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Dispersive optical detection of magnetic Feshbach resonances in ultracold gases
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Magnetically tunable Feshbach resonances in ultracold atomic systems are chiefly identified and characterized
through time-consuming atom loss spectroscopy. We describe an off-resonant dispersive optical probing technique
to rapidly locate Feshbach resonances and demonstrate the method by locating four resonances of 87Rb, between
the |F = 1,mF = 1〉 and |F = 2,mF = 0〉 states. Despite the loss features being �0.1 G wide, we require only 21
experimental runs to explore a magnetic field range >18 G, where 1 G = 10−4 T. The resonances consist of two
known s-wave features in the vicinity of 9 G and 18 G and two previously unreported p-wave features near 5 G
and 10 G. We further utilize the dispersive approach to directly characterize the two-body loss dynamics for each
Feshbach resonance.
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I. INTRODUCTION

Trapped ultracold gases have long been utilized as a highly
controllable experimental test bed for the investigation of
exciting and fundamental quantum phenomena such as matter
wave interference [1], superfluidity [2], and the BEC-BCS
crossover [3]. The standard technique for observing a cold
atomic sample is time-of-flight absorption imaging where the
entire sample is released from the trapping potential and
illuminated with resonant laser light, projecting a shadow
onto a charge coupled device (CCD) camera that gives the
two-dimensional density distribution of the sample [4]. Con-
ventional absorption imaging provides valuable information
on the spatial distribution and internal quantum state of atoms.
However, during the process the atoms are released from the
confining potential and undergo a strong resonant interaction
with the probe laser light, which heats up and destroys the
sample. This allows for acquisition of just one data point
per experimental run, and has motivated the development
of probing methods using off-resonant light to reduce the
spontaneous scattering of photons away from the probe beam,
such as dispersive dark-ground imaging [5], phase contrast
imaging [6,7], and Faraday imaging [8–10].

For many applications the object of interest is not the spatial
distribution of the cloud, but the temporal evolution of the
atomic population within a given probing volume (an integral
over the spatial distribution). For this class of measurements,
a single photodiode would suffice for efficient data collection.
This approach, in particular in conjunction with off-resonant
probe light, has, for example, been used to monitor breathing
[11] and spatial center-of-mass oscillations [12] of atomic
samples, Rabi oscillations between hyperfine states [13–15],
phase-space dynamics of spinor condensates [16], and Larmor
precession [17]. While the spatial information imprinted on
the probe laser beam is not retained, a photodiode provides an
effective means for collecting high-bandwidth real-time tem-
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poral information during dynamical processes, for example,
recording Rabi oscillations at a sample rate of �1 MHz [18].

Feshbach resonances fall perfectly into the category of
phenomena that can be efficiently explored through integrated
dispersive measurements; the atom loss dynamics for a trapped
gas driven by a Feshbach resonance is usually characterized via
the total atom number, disregarding spatial information. The
study of Feshbach resonances has remained an active field for
more than two decades [19–21], in particular because such
resonances provide a powerful tool for tuning the scattering
properties of atoms through external fields. Recent experi-
ments include controlling the two-body Feshbach losses using
electromagnetically induced transparency [22], investigation
of p-wave Feshbach resonances in 6Li [23], and an interorbital
Feshbach resonance in 173Yb [24]. There have also been recent
proposals to produce Feshbach resonances using rf fields
[25,26] and Rydberg molecular states [27].

In this paper we demonstrate the use of hyperfine state-
sensitive dispersive probing—measurement of the quantum
state-dependent phase shift acquired by an off-resonant probe
beam as it passes through a sample—for efficiently locating
and exploring the loss dynamics in connection to Feshbach
resonances. In particular we consider 87Rb, which is one
of the most prolifically utilized species in cold atom ex-
periments worldwide, motivating the quest for a thorough
understanding of its scattering properties, including details of
its landscape of Feshbach resonances [28,29]. We explore the
magnetic-field-dependent collisional loss due to interactions
between atoms in the 52S1/2|F = 1,mF = 1〉 ≡ |1,1〉 and
52S1/2|F = 2,mF = 0〉 ≡ |2,0〉 hyperfine states, and identify
four resonances in the range 0–18 G [30,31]. These consist of
two previously observed s-wave features [32], and two p-wave
features that have not been reported in prior experiments.

