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The effect of final-state dynamic correlation is investigated for helium single ionization by 75-keV proton
impact analyzing fully differential cross sections (FDCS). The final state is represented by a continuum correlated
wave (CCW-PT) function which accounts for the interaction between the projectile and the residual target ion
(PT interaction). This continuum correlated wave function partially includes the correlation of electron-projectile
and electron-target relative motion as coupling terms of the wave equation. The transition matrix is evaluated
using the CCW-PT function and the Born initial state. The analytical expression of the transition matrix has been
obtained. We have shown that this series is strongly convergent and analyzed the contribution of their different
terms to the FDCS within the perturbation method. Illustrative computations are performed in the scattering
plane and in the perpendicular plane. Both the correlation effects and the PT interaction are checked by the preset
calculations. Our results are compared with absolute experimental data as well as other theoretical models. We
have shown that the dynamic correlation plays an important role in the single ionization of atoms by proton impact
at intermediate projectile energies, especially at large transverse momentum transfer. While overall agreement
between theory and the experimental data is encouraging, detailed agreement is lacking. The need for more
theoretical and experimental work is emphasized.
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I. INTRODUCTION

Correlation is a well-known concept in a wide range of
physical processes. Within atomic physics, correlation is a
basic ingredient in the description of multielectronic atoms and
ions. The effect of correlation has been assumed to be crucial
in charged particle collisions with neutral atomic targets and
correlation cannot be neglected for the ionization of atoms
by electron impact [1–3]. In the case of single ionization by
ion impact, correlation can be understood as a lack of internal
independence of the components of a system, i.e., the motion of
the electron-projectile subsystem is no longer independent of
the electron-recoil-ion-target motion. This dynamical coupling
between the motion of all particles plays a significant role in all
many-body problems (see [4,5] and references therein). One of
the simplest systems in which this correlation can be studied
is the three-body Coulomb problem. The simplest collision
process leading to three free particles in the final state is the
ionization of the hydrogen atom by proton impact [6,7]. For
nonhydrogenic targets, the ion-atom ionizing collisions can be
modeled as a three-body Coulomb problem with appropriate
effective charges and offers the opportunity to investigate
the full continuum problem. The correlation (or coupling)
of the ionized electron moving in the long-range Coulomb
potential of two heavy ions directly influences the essence of
the dynamical process in the ionization reactions. The details
of these states can be revealed by the computation of fully
differential cross sections (FDCS) of electronic emission in
these collisions.

From a theoretical point of view, the Schrödinger equation
for many interacting bodies does not have any known exact
analytical solution and some approximations should be consid-
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ered instead. One of the most successful approaches to describe
these three-body states is the well-known 3C wave function,
a product of three two-body continuum Coulomb functions
representing each of the “independent” interactions between
the charged particles [8,9]. In some sense, the 3C function
includes a trivial correlation since the relative coordinates
and momenta of the particles are linked. Moreover, the 3C
state does not introduce any dynamical correlation since the
influence of the third particle is neglected at the wave-function
level. Other wave functions have been proposed. Many of
these proposals are formally similar to the 3C approximation.
They introduce correlation through effective Sommerfeld
parameters, depending on the coordinates [3] and momenta [1].
A step beyond the 3C model has been introduced by Gasaneo
and co-workers (see [10] and references therein) with the
use of multivariable hypergeometric functions as approximate
solutions to the three-body Schrödinger equation. The wave
functions are correlated; that is to say, they are nonseparable
solutions of the wave equation which dynamically mix the
motion of the electron relative to target and to projectile and
verify the Redmond’s asymptotic conditions of long-range
interactions. It has been denoted the continuum correlated
wave (CCW).

The CCW function has been applied to the calculation of the
doubly differential cross sections (DDCS) for H+ + H, H+ +
He, C6+ + He, and F9+ + He ionizing collisions [5,11,12]
under an impact parameter approximation. The success of the
theory to reproduce the experimental data has been remarkable.
These works have shown that the electron-ion correlation plays
an important role in the single ionization of atoms by ion
impact in the intermediate- to high-energy regime. However,
Ciappina and Cravero [4] have also carried out calculations of
the FDCS for the single ionization of helium by 100 MeV/amu
C6+ projectiles using the same approximation as for the CCW
function. They found that the effect of dynamic correlation is
very small and does not explain the experimental results. It
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is worth noting that the interaction between the projectile and
the target ion (PT) is not accounted for in the model. In fact,
it has been shown that the PT interaction has a large influence
depending on the ejected electron energies and momentum
transfer values at intermediate impact energies [6,7,13–16].
It should be necessary to include the PT interaction at the
FDCS level. Consequently, the role of the correlation and
PT interaction deserves to be analyzed in detail (see [4] and
references therein).

