In Fig. 9 we present the BD-weighted 2pσu and 2pπu and
DI KER cross sections for 50-eV electrons scattering on indi-
vidual vibrational levels of H2

+. This figure demonstrates that
the low-lying vibrational states make the largest contribution
to the vibrationally summed KER cross section at high Ek.
The very good agreement of our PP KER cross sections with
those of El Ghazaly et al. [18] at high Ek (see Fig. 7) indicates
that we have calculated [28] accurate collision data for both
DE and DI from the low-lying vibrational states. This confirms
that these results can serve as a benchmark calculation.

C. The isotopologues D2
+ and T2

+

In the Born-Oppenheimer approximation, the isotopo-
logues D2

+ and T2
+ have potential-energy curves and elec-

tronic excitation cross sections identical to those of H2
+.

Hence, to calculate KER cross sections for these isotopo-
logues, all that is required is to obtain the bound vibrational
levels, using the appropriate reduced mass μ for D2

+ or T2
+

(half the mass of a deuteron and a triton, respectively) in
Eq. (10).

The vibrational levels become more closely spaced in
energy as μ is increased, resulting in a greater number of bound
states. In Fig. 10 we present the FC factors [28] for H2

+, D2
+,

and T2
+, as a function of the vibrational state energy.

The low-Ek spike present in the H2
+ results is due to the

contribution from vibrational states v = 15 and above. These
levels have energies greater than −0.505 hartree (see Fig. 10).
Summing the FC factors for vibrational levels with energies
greater than −0.505 yields 0.005 for H2

+, 0.003 for D2
+,

and 0.001 for T2
+. Therefore, the KER cross sections for

the vibrational levels that contribute to the low-Ek spike are
weighted less for D2

+ and T2
+. As for H2

+, it is likely that
the FC distribution assumed here has a larger weighting on the
higher vibrational states than what is produced in experiment.
This is evident from the behavior of the measurements
at low Ek.

In Fig. 11 we present the FC-weighted PP KER cross sec-
tions for H2

+ and compare them with the deuteron-production
(DP) and triton-production (TP) KER cross sections for D2

+

and T2
+, respectively. The results for all three isotopologues

are practically the same, except in the region Ek � 2 eV. This is
due to the fact that, in the Born-Oppenheimer approximation,
the isotopologues are distinguished only by their vibrational
levels and populations, which do not have a strong effect on the
KER cross sections except at low Ek. The spike near the origin
is less pronounced for the heavy isotopologues than for H2

+,
due to the decrease in population of the high-energy vibrational
levels. In Fig. 12 we compare the Ein = 100 eV D2

+ DP KER
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FIG. 11. The FC-weighted PP KER cross sections for 30-, 50-,
100-, and 500-eV electrons incident on H2

+, compared with the DP
and TP KER cross sections for D2

+ and T2
+, respectively.

cross section with the D2
+ measurements of El Ghazaly et al.

[18]. Although the present H2
+ and D2

+ KER results are very
similar away from low Ek as expected, we have a worse level
of agreement with experiment for D2

+ than we did for the
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FIG. 12. The KER cross sections of the 2pσu, 2pπu, 2sσg ,
3pσu, 3dσg , and 3dπg states and DI for D2

+ at 100-eV incident
electron energy, calculated using the square root approximation. The
individual channels presented here were calculated with BD weights.
The FC- and BD-weighted DP KER cross sections are also presented
in comparison with the measurements of El Ghazaly et al. [18].
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H2
+ results presented in Fig. 7. The D2

+ measurements of El
Ghazaly et al. [18] are higher than the H2

+ measurements in
the high-Ek region where our calculations show they should be
in agreement. As shown previously, the PP KER cross sections
at large Ek are relatively insensitive to the assumed vibrational
distributions (Figs. 7 and 8), hence the discrepancy between
our D2

+ results and experiment is unlikely to be (primarily)
due to the assumed FC distribution. The difference between the
H2

+ and D2
+ measurements deserves further investigation.

IV. CONCLUSION

We have calculated KER cross sections for electron
scattering on H2

+ in the incident energy range from 30 to
500 eV. We have compared calculations using the T -matrix
method, the δ (reflection) approximation, and the square
root approximation. We find that the δ approximation, which
replaces the continuum wave function with a δ function,
is in poor agreement with the other methods except when
scattering from the ground vibrational state. The T -matrix and
square root methods are in excellent agreement for the two
most important dissociative excitations (1sσg → 2pσu and
1sσg → 2pπu) over the range of incident energies that we
have performed calculations for.

We have demonstrated that our results reproduce the model
calculations of El Ghazaly et al. [18] when we implement
the same approximations and find good agreement with
their experimental data when we perform calculations using
accurate collision data calculated using the molecular CCC
method [28,29]. The uncertainty in the population of the high
vibrational states in the experiment of El Ghazaly et al. [18]
could be responsible for the moderate agreement of their
results with our calculations.

We have shown that in the low-Ek region, the KER cross
section is highly sensitive to the inclusion of highly excited vi-
brational states and therefore the choice of vibrational weights.
Accurate knowledge of the target vibrational population is
hence required to model experimental KER cross sections.

We have compared the KER cross sections for H2
+, D2

+,
and T2

+ and demonstrated that the results for all three
molecules are similar except in the low-Ek region, where the
different populations of highly excited vibrational states have
a strong effect. Surprisingly, our H2

+ KER results are in better
agreement with the measurements of El Ghazaly et al. [18]
than the D2

+ results, which still showed reasonable agreement
at Ein = 100 eV. Measurements of the T2

+ KER cross sections
are not available, but the good agreement of our H2

+ and D2
+

results with experiment suggest that our T2
+ calculations are

similarly accurate.
The theoretical techniques utilized in the present work can

be applied to study the KER processes of other molecules.
Of particular interest are those of relevance to the modeling
of fusion and industrial plasmas. Recently the molecular CCC
method was successfully applied to study the elastic, excitation
and ionization processes in e-H2 scattering [33]. The study of
KER processes in electron-impact dissociation of H2 is the
natural next step for this project.
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