II. EXPERIMENTAL SETUP

A. Ultracold sample production

We begin the experiment by producing an ultracold sample
of 87Rb atoms in the |2,2〉 hyperfine Zeeman substate, using a
standard laser-cooling apparatus [33]. We then transfer the
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FIG. 1. Schematic of the experimental setup, showing propagation of the pulsed trichromatic dispersive probing beam through the sample of
optically trapped 87Rb, followed by the demodulation electronics, which extract phase shift information from the photodetected signal. A typical
postprocessed data set and fit is shown in the plot to the far right. Note that the horizontal trapping beam, which completes the optical tweezer
system, is copropagating with the dispersive probe but is not shown here. Inset in top left corner: the trichromatic frequency spectrum of the
probe, consisting of a carrier (C), and red (r) and blue (b) sidebands. The probe is shown relative to the 87Rb (52S1/2,F = 2) → (52P3/2,F′ = 3)
absorption line (not to scale).

sample from a magnetic trap into a double-well potential
formed by two crossed-beam far-off-resonant dipole traps [34]
and evaporatively cool to a temperature of 1.4 μK by lowering
the optical power of the horizontal confinement beam, as
detailed in Ref. [35]. The sample now consists of two closely
spaced ellipsoidal atom clouds positioned along the z axis.
The double-well potential facilitates efficient loading of atoms
from the elongated magnetic potential and provides the benefit
of increased peak density over an elongated single-well poten-
tial, which increases the rate of Feshbach losses. Each well
is characterized by trapping frequencies (ωx,ωy,ωz) = 2π ×
(243,132,156) Hz, where the coordinate system is defined
in Fig. 1.

B. Applied magnetic field

The magnetic field at the position of the atomic cloud
is controlled by a coil pair arranged in the Helmholtz
configuration, and points along the z axis. This field, B = Bzẑ,
defines a quantization axis and lifts the degeneracy of the
Zeeman sublevels. Since the Feshbach resonances in 87Rb
are narrow (all the known resonances are �200 mG wide),
we use a current supply with 10 μA/A stability to drive the
Helmholtz coils. An arbitrary waveform generator controls
the current supply, and the generated magnetic field has a
stability better than 0.2 mG and has been calibrated using
Rabi spectroscopy to an accuracy of �3 mG. The experimental
setup is summarized schematically in Fig. 1.

C. Quantum state preparation

We convert our |2,2〉 ultracold 87Rb sample into a nearly
50:50 mixture of the |2,0〉 and |1,1〉 quantum states using
microwave-frequency transitions. First, we use a frequency
sweep across the |2,2〉 ↔ |1,1〉 resonance to transfer the
population by adiabatic rapid passage (ARP) [36] to |1,1〉, in

the presence of a small homogeneous bias field Bz = 2.0 G.
We ensure purity of our sample by removing any atoms
remaining in the F = 2 multiplet with a 1 ms optical clearing
pulse, resonant with the {52S1/2,F = 2} → {52P3/2,F

′ = 3}
optical transition. The field is then ramped up to 18.8 G
over 10 ms and a π/2 pulse, resonant with the |1,1〉 → |2,0〉
transition, is used to prepare the sample in a superposition
of the |2,0〉 and |1,1〉 states, with N � 2.3 × 106 atoms at
1.4 μK. A typical magnetic field profile over the course of our
experiment is shown schematically in Fig. 2, indicating the
two state preparation stages and the magnetic field ramp used
to scan for Feshbach resonances.

Before beginning our investigation of Feshbach dynamics
we hold the sample in the trap for a further 12 ms, which
exceeds the coherence time of the system, so the resulting
sample can be treated as a 50:50 mixture of atoms in the |2,0〉
and |1,1〉 states. We obtain two samples with 1/e Gaussian
radii of (σx,σy,σz) = (11,20,17) μm and a peak density of
n0 � 2 × 1019 m−3 in each of the two atomic substates.

FB Field Ramp
|2,2

+ |2,0

t [ms]
0 150 240 440

B
z

[G
]

0
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FIG. 2. Typical magnetic field profile during an experimental run,
indicating the timing of the two state preparation stages; adiabatic
rapid passage (ARP) and a resonant π/2 pulse ( π

2 ).
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D. Dispersive probe

The off-resonant dispersive probe is locked to a beat note
with a reference laser, to within 4 MHz (the 3 dB width of
the beat note). This puts the frequency of the laser foffset =
−3.30 GHz below the F = 2 → F′ = 3 transition of the D2
line. By passing the probe beam through a fiber electro-optic
phase modulator we produce a trichromatic spectrum with
first-order sidebands at ±fEOM = ±3.700 GHz, where the
carrier component (C) has an optical power of �13 μW
and each of the two first-order sidebands contain �1 μW
(higher-order sidebands have negligible power). The down-
shifted sideband (r) is far-red detuned � = foffset − fEOM =
−7.00 GHz from the 2 → 3′ transition, while the up-shifted
(b) sideband has a comparatively small blue detuning of � =
foffset + fEOM = +400 MHz. This achieves a common-path
interferometric probe triplet spectrum {r,C,b} as illustrated
schematically in the inset of Fig. 1 with respect to the 2 → 3′
probing transition. The transitions to F′ = 1 and F′ = 2 levels
are also allowed, but are much weaker [38] and can be ignored.