In this work, we present the analytic derivation of the FDCS
in a Born-like approximation using the CCW function as a final
state for the single ionization of a hydrogenlike atom by ion
impact. The PT interaction has been accounted for not only
in the CCW final state, but in the perturbative potential as
well. The initial state is represented as a product of the plane
wave for the projectile and the bound-state wave function of a
hydrogenlike atom. The purpose of this paper is to explore the
role of the correlated effect and the PT interaction in FDCS
for intermediate ion impact ionization within the Born-like
approximation, and to see if the improvements in the theory
represented by the CCW can explain the large discrepancies
between experiment and theory which have been found so far.
Viewing the success of the CCW model, we are motivated
to compare the CCW cross section with the corresponding
experimental results as well as other theoretical models, and
to assess the ability of the present model to reproduce the peak
structure and relative magnitudes of the experimental data.

The organization of the paper is as follows. In Sec. II,
the theoretical formalism and evaluation of the transition
amplitude are outlined. The obtained results and their related
comparisons and discussion are given in Sec. III. Concluding
remarks are given in Sec. IV. Atomic units (a.u.) are used
unless otherwise stated.

II. THEORETICAL TREATMENTS

We treat helium single ionization as a single-electron
process assuming that in the final state, the active target
electron moves in the combined Coulomb field of the incoming
projectile and the residual-target core with a given effective
charge. This charge takes into account the partial screening
due to the passive helium electron.

In the center-of-mass (c.m.) frame, the FDCS is given by

d3σ

d�P d�edEe

= Ne(2π )4μIeμ
2
PA

Kf kT

Ki

|Tf i |2. (1)

The reduced mass of the helium-ion-electron subsystem is μIe,
and the reduced mass of the projectile-target atom system is
μPA. The initial and final momenta of the projectile are K i and
K f , the ejected electron’s energy and momentum are given by
Ee and kT , respectively, and Ne is the number of electrons
in the atomic shell. The solid angles d�P and d�e represent
the direction of scattering of the projectile and the ionized
electron, respectively.

The main quantity in (1) is the transition matrix Tf i in prior
form, which can be written as

Tf i = 〈�−
f |Vi |�+

i 〉, (2)

where the initial-state [final-state] wave function �+
i [�−

f ] sat-
isfies the outgoing-wave (+) [incoming-wave (−)] boundary
conditions and Vi is the initial-channel perturbation.

The undistorted Born initial state reads simply

�+
i (rT ,RT ) = (2π )−3/2 exp(K i · RT )�i(rT ). (3)

Here, RT is the position vector of the projectile relative to the
atomic center of mass. rT represents the coordinates of the
ionized electron with respect to the target core. The ground

state is �i(rT ) = (Z3
T

π
)1/2 exp(−ZT rT ). ZT is an effective

charge given by ZT = 1.34 arising from the binding energy
of the active electron that is used. The corresponding initial-
channel projectile-atom interaction is

Vi = −ZP

rP

+ ZP ZT

RT

. (4)

Here, rP is the coordinates of the ionized electron with respect
to the projectile and ZP is the projectile’s charge.

The final-state wave function �−
f (see [10] and references

therein) is chosen as

�−
f = N (2π )−3 exp(ikT · rT + i K f · RT )�2(iαT ,iαP ,1,

−ikT ξT , − ikP ξP )1F1(iαPT ,1,−ikPT ξPT ), (5)

with

N = exp[−π (αPT + αT + αP )/2]	(1 − iαPT )

×	(1 − iαT − iαP ). (6)

The function �2 is a two-variable hypergeometric-function
solution of a differential equation involving mixed derivatives
[10]. However, for evaluation of the transition matrix, it
has a more convenient expansion in terms of confluent
hypergeometric functions,

�2 =
∑
m

am(−ikT ξT )m(−ikP ξP )m1F1(iαT + m,1

+ 2m,−ikT ξT )1F1(iαP + m,1 + 2m,−ikP ξP ), (7)

am = (−1)m(iαT )m(iαP )m
(m)m(1)2mm!