The values of foffset and fEOM determine the positions of
all three dispersive probe components relative to the probing
transition, and are chosen with a number of considerations
in mind. Notably, we maximize the detuning of the C and
r components within the technical limitations imposed by
the detector and amplifier bandwidths, to avoid significant
interaction with the atomic sample. We also position the C
and r components on the opposite side of resonance to the b
sideband, in order to reduce the net light shift. We note that
the probing scheme is insensitive to atoms in the F = 1 state,
as the F = 1 → F ′ transition is far-off-resonant for all probe
triplet components.

The probe beam is modulated to create a train of probe
pulses, which are linearly polarized along the x axis and
propagated along the z axis, being focused to a 28 μm waist
centered on a sample. As the probe triplet passes though
the atomic cloud, the blue frequency component acquires
a phase shift dependent upon the F = 2 population of the
cloud. The beam is then focused onto a 4.2 GHz bandwidth
fiber-coupled ac photodetector, where the three frequency
components combine to produce a heterodyne signal at
frequency fEOM [37]. Following an amplification stage we
pass the signal through a passive I-Q mixer, extracting the
in-phase (I) and quadrature (Q) components by demodulating
with a frequency fEOM. The output of each mixer port is
sampled at a rate of 20 μs−1 with a 16-bit digitizer. At the
instance of each probe pulse, the digitized I and Q components
are numerically integrated over and summed in quadrature
to give the dispersive signal, A(t) =

√
I 2(t) + Q2(t). In the

regime where � = 400 MHz is much larger than the 6 MHz
natural linewidth of the 87Rb D2 line, the dispersive signal is
proportional to the phase shift acquired [A(t) ∝ φ] and thus to
the |2,0〉 population [39], provided the geometry of the sample
does not change (see Appendix B2). An example processed
data set is shown in the top right corner of Fig. 1.

III. LOCATING FESHBACH RESONANCES

Following preparation of the sample we sweep the magnetic
field down linearly from a series of starting magnetic field

t [ms]
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FIG. 3. Reference dispersive signal, acquired at constant off-
resonance magnetic field (blue circles), and a fit to the model
presented in Appendix A (solid black line). Error bars indicate the
standard deviation of each data point.

values at a constant rate of −5.83 mG/ms, with each sweep
covering a range of 1.17 G over 200 ms (Fig. 2 shows a
typical magnetic field sweep). During each sweep we monitor
the dynamics of the atomic population in the |2,0〉 state
dispersively, with a train of 21 light pulses at intervals of 10 ms.
Each pulse has a duration of 600 ns and contains �3 × 106

photons in the probing (b) sideband.
To determine whether a decrease in the dispersive signal

acquired during a magnetic field sweep is indicative of a
Feshbach resonance, we also measure the background atom
losses in a constant off-resonance magnetic field Bz = 18.8 G.
This reference signal, averaged over three runs, is shown in
Fig. 3 (blue circles) alongside a fit to the model in Appendix A.

Figure 4(a) presents the results of 21 magnetic field sweeps,
which collectively cover the range 19.4–0.7 G and overlap
by 25% at each edge. The dispersive data set obtained for
each sweep is plotted in sequence (colored circles) and
superimposed on a fit to the reference signal (black line), with
the time axis recalibrated to match each of the 21 magnetic field
sweeps, for easy comparison of the two signals. For several
sweeps the loss signal deviates from the background trace,
indicating possible Feshbach resonances. This is reinforced
by Fig. 4(b), which shows the average of three repeated
measurements for each magnetic field range. There are four
clear steps in the signal, shaded gray to indicate Feshbach
resonances at approximately 5 G, 9 G, 10 G, and 18 G.
By repeating the experiment about these four values with
a pure sample of each component state (|2,0〉 and |1,1〉)
separately, we verified that the Feshbach resonances observed
all correspond to the mixed-spin entrance channel.

Background losses in the sample limit the total duration of
each magnetic field sweep or hold time. The atomic density
of the cloud reduces by 40% over a 200 ms period even
in the absence of Feshbach interactions, making density-
dependent Feshbach loss more difficult to detect. We require
21 consecutive sweeps to cover the full >18 G range at a
rate low enough to dispersively detect losses due to the weak
resonance near 5 G. If we are only interested in stronger
features we can increase the sweep rate significantly, requiring
fewer experimental runs to cover the same range. An example
data set is shown in Fig. 5 where we used just six sweeps,
each 2.9 G wide, to cover a 16 G range. Shaded gray regions
indicate where we expect to see Feshbach resonances, based
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FIG. 4. (a) Three data sets showing the single-experiment dispersive signal (A, arbitrary units) for 21 consecutive and overlapping magnetic
field sweeps, covering the range 19.4 G–0.7 G. The black line is a reference for comparison, as explained in the main text. (b) Left-hand
axis: Dispersive signal averaged over the three experimental runs for each sweep, Aav. Right-hand axis: Theoretically predicted two-body
loss rate coefficients (K21, gray lines below dispersive data), calculated for a thermal ensemble of atoms at 1.4 μK, about each of the four
identified Feshbach resonances. (c) Zoomed-in view of the theoretically predicted K21 coefficients (gray lines), alongside the corresponding
experimentally measured K21 coefficients (colored markers). Error bars indicate the standard deviation of each data point. In most cases these
do not extend beyond the plotted point size.