, (8)

with (α)m being the Pochammer symbol and ξj = rj + k̂j · rj

with j = T , P , or PT . Here, T , P , and PT represent the
target-electron, projectile-electron, and projectile-target inter-
actions, respectively. k̂j is the unit vector in the direction of
the relative momenta kj for each pair of particles. αT = −ZT

kT
,

αP = −ZP

kP
, and αPT = μZP ZT

kPT
represent the e − T , e − P , and

PT Sommerfeld parameter, respectively. μ is the reduced mass
of the projectile-target ion subsystem. Equation (7) represents
the expansion of a correlated three-body function in terms of
a separable set of two-body functions, and each partial sum
will give an approximation order. The coupling between the
motion of the electron relative to the projectile and the residual
ion is approximately introduced by the �2 wave. Hence the
dynamically correlated motion of the emitted electron with
respect to the heavy ions will be represented by the �2. It has
been denoted that the continuum correlated wave (CCW) and
the term with m = 0 gives the 2C wave [4,5,11,12].

The interaction between the heavy particles is
represented by a two-body Coulomb wave function
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1F1(iαPT ; 1; −ikPT ξPT ) in Eq. (5). It is worth noting that besides a normalization factor, the lowest order of this series, i.e.,
m = 0, is the well-known 3C function [8,9]. The internuclear wave function, i.e., PT interaction, can be removed with an impact
parameter approximation since they do not contribute to DDCS. However, in the present approximation, the internuclear wave
function will be kept not only in the final state, but also in the perturbative potential.

In the heavy mass limit, using the transformation rPT ≈ RT ≡ R, rT ≡ r , and after a large dose of mathematical manipulation
that we will not reproduce here, the transition matrix Tf i is then given by

Tf i = lim
M→∞

T M
f i = lim

M→∞
C

M∑
m=0

a∗
mD̂Tm, (9)

where

D̂ = −ZP

∂2

∂ε1∂ε2
+ ZT ZP

∂2

∂ε1∂ε3
, (10)

Tm =
∫

d3rd3R

rrpR
exp(iq · R − ikT · r) exp[−(ε1 + ZT )r] exp(−ε2R − ε3rP )(ikT r + ikT · r)m

× 1F1( − iαT + m,1 + 2m,i(kT r + kT · r))(ikP rP + ikP · rP )m1F1( − iαP + m,1 + 2m,i(kP rP + kP · rP ))

× 1F1( − iαPT ,1,i(kPT R + kPT · R)), (11)

with q = K i − K f (momentum transfer) and C = N∗(2π )−3(2π )−3/2(Z3
T

π
)1/2. Here we have introduced the parameters εi(i =

1,2,3) for the convenience of our calculations, and take the limit εi → 0+ after solving the integral.
We note that when m = 0, besides a factor, the expression Tm=0 reduces to the usual 3C approximation in prior form [17,18].

The most important feature of the expression (11) is that the transition matrix can be obtained more generally than Eq. (3)
in [19] since the PT interaction modeled by the two-body Coulombic function 1F1( − iαPT ,1,i(kPT R + kPT · R)) is included,
whereas it is not included in Eq. (3) in [19]. The six-dimensional integral Tm, which involves three confluent hypergeometric
functions, can be analytically reduced to three-dimensional integrals for m > 0. It is noteworthy that the second parameter of the
two functions 1F1( − iαT + m; 1 + 2m; i(kT r + kT · r)) or 1F1( − iαP + m; 1 + 2m; i(kP rP + kP · rP )) is no longer one, but
an integer number 1 + 2m. Therefore, the method used to solve the integral T0 cannot be directly used to treat the general case
Tm>0. However, we can utilize the derivative formulas of the confluent hypergeometric functions to reduce the integer number
1 + 2m to one. For the sake of simplicity, we consider here the derivative representation of the confluent hypergeometric function
[20],

(ikT r + ikT · r)m1F1( − iαT + m,1 + 2m,i(kT r + kT · r))

= (1 + m)m
(−iαT )m

(1)m
(−iαT − m)m

(ikT r + ikT · r)−m ∂2m

∂a2m 1F1(−iαT − m,1,ia(kT r + kT · r)) |a=1 , (12)

(ikP rP + ikP · rP )m1F1(−iαP + m,1 + 2m,i(kP rP + kP · rP ))

= (1 + m)m
(−iαP )m

∂m

∂bm 1F1(−iαP ,1 + m,ib(kP rP + kP · rP )) |b=1 . (13)

Here we have introduced the parameters a and b for the convenience of our calculations, and take the limit a,b → 1 after solving
the partial derivative. Inserting Eqs. (12) and (13) into Eq. (11), we can write the scattering amplitude as

Tm = (1 + m)m
(−iαT )m

(1)m
(−iαT − m)m

(1 + m)m
(−iαP )m

∂3m

∂a2m∂bm

∫
d3rd3R

rrP R
exp(iq · R − ikT · r) exp[−(ε1 + ZT )r] exp(−ε2R − ε3rP )

×(ikT r + ikT · r)−m
1F1( − iαT − m,1,ia(kT r + kT · r))1F1( − iαPT ,1,i(kPT R + kPT · R))