on our investigation above. Steps in the signal are evident at
the �18 G,�10 G and �9 G Feshbach resonances, but there
is no clear evidence of loss near 5 G.
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FIG. 5. Dispersive signal (Aav, averaged over three experimental
runs) recorded during six overlapping magnetic field sweeps. The
black lines indicate a reference data set, and the shaded gray boxes
indicate regions in which we know there is a Feshbach resonance.

IV. MEASUREMENT OF DECAY COEFFICIENTS

We further characterize the four observed Feshbach res-
onances by dispersively measuring the two-body loss rate
coefficient, K21, which describes the rate of enhanced losses
near a Feshbach resonance, as a function of magnetic field.
The state preparation sequence for the measurement of K21

loss rate coefficients is almost identical to that in Sec. II C but
with one subtle difference. Because we need high magnetic
field stability to precisely characterize narrow loss features,
we carry out the π/2 pulse at a magnetic field <2 G above the
resonance of interest (at 18.8 G, 10.9 G, 10.9 G, and 5.4 G for
each resonance, respectively). This minimizes ringing of the
field when we decrease it to a fixed field value near resonance
during the K21 investigations, while avoiding atom loss due
to Feshbach dynamics during state preparation. Now rather
than sweeping the magnetic field downward, we hold it at a
constant value for 200 ms while probing the |2,0〉 component
of the cloud dispersively with 600 ns pulses at intervals of
2 ms [40], following the evolution of atomic population in real
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FIG. 6. Atomic loss data acquired via dispersive probing as we
hold the sample for 200 ms off resonance (9.158 G, gray circles)
and near resonance (9.062 G, green triangles). Fits to the model
described in Appendix A are shown by a dash-dotted and dotted line,
respectively.

time. The dispersive signal is converted to absolute atomic
population N using a calibration based on absorption images
(see Appendix A). In Fig. 6 we show example data sets
for the atomic population decay at an on-resonance and an
off-resonance magnetic field about the Feshbach resonance
near 9 G. The off-resonant case displays an exponential decay,
while the loss in the on-resonant case is much faster and
nonexponential. Figure 6 also presents the result of fitting
a nonlinear model to the data that captures both one- and two-
body background losses and two-body Feshbach loss features
(see Appendix A). The dispersive decay measurements are
carried out in the vicinity of each resonance and values
of the K21 coefficient are extracted from the fits, averaged over
three data sets for each field value, and plotted in Fig. 4(c).

The theoretically predicted K21 coefficients for a thermal
ensemble of atoms at 1.4 μK are indicated by gray lines in
Fig. 4(c). These are obtained from numerical coupled-channels
calculations based on a Hamiltonian of a homonuclear pair of
ground state 2S 87Rb atoms with nuclear spin i = 3/2 [41–
43] that includes atomic hyperfine and Zeeman interactions,
the isotropic X1�+

g and a3�+
u Born-Oppenheimer poten-

tials, the centrifugal potential with partial wave 	�, as well as
the anisotropic electronic magnetic dipole-dipole and second-
order spin-orbit interactions. Spectroscopically accurate
Born-Oppenheimer potentials and the parametrization of the
second-order spin-orbit interaction are taken from Ref. [43].
The Hamiltonian conserves the sum of all spin and angular
momentum projection quantum numbers and parity. Hence,
even and odd partial waves remain uncoupled. As the two
anisotropic interactions for 87Rb are weak it suffices to include
all � = 0 and 2 and � = 1 and 3 channels for our s-wave
and p-wave Feshbach resonances, respectively. Elastic and
inelastic rate coefficients near the Feshbach resonances are first
computed as a function of collision energy and then thermally
averaged using energies up to ten times the temperature. Taking
the resonance positions to be at the local maxima in the
calculated K21 values, we get predicted s-wave peaks at 9.048
G and 17.985 G and p-wave doublets at {4.792 G, 4.806 G}
and {10.160 G, 10.195 G}.

Agreement of the four experimentally determined res-
onance positions with theory is good and the expected
qualitative characteristics are present in the data. There is

a clear asymmetry in the K21 coefficient, with the tail
trailing out toward higher values of magnetic field due to
thermal broadening and there is also some evidence of the
doublet structure of the p-wave Feshbach resonance near
10 G, which manifests due to the dipole-dipole interaction
having different values depending on partial-wave projection,
|ml| = {0,1} [44]. The K21 values shown in Fig. 4(c) are based
on the assumption that the temperature is fixed at 1.4 μK
throughout the 200 ms hold time, and for the resonance
near 4.8 G, where the loss rate coefficient is small, we get
good quantitative agreement with theory. For the other three
resonances we get agreement in the wings, but the inferred K21

values are significantly lower than the theoretical predictions
at the peak of each feature. We attribute this discrepancy to
antievaporative heating of the sample [45], as Feshbach loss
occurs preferentially from high-density (low-energy) regions
of the sample, and the kinetic energy of the ejected atoms can
be partially transferred to the thermal energy of the sample via
collision with other particles during their escape [46].

To gain further insight into the effect of heating, we acquire
an absorption image following the 200 ms hold time for each
data set. From this it is apparent that larger Feshbach losses
lead to a higher temperature increase, consistent with our
finding of a larger discrepancy at the peak of the loss features.
Indeed, we find the predicted values of K21 to lie closer to
a modeled K21 based on the final temperatures (for details
see Appendix B). While heating limits the applicability of our
model to accurate measurement of large K21 values, it does not
reduce the efficacy of the method for the purposes of detecting
the locations of Feshbach resonances. A refined model, taking
into account the time dependence of the temperature, would be
required to properly estimate K21 at the peak. This is outside
the scope of this paper.

The decay measurements fully exploit the potential of the
dispersive probe system to considerably speed up data acqui-
sition. To acquire equivalent information for Feshbach loss
dynamics using standard time-of-flight absorption imaging,
one would require a full experimental sequence (≈100 s in our
setup) per data point. In addition, using dispersive probing the
dynamics can be monitored on a microsecond timescale with
a high bandwidth (up to 1.6 MHz). Such rapid data collection
also minimizes effects of drifting background fields and other
experiment conditions, reducing sources of systematic error.

V. CONCLUSION

In conclusion, we have demonstrated the use of an off-
resonant heterodyne optical dispersive probing system to
efficiently detect and characterize Feshbach resonances in
ultracold 87Rb. Our measurements of the two previously
unreported p-wave resonances fill a gap in the rich body of
data on the widely used 87Rb species. The method provides
a powerful tool for mapping out the Feshbach resonances of
any pair of substates, and could straightforwardly be extended
to any species with a change in optical frequencies, including
those with optical Feshbach resonances [47].

Dispersive probing could be further utilized to investigate
other types of loss dynamics near a Feshbach resonance, such
as three-body losses and the associated Efimov signatures [48].
This will extend the applicability of the technique to broad
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resonances, where two-body inelastic losses may be negligible
over ≈ 1 s timescales. Finally, our method may provide
an effective tool for the study of coherent atom-molecule
oscillations in a BEC [49].
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APPENDIX A: MODEL FOR DECAY DATA
AND DISPERSIVE SIGNAL

In this section we derive a model for the time evolution of
a trapped sample population held in a constant magnetic field.
We then relate this to the measured dispersive signal, from
which we extract the parameters describing the loss dynamics
near a Feshbach resonance.

The crossed-beam dipole-trapped |1,1〉 and |2,0〉 state
populations, N1(t) and N2(t), respectively, are modeled by
starting from the coupled rate equations

dn1(r,t)
dt

= −	1n1(r,t) − 2K11n1(r,t)2 − K21n1(r,t)n2(r,t),

(A1)

and
dn2(r,t)

dt
= −	2n2(r,t) − 2K22n2(r,t)2 − K21n2(r,t)n1(r,t),

(A2)

where n1(r,t) and n2(r,t) are the atomic densities of the
populations at time t and position r in the crossed-beam
dipole trap, 	1 and 	2 are the one-body loss rates due
to collisions with molecules or atoms in the background
vacuum, and K11, K22, and K21 are the thermally averaged
two-body loss rate coefficients for {1,1 + 1,1}, {2,0 + 2,0},
and {2,0 + 1,1} interactions, respectively [50,51] (we exclude
three-body recombination processes, which we estimate to be
negligible in our system). The factor of two preceding the K11

and K22 terms in Eq. (A1) and Eq. (A2) arises because each
collision event leads to the loss of two |1,1〉 or two |2,0〉 atoms,
respectively, rather than one of each as in the K21 process.