×1F1(−iαP ,1 + m,ib(kP rP + kP · rP )). (14)

To be able to obtain analytical expressions for the transition matrix Tm, we can employ the integral method given in Refs. [17,18].
Therefore, we consider here the integral representation of the confluent hypergeometric functions [20] in Eq. (14),

1F1(a,1,z) = 1

2πi

∮
Ci

dti t
a−1
i (ti − 1)−a exp(zti), (15)

for the first two confluent hypergeometric functions, and the last one,

1F1(−iαP ,1 + m,ib(kP rP + kP · rP )) = 	(1 + m)

	(−iαP )	(1 + m + iαP )

∫ 1

0
dtt−iαP −1(1 − t)iαP +m exp[ibt(kP rP + kP · rP )].

(16)
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And the negative power function in Eq. (14) is written as

(ikT r + ikT · r)−m =
{

i−m

	(m)

∫ ∞
0 τm−1e−τ (kT r+kT ·r)dτ, m � 1

1, m = 0.
(17)

The contour Ci in Eq. (15) is closed and encircles, in the positive direction, the two branch point singularities at t = 0 and t = 1.
Making use of Eqs. (15)–(17) and performing some manipulations, we have

Tm = (1 + m)m
(−iαT )m

(1)m
(−iαT − m)m

(1 + m)m
(−iαP )m

∂3m

∂a2m∂bm

	(1 + m)

	(−iαP )	(1 + m + iαP )

∫ 1

0
dtt−iαP −1(1 − t)iαP +m i−m

	(m)

∫ ∞

0
dττm−1

× 1

(2πi)2

∮
C1

∮
C2

dt1dt2t
−iαPT −1
1 (t1 − 1)iαPT t

−iαT −m−1
2 (t2 − 1)iαT +mJm, (18)

with

Jm =
∫

d3rd3R

rrP R
exp(−i p1 · r + i p2 · R − ξ1r − ξ2R − ξ3rP ), (19)

where

p1 = βq + kT − iτ kT − btkP − at2kT , p2 = q − btkP + t1kPT ,

ξ1 = ZT + ε1 + τkT − iat2kT , ξ2 = ε2 − it1kPT ,ξ3 = ε3 − ibtkP . (20)

The space integration Jm of Eq. (19) can be evaluated by using Fourier transform techniques and following Lewis [21]. Now, for
the convenience of later integrations with respect to t1 and t2, we express, following Sinha and Sil [22], the results obtained after
space integration as

Jm = (4π )2
∫ ∞

0
ds(αs2 + 2βs + γ )−1, (21)

where

α = [( p1 − p2)2 + (ξ1 + ξ2)2], γ = [
(ξ1 + ξ3)2 + p2

1

][
(ξ2 + ξ3)2 + p2

2

]
,

β = ξ1
(
ξ 2

3 + p2
2 + ξ 2

2

) + ξ2
(
ξ 2

3 + p2
1 + ξ 2

1

) + ξ3
[(

p1 − p2

)2 + (
ξ 2

1 + ξ 2
2

)]
. (22)

The expressions for α, β, and γ are linear functions of t1 and/or t2. Thus we can write αs2 + 2βs + γ as σ0 + σ1t1 + σ2t2 + σ12t1t2,
where σ0, σ1, σ2, and σ12 are the functions of s and t . Hence, Eq. (21) can be recast into the following form:

Jm = (4π )2
∫ ∞

0
ds(σ0 + σ1t1 + σ2t2 + σ12t1t2)−1. (23)

Thus, we have

Tm = (4π )2 (1 + m)m
(−iαT )m

(1)m
(−iαT − m)m

(1 + m)m
(−iαP )m

	(1 + m)

	(−iαP )	(1 + m + iαP )

×
∫ 1

0
dtt−iαP −1(1 − t)iαP +m i−m

	(m)

∫ ∞

0
dττm−1

∫ ∞

0
ds

∂3m

∂a2m∂bm
Ic, (24)

where

Ic = 1

(2πi)2

∮
C1

∮
C2

dt1dt2t
−iαPT −1
1 (t1 − 1)iαPT t

−iαT −m−1
2 (t2 − 1)iαT +m

σ0 + σ1t1 + σ2t2 + σ12t1t2
. (25)

Hence, Eq. (25) can be integrated by the residue theorem, which has been discussed in detail in Refs. [17,18], and we obtain

Ic = 1

σ0

(
σ0

σ0 + σ1

)−iαPT
(

σ0

σ0 + σ2

)−iαT −m

2F1

[
−iαPT ,−iαT − m; 1;

σ1σ2 − σ0σ12

(σ0 + σ1)(σ0 + σ2)

]
, (26)

where 2F1 is Gauss-hypergeometric function.
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Finally, we have Eq. (24) as

Tm = (4π )2 (1 + m)m
(−iαT )m

(1)m
(−iαT − m)m

(1 + m)m
(−iαP )m

	(1 + m)

	(−iαP )	(1 + m + iαP )

∫ 1

0
dtt−iαP −1(1 − t)iαP +m i−m

	(m)

∫ ∞

0
dττm−1

×
∫ ∞

0
ds

∂3m

∂a2m∂bm

[
1

σ0

(
σ0

σ0 + σ1

)−iαPT
(

σ0

σ0 + σ2

)−iαT −m

2F1

(
−iαPT , − iαT − m; 1;

σ1σ2 − σ0σ12

(σ0 + σ1)(σ0 + σ2)

)]
. (27)

We should bear in mind here m > 0 in Eq. (27). In order to check our results, we note Eq. (17), and after taking m = 0 and this
moment τ = 0, we have

T0 = (4π )2 	(1)

	(−iαP )	(1 + iαP )

∫ 1

0
dtt−iαP −1(1 − t)iαP

∫ ∞

0
ds

1

σ0

(
σ0

σ0 + σ1

)−iαPT
(

σ0

σ0 + σ2

)−iαT

× 2F1

(
−iαPT ,−iαT ; 1;

σ1σ2 − σ0σ12

(σ0 + σ1)(σ0 + σ2)

)
. (28)

Equation (28), apart from a factor, is the commonly known
3C approximation in prior form [9,17,18,23]. Therefore, a
three-dimensional integral is reached with m > 0 and can be
evaluated numerically to calculate Tm. The final state given by
Eq. (7) leads to an infinite expansion of the transition amplitude
Tf i [see Eq. (9)], which has fast convergence, and for practical
calculations the sum of only a few terms of that expansion
is enough to obtain a stable value for the whole transition
amplitude.

We observe that this formula (27) is different from the ones
given by Eqs. (22), (25), and (28) in [19]. Here, Eq. (27) can be
considered as an extended integral form of Eq. (3) in Ref. [19]
based on the CCW function (5). The analytical expression of
the 3mth order partial derivatives of these composite functions
in Eq. (27) can be carried out by the MATHEMATICA package.
In addition, the parameters of ε1, ε2, and ε3 are introduced
for convenience in the present calculations, and attention
should be paid to the derivation of ε1, ε2, and ε3. In the
derivation of each variable, a forward-difference formula is
utilized to keep the variable positive when it approaches
zero. These integrals have been performed numerically by
the Gauss-Legendre quadrature method. Convergence of the
results has been tested by increasing the number of quadrature
points to achieve an accuracy of 0.1%. Furthermore, we
label the present calculation using the above wave function
(5), perturbation potential (4), and transition matrix (9) as
CCW-PT to distinguish it from the usual CCW [4,5,11,12,19]
theory where the PT interaction is not accounted for (hereafter
referred to as the CCW-noPT). The CCW-noPT calculation
can be obtained by setting αPT = 0 in (5) or (27) and (28),
and the well-known 2C approximation can be recovered by
setting αPT = 0 and M = 0.

III. RESULTS AND DISCUSSION

In order to check the accuracy of the present model, we
have computed the FDCS, by Eq. (1), for 75-keV proton-
impact ionization of helium and electron ejected into both the
scattering plane (Fig. 1) and the perpendicular plane (Fig. 2)
with Ee = 5.4 eV, which corresponds to the experimental
data of [24]. Here we have modeled the final interaction with
the target by an effective charge ZT = 1.34 that leads to the
correct energy of the bound state. We should point out that this

is a very approximate way to include the effect of the passive
electron of helium in the final state.

As mentioned above, the series expansion in the transition
matrix has an excellent numerical convergence, and we have
computed the individual FDCS by setting m = 0,1, . . . ,5 in
the scattering amplitude Tm, respectively. We find that the
contribution to the FDCS is mainly from the first three terms
of the series. The higher terms (m > 3) are several orders of
magnitude smaller than the first one. The convergence is also
shown in Figs. 1(a) and 2(a), where the FDCS calculated with
M = 0, . . . ,5, i.e., the individual FDCS for m = 0,1, . . . ,5,
have been summed, where each result represents the coherent
sum of different orders in the transition matrix. It is worth
noting that the calculations using m = 0 or M = 0 are
the lowest order in the transition matrix; the expression (9)
reduces to the 3C approximation. As seen from Figs. 1(a)
and 2(a), besides the CCW-PT (M = 0−2), the shape and the
magnitudes of each theoretical curve are approximately the
same, respectively. That is to say, the m = 0, . . . ,3 FDCS
are the dominant contribution to the sum. This is further
confirmation that considering up to order M = 3 is enough to
calculate the FDCS in the CCW-PT approximation.