For a three-dimensional (3D) Gaussian density profile with
width (σx,σy,σz), Eq. (A1) and Eq. (A2) can be integrated
over space to give the rate equations for the crossed-beam
dipole-trapped sample populations,

dN1(t)

dt
= −	1N1(t) − 2K11

(2π )3/2σxσyσz

N1(t)2

− K21

(2π )3/2σxσyσz

N1(t)N2(t), (A3a)

dN2(t)

dt
= −	2N2(t) − 2K22

(2π )3/2σxσyσz

N2(t)2

− K21

(2π )3/2σxσyσz

N2(t)N1(t). (A3b)

The cloud widths are temperature dependent, with the
relationship given by

σi =
√

2kBT

m

1

ωi

, (A4)

Vertical
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N2K22
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K21

FIG. 7. Schematic of the three F = 2 populations that contribute
to the dispersive signal. N2 (|2,0〉 atoms) and NR

2 (a mixture of |2,1〉
and |2, − 1〉 atoms) are confined by the crossed-beam dipole trap,
while Nw

2 atoms are confined by the horizontally propagating trapping
potential only, and arrows at each end indicate continued expansion
along this waveguide beam. 	R

2 is the rate of optical pumping via
Raman processes, 	w

2 is the rate of atom removal from population
N2 to population Nw

2 , and K22 and K21 are the two-body losses from
population N2 to the background vacuum. Note that the density of
the waveguide population is much lower than that of the sample, so
two-body losses are negligible.

where i = x,y,z, kB is the Boltzmann constant, T the
temperature of the atoms in the crossed-beam dipole trap, m

the mass of a 87Rb atom, and ωi the trapping frequency of the
dipole trap along direction i.

The dispersive probe beam causes a small perturbation to
the |2,0〉 component of our sample; a series of 101 dispersive
pulses typically results in a 10% temperature increase and a
20% population decrease for the experiments in this work,
as measured using absorption imaging. It appears that the
affected atoms are pushed out of the crossed-trap potential
but remain trapped by the horizontal waveguide beam, and a
second distinct population of |2,0〉 atoms, Nw

2 , accumulates.
Because the horizontal waveguide beam propagates coaxially
with the dispersive probe beam, this population is still in the
path of the dispersive beam. The presence of atoms trapped in
the waveguide beam has been confirmed in absorption images
at short time of flight following dispersive probing of the
sample. Additionally, a small number of atoms are expected
to undergo Raman transitions via F ′ = 3 to the |2, − 1〉 and
|2,1〉 states during the probing sequence (we calculate ≈13%
in total over a sequence of 101 pulses). This optically pumped
population of atoms (NR

2 ) has the same geometry as the main
|2,0〉 sample and will contribute with near equal weight to
the dispersive signal [38]. A schematic of the three trapped
populations and their associated loss rate coefficients is shown
in Fig. 7.

Our dispersive probe measurement scheme is sensitive to
all atoms in the F = 2 ground-state hyperfine manifold, and
produces a signal proportional to the F = 2 state population

A = C2
(
N2 + NR

2

) + Cw
2 Nw

2 + A0, (A5)

where A0 is an offset and C2 and Cw
2 are calibration constants.

We determine A0 and C2 by comparing dispersive signal
amplitudes to the corresponding atom numbers measured
using absorption imaging at a temperature of T = 1.4 μK.
We can’t determine Cw

2 because the Nw
2 population is small

and difficult to measure in absorption images, so we assume
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that Cw
2 = C2. Under this assumption, optical pumping to

|2, − 1〉 and |2,1〉 and atom loss into the waveguide beam both
affect the loss dynamics in the same way, reducing the atomic
density of |2,0〉 atoms involved in Feshbach interactions while
still contributing to the dispersive signal. We simplify our
model by treating the two effects collectively and defining
a phenomenological loss rate 	̃2 = 	w

2 + 	R
2 , where 	w

2 is
the rate at which |2,0〉 atoms move from the crossed-dipole
trap into the horizontal waveguide due to interaction with the
dispersive probe beam, and 	R

2 is the rate of optical pumping
to other mF states.

To describe the effect of the dispersive probe beam on our
system we now require a third rate equation,

dÑ2

dt
= +	̃2N2, (A6)

and we replace 	2 with 	2 + 	̃2 in Eq. (A3b). Two-body
losses from the Nw

2 and NR
2 populations are negligible over

the timescale of our experiment, as the atomic densities are
very low. From a series of dispersive probe measurements
with varying pulse number we have measured a loss rate per
probe pulse of 0.011 s−1, so for a sequence of 101 pulses,
	̃2 = 1.1 s−1. The dispersive probe does not lead to additional
|1,1〉 atom losses, as the |1,1〉 state is unaffected by the probe.