In Fig. 1, we show the angular distribution of the FDCS
for electrons with an energy of 5.4 eV ejected into the
scattering plane. To study the effects of final-state correlation,
we compare the theoretical values given by the CCW-PT,
3C calculations, and the three-body distorted wave (3DW)
approximations [24] with the experimental data of Schulz
et al. [24]. The theoretical results multiplied by a proper
factor are compared to the experiment data. Consequently,
we can take a qualitative look at the differences among
these theoretical results. Both the theoretical curves and
experimental results showed the binary peak approximately
in the direction of q. In the experiment, the binary peak is
shifted in the backward direction relative to q at small qt ,
and, eventually turns into a forward shift at large qt . It can
be seen from Fig. 1 that the qualitative agreement between
the binary peak observed in the CCW-PT results and in the
experiment is satisfactory except for some small shifts. Most
noticeably, the angular distributions and relative magnitude
differences are found between the CCW-PT and 3C results
(the two calculations are multiplied by the same factors) in
this region. We would like to explain that these differences are
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FIG. 1. Fully differential cross sections for electrons with an
energy that is 5.4 eV ejected into the scattering plane in 75-keV
p + He collisions. The present FDCS have been plotted against the
angle of the ejected electron (θe). The dotted vertical line at positive
angles denotes the angle θq of q relative to K i , and the ones at negative
angles indicate −θq . The transverse momentum transfers qt are (a)
qt = 1.38, (b) qt = 0.73, (c) qt = 0.41, and (d) qt = 0.13 a.u. The
3C (dashed red lines) and CCW-PT (solid black lines) calculations
multiplied by 0.5 (0.73 a.u.), 0.22 (0.41 a.u.), and 0.14 (0.13 a.u.),
respectively. Dotted blue lines: 3DW calculations [24] multiplied by
0.6 (0.73 a.u.), 0.3 (0.41 a.u.), and 0.2 (0.13 a.u.), respectively. Solid
circles are for experimental measurements [24].

due to the CCW-PT approximations in which the correlation is
considered.

Due to a two-step scattering mechanism, a smaller peak is
called the recoil peak, which is usually seen approximately
in the opposite of q. However, no recoil peak in the direction
of −q was observed experimentally. On the contrary, a strong
peak structure near −θq was found; the structure was attributed
to the recoil peak being strongly shifted in the forward direction
[24,25] and the peak becomes more visible with increasing qt .
For this peak structure, remarkable discrepancies are observed
between the correlated (CCW-PT) and the uncorrelated (3C)
wave-function calculations, particularly in the case of qt =
0.41, 0.73 and 1.38 a.u. In Fig. 1, we can see that the 3C results
show the peak in the expected angular region for larger qt , but
the experimental data is seriously underestimated; as a result,
the peak structure is less pronounced than the experiment.
Furthermore, the peak structure is nearly absent for smaller

FIG. 2. The notation is the same as in Fig. 1 but for the electron
emission into the perpendicular plane. The 3C (dashed red lines)
and CCW-PT (solid black lines) calculations multiplied by 0.52
(0.73 a.u.), 0.26 (0.41 a.u.), and 0.12 (0.13 a.u.), respectively. Dotted
blue lines: 3DW calculations [24] multiplied by 3 (1.38 a.u.), 0.6
(0.73 a.u.), 0.3 (0.41 a.u.), and 0.2 (0.13 a.u.), respectively. Solid
circles are for experimental measurements [24].

qt . It is clear that the inclusion of correlation in the CCW-PT
calculations leads to a very distinct recoil peak, whereas the
peak is completely absent in the 3DW calculations for all qt .
We can conclude that the peak structure is provided by the
lowest order (m = 0), and higher orders are responsible for
the enhancement of the structure. Additionally, in the absolute
magnitude, much better agreement is achieved with our CCW-
PT calculation for the largest qt in the scattering plane. Here,
the inclusion of correlation does seem to introduce a relevant
advantage in the description of the scattering plane and should
not be neglected.