1. Fitting background data

We consider our reference data sets, where the magnetic
field is held constant at an off-resonant value ∼1 G above the
Feshbach resonance, and use Eq. (A5) to convert the dispersive
signal into F = 2 atomic population. We then fit a model
for the temporal evolution of atom number in the absence of
two-body Feshbach losses, which is given by the sum of the
populations

Ntot(t) = N2(t) + Ñ2(t), (A7)

where the two respective populations are given by the solution
to the system of three coupled differential equations

dN2(t)

dt
= −	̃2N2(t) − 2K22

(2π )3/2σxσyσz

N2(t)2

− K21

(2π )3/2σxσyσz

N2(t)N1(t), (A8a)

dN1(t)

dt
= − K21

(2π )3/2σxσyσz

N1(t)N2(t), (A8b)

dÑ2

dt
= +	̃2N2, (A8c)

with initial conditions N2(t = 0) = N1(t = 0) = N0 and
Nw

2 (t = 0) = 0. In deriving this system of equations, we
made use of the fact that (	1,	2,K11n0) � (K21n0,K22n0)
for typical values of n0 (the initial single-component peak
atomic density) to neglect the terms involving 	1, 	2, and K11

in Eq. (A3a) and Eq. (A3b). To fit to the off-resonant data sets
we set K21 = 0 and used N0 and K22 as our fitting parameters.
For each of the four data series, K22 � 1.0 × 10−19 m3s−1 (or
equivalently, K22n0 � 2.0 s−1).

2. Fitting Feshbach loss data

Using the values of K22 obtained from our off-resonant data
sets, we then fitted our near-resonance data sets with Eq. (A7)
and fitting parameters N0 and K21. The extracted values of
the two-body loss rate coefficients K21 for each magnetic field
value are shown in Fig. 4(c) of the main text. The maximum
two-body peak loss rate of K21n0 � 60 s−1 was measured for
the �18 G resonance. Fitting to a simpler model where optical
pumping and the losses into the waveguide are neglected (i.e.,
setting 	̃2 = 0) gives a very similar result, with the extracted
K21 loss rate coefficients �10% smaller in magnitude.

APPENDIX B: INVESTIGATION OF HEATING
DURING LOSS MEASUREMENTS

We acquired a time-of-flight absorption image immediately
following every dispersive measurement. From the images we
extracted the spatial distribution of the crossed-beam dipole-
trapped |2,0〉 component following 200 ms of dispersive prob-
ing at fixed magnetic field, and calculated the final population
and temperature. The measured final |2,0〉 population in the
crossed-trap versus magnetic field is presented in the top row
of Fig. 8 and amounts to a set of traditional loss spectroscopy
measurements. The resonance positions and qualitative shape
of the loss features match with those in Fig. 4(c) of the main
text, which verifies the validity of our method for analyzing
dispersively measured loss dynamics. The measured final
temperature versus magnetic field is presented in the bottom
row of Fig. 8, and shows that the temperature of the cloud
increases as a result of loss dynamics in the vicinity of a
Feshbach resonance. The resonance positions and qualitative
shape of the loss features are also mimicked in the temperature
data, and we even see the expected doublet structure near 10 G.

1. Relationship between the decay model and temperature

In deriving the rate equations for the atomic populations,
Eq. (A8a), Eq. (A8b), and Eq. (A8c), we assumed that the sam-
ple had a thermal Gaussian distribution of fixed temperature
[51], and hence that the sample size was constant throughout
the loss process. Because the sample heats up during Feshbach
interactions it expands according to Eq. (A4), and the model
presented in Appendix A underestimates the K21 loss rate co-
efficients near resonance. Ideally we need an extended model
with time-dependent cloud size {σx(T (t)),σy(T (t)),σz(T (t))}
to account for the effect of the heating. This would require an
understanding of how temperature changes with time, which is
not straightforward because heating is correlated with the K21

coefficient. While this extension falls outside the scope of our
current work, Fig. 9 shows the K21 values recalculated using
the final temperature for each data set in the model detailed in
Appendix A (red triangles), rather than the initial temperature
of 1.4 μK (also shown for reference, with colored circles). A
solid gray line shows the theoretical K21 values for an ensemble
at 1.4 μK, while the dotted black line is the theoretical curve
for an ensemble at temperatures of 1.6 μK, 2.3 μK, 1.9 μK,
and 2.0 μK, which are the maximum temperatures observed
following Feshbach loss about the resonances near 5 G, 9 G,
10 G, and 18 G, respectively.
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5x10

FIG. 8. Dipole trapped |2,0〉 population (top row) and temperature (bottom row) derived from time-of-flight absorption images, following
a 200 ms hold time at a range of magnetic fields across four Feshbach resonances. Error bars indicate the standard deviation of each data point.
In most cases these do not extend beyond the plotted point size.