The 3C and CCW-PT calculations and the 3DW results are
also plotted in Fig. 2. The experimental FDCS exhibit a strong
peak at θe = 0◦ except for qt = 1.38 a.u. It has been observed
that this maximum becomes broader with increasing qt , and
eventually separates into two peaks at about θe = ±30◦ for
the largest qt , leaving a minimum at θe = 0◦. That is to say,
signatures of the higher-order contributions tend to increase in
the perpendicular plane [24]. In fact, the two-peak structure has
been observed at about θe = ±40◦ in the case of qt = 0.73 a.u.
experimentally. In Fig. 2(b), the experimental FDCS is well de-
scribed by CCW-PT, since the CCW-PT predicts two maxima
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at about θe = ±65◦ and the two peaks are not found in the 3C
and 3DW results. The CCW-PT and 3C calculations reproduce
the position of the maximum at θe = 0◦ except for the largest
qt . For the largest qt , the two peaks occur at about θe = ±70◦,
and the minimum at θe = 0◦ shows virtually zero cross section
for the 3C calculation, while, taking the higher terms (m > 0)
into account, the two peaks occur at θe = ±55◦ for CCW-PT.
At the same time, the overall magnitude of the FDCS is
improved significantly. We should note that the CCW-PT
exaggerates the FDCS for qt = 1.38 a.u. by as much as an order
of magnitude as compared to the 3C results. In other words,
the features observed in the measured FDCS are still provided
by the lowest order, allowing the electron to interact with the
target ion, and the projectile to higher orders in the final state
improves the agreement between experiment and theory. We
can now turn our attention to the 3DW calculations, although
the 3DW calculations seem to reproduce the position of the
maximum fairly well for the smaller qt . In the case of qt = 1.38
a.u., it is in poor agreement with the measurements in shape and
magnitude, and the minimum is absent for the 3DW model. In
contrast, there exists a maximum at θe = 0◦. Furthermore, the
3DW results have the two-peak structure at about θe = ±80◦;
nevertheless, the two peaks that are seen from the experimental
data are at about θe = ±30◦. The failure of the 3DW model
predicting the two peaks might have been traced back to the
absence of the correlated final state. Overall, the CCW-PT
model for this description is more suitable than 3DW and 3C.

In order to evaluate the contributions of the correlation
effects and the PT interaction, we have also performed calcu-
lations using the 2C (M = 0, αPT = 0) and the CCW-noPT
(αPT = 0) models. We start here with the 2C, successively
adding the correlation and the PT interaction using the respec-
tive method of these models. The data of Fig. 1 are shown again
in Fig. 3, but this time they are compared to different theoretical
curves. The dotted and the dashed lines represent the 2C and
the CCW-noPT calculations, respectively. The solid curves
still represent the CCW-PT results. According to Fig. 3, the 2C
calculations generally describe the trend of the experimental
data correctly. However, the 2C results overestimate both the
magnitude and the width of the binary peak (as it clearly
does at large qt ). At the same time, there is an increasing
backward shift with increasing qt for the binary peak. Only
after the correlation is included (CCW-noPT) is a pronounced
narrowing compared to the 2C observed for the binary peak,
and the magnitude of the binary peak is reduced. However,
the inclusion of correlation leads to a distinct recoil peak.
Somewhat unexpectedly, with increasing qt , the magnitude and
width of the recoil peak is increasingly overestimated by the
CCW-noPT calculation. In contrast to this, the experimental
data show a slight recoil peak for all qt . The intensity of the
recoil peak is even larger than the binary one, particularly in
the case of qt = 0.73 and 1.38 a.u. This feature of the recoil
peak may be qualitatively explained by strong correlation
from the CCW function. After the PT interaction is switched
on, dramatic improvement of the FDCS as compared with
the corresponding distributions in Fig. 3 can be observed
by CCW-PT. In spite of the CCW-PT calculations not being
completely satisfactory in reproducing the experimental data,
the relative success is obtained in the description of the overall
features of FDCS and gives results that are closer to the exper-

FIG. 3. Same as Fig. 1, but calculations are 2C: dotted blue
curves; CCW-noPT: dashed red curves; and CCW-PT: solid black
curves.

imental measurement. Furthermore, much better agreement
in magnitude is obtained with the CCW-PT calculation at
large qt = 1.38 a.u. This confirms that both the correlation and
the PT interaction, which are simultaneously accounted for in
CCW-PT, can take a relatively important role in the description
of this collision process, especially at large qt . Under these
circumstances, the 2C results can be significantly improved.

As mentioned above, signatures of the correlation and PT
interaction are observed in the scattering plane. Such effects
should be even more pronounced in the perpendicular plane
[13]. In Fig. 4, except for the largest qt , the 2C reproduces the
shape of the maximum at θe = 0◦ and the width of the peak
fairly well. Furthermore, there is significant disagreement in
magnitude. It is important to note that the 2C does not even
remotely resemble the experimental data at qt = 1.38 a.u.
It predicts a second pronounced peak at θe = 180◦, which
is not present at all in the data. Some improved agreement
with the data is achieved with the CCW-noPT calculation to
the extent that the peak at θe = 180◦ for qt = 1.38 a.u. is
completely absent. On the other hand, there is no improved
agreement in the absolute magnitude and, in fact, particularly
at large qt the discrepancy is even much larger than for the
2C. Most noticeable is the peaklike character appearing in
the CCW-noPT at about θe = ±90◦ in Figs. 4(c) and 4(d),
as no such peak is found by the 2C calculations. Besides,
the CCW-noPT results overestimate the FDCS in the angular
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FIG. 4. Same as in Fig. 3, but for electron ejected into the
perpendicular plane.

region between θe = 120◦ and θe = 270◦ at small qt . It
should again be noted that differences between the 2C and
CCW-noPT are some signatures of the correlation. In spite
of significant improvement with the data achieved with the
CCW-PT calculation, many discrepancies remain. On one
hand, the two peaks for small qt are reduced to a small residue.
Furthermore, peak structures are now seen at larger qt and the
calculation is capable of predicting a minimum at θe = 0◦ in
the case of qt = 1.38 a.u. On the other hand, those maxima
occur at about θe = ±55◦, nevertheless, the data structure is at
about θe = ±30◦. Perhaps the most remarkable aspect of the
CCW-PT results is that they reproduce, apart from possibly
overestimating the overall magnitude, the measured FDCS for
qt = 1.38 a.u. fairly well, in sharp contrast to other theoretical
calculations. Finally, the comparison among these calculations
shows that the present results are in close proximity with the
experimental findings. It also indicates that the correlation and
PT interaction should be considered overall to generate such
structure, especially at large qt .

IV. CONCLUSIONS AND PERSPECTIVES

In this work, we have calculated FDCS for the single
ionizing of helium by a 75-keV proton impact. We used
the CCW function introduced [10] as the final three-body
state. We obtained analytical expressions of the transition
matrix for the perturbative approximation through a series
representation of the CCW function. For the transition matrix,

the PT interaction has been included not only in the final
state, but in the perturbative potential. We have assessed the
correlation taken into account in CCW-PT theory comparing
it with the usual 3C and 3DW calculations. We found that
the 3C and CCW-PT calculations have the similar behavior at
small qt . The CCW-PT model is overall in good agreement at
large qt , but not perfect agreement with the measured data. It
also shows that the final-state dynamic correlation becomes
stronger with increasing qt . A feature that the correlation
described by CCW-PT gives rises to is the enhancement
presented by the FDCS. The data were compared to other
theoretical calculations and the large differences between
the various models show that the cross sections are quite
sensitive to the details of the description of the PT interaction.
For example, if only the correlated effect is accounted for
(CCW-noPT), the calculated FDCS bears no resemblance to
the experimental data at all in some aspects, and somewhat
worse than the 2C. On the other hand, if the PT interaction is
incorporated on top of the correlation, reasonable qualitative
agreement is achieved. It may also be noted that with the
increase of qt , the PT interaction becomes more prominent.
It is conceivable that the features observed in the data are not
only due to the correlation, but to a large extent due to the PT
interaction. This was consistent with the large body of already
published papers on single ionization [6,7,13–16,24].

The CCW-PT model combines the favored methods of
including the correlation and PT interaction and as a result
yields the best overall agreement with experiment among
the models presented here. However, the description of
CCW-PT is still incomplete and it is necessary to include
some improvements to the distorted-wave-type theories. For
example, the effect of the non-Coulomb part of the interaction
between the ejected electron and the residual-target ion should
be incorporated, e.g., by using the model potential; a correlated
initial channel should be considered instead of the simple Born
initial one, e.g., the application of this method in Ref. [12]; and
a full four-body approach in which the passive electron fully
participates in the collision should be investigated.

To avoid the complications introduced by a many-electron
target for an effective three-body problem, p + H (pure
three-body system) represents the simplest system for which
ionization can occur and theory is not plagued by having
to deal with a complicated many-electron state. In fact, it
is an ideal system in which to study correlation. The role
of the dynamic correlation and PT interaction has also been
found to be critical when we applied the present CCW-PT
model to deal with the pure three-body problem at the FDCS
level. Unfortunately, for proton-impact ionization of atomic
hydrogen, fully differential measurements are not available,
but there are double-differential measurements from [6,7].
Therefore, it allows us to apply our CCW-PT theory to the
basic collision of hydrogen ionization by proton and the
measurements are suited to test the theoretical description of
the correlation. Our efforts are currently underway.
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