For data points where the temperature increase during
the 200 ms hold time was small, we expect the dispersively
measured K21 values to match closely with the 1.4 μK (gray
solid) theory curve. This is the case in the wings of the 9 G,
10 G, and 18 G features, and at most magnetic fields about
the 5 G feature, as can be seen in Fig. 9. On the other hand,
we expect the dispersively measured K21 values to match more
closely with the variable upper temperature limit (black dotted)
theory curve where the heating effect was significant, and
see evidence of this behavior toward the peaks of the three
higher-field features. The effect of heating may also explain
why the doublet structure of the 10 G p-wave resonances is
not clear—it has been washed out due to thermal broadening
[44], the effect of which we can also see in the corresponding
theoretical curve for a thermal sample at 1.9 μK. While
modifying the temperature used in our model gives values
of K21 that match more closely with the theory, there is still

a discrepancy between experiment and theory in all but the
�18 G case.

2. Relationship between dispersive signal and temperature

The coupling factor C2, entering the expression in Eq. (A5)
that relates the dispersive signal to the atomic population,
depends on the geometry of both the atomic sample and the
dispersive probe beam. In our experiments the dispersive probe
beam parameters remain fixed, but the temperature increases
slightly during Feshbach interactions, increasing the ensemble
size according to Eq. (A4). Because the temporal evolution
of the temperature during these processes is unknown, we
assumed a fixed coupling factor (measured at T = 1.4 μK) to
convert dispersive signal to atomic population.

The Rayleigh range of our dispersive beam is
zR � 3 mm  σz � 17 μm, so we ignore intensity variations

Magnetic field, B
z
 [G]
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8
 m
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FIG. 9. Two-body loss rate coefficient, K21, for the four identified Feshbach resonances. Colored circles indicate the measured values as in
Fig. 4(c), and red triangles indicate the measured values based on the expected cloud size at the measured final ensemble temperatures for each
data point. In each panel the solid gray line shows the theoretical curve for an ensemble at 1.4 μK while the dotted black line is the theoretical
curve for an ensemble at temperatures of 1.6 μK, 2.3 μK, 1.9 μK and 2.0 μK for the resonances in (a)–(d), respectively. Note that the two
curves overlap in the �5 G case. Error bars indicate the standard deviation of each data point.
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FIG. 10. Variation of geometric coupling factor with temperature,
across the full temperature range of the samples in this work (solid
line). The dotted lines indicate the maximum final temperatures
measured for each of the four Feshbach resonances.

along the direction of propagation and consider only the
Gaussian intensity profile in the radial (xy) plane,

I (x,y) = I0e
− 2x2+2y2

w2
0 , (B1)

where I0 is the peak intensity and w0 = 28 μm is the beam
waist. Assuming our sample is at thermal equilibrium, the
spatial profile of atoms can be well approximated by a 2D
Gaussian column density distribution

n(x,y) = 2
√

πσzn0e
−
(

x2

σ2
x

+ y2

σ2
y

)
, (B2)

where the factor of two arises from the fact that our sample
consists of two identical Gaussian clouds in series along the
direction of propagation, and n0 is the peak atomic density

n0 = N2

σxσyσz(2π )3/2
. (B3)

The dispersive signal (A) can be expressed as

A = k

∫ ∞

−∞

∫ ∞

−∞
n(x,y)I (x,y)dxdy, (B4)

where k is a fixed constant of proportionality that depends
on the electronic system used to demodulate the signal, the
resonant optical cross section, and the detuning of the probe
light from resonance. Evaluating this integral gives

A = 2kπ3/2I0n0
w2

0σxσyσz(
2σ 2

x + w2
0

)1/2(
2σ 2

y + w2
0

)1/2 . (B5)

To determine the dependence of the coupling factor on the
temperature (T ) and the atomic population (N2), we substitute
in Eq. (A4) and Eq. (B3) to give

A(T ) = kI0√
2

w2
0(

w2
0 + 4kBT

mω2
x

)1/2(
w2

0 + 4kBT

mω2
y

)1/2 N2

= C2(T )N2. (B6)

Figure 10 shows the variation in the coupling factor over
the full range of temperatures we observe, normalized to the
value of the coupling factor at the initial temperature. The
dotted lines indicate the maximum temperatures measured
near each of the four Feshbach resonances, as recorded in
Fig. 8. Even for the maximum temperature increase (800 nK)
encountered for the on-resonance value near 9 G, the expected
correction is less than 20%, and we stress that this is the
worst case scenario; at all other magnetic fields and all earlier
times the temperature increase is smaller, and thus the change
in coupling factor is less pronounced. We conclude that
the (approximate) conversion to atomic population N2 from
our dispersive signal A, based on a value for C2 calibrated
at a temperature of T = 1.4 μK, is reasonable within our
experimental setting.
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