
PHYSICAL REVIEW A 96, 022702 (2017)
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The recently developed wave-packet continuum-discretization approach [I. B. Abdurakhmanov, A. S. Kadyrov,
and I. Bray, Phys. Rev. A 94, 022703 (2016)] is extended to antiproton-helium collisions. The helium target
is treated as a three-body Coulomb system using a frozen-core approximation, in which the electron-electron
correlation within the target is accounted for through the static interaction. The Schrödinger equation for the
helium target is solved numerically to yield bound and continuum states of the active electron. The resulting
continuum state is used to construct wave-packet pseudostates with arbitrary energies. The energies of the
pseudostates are chosen in a way that is ideal for detailed differential ionization studies. Two-electron target
wave functions, formed from the bound and continuum wave-packet states of the active electron and the 1s

orbital of He+, are then utilized in the single-center semiclassical impact-parameter close-coupling scheme. A
comprehensive set of benchmark results, from angle-integrated to fully differential cross sections for antiproton
impact single ionization of helium in the energy range from 1 keV to 1 MeV, is provided. Furthermore, we use
our single-center convergent close-coupling approach to study fully differential single ionization of helium by
1-MeV proton impact. The calculated results are in good agreement with recent experimental measurements [H.
Gassert, O. Chuluunbaatar, M. Waitz, F. Trinter, H.-K. Kim, T. Bauer, A. Laucke, C. Müller, J. Voigtsberger, M.
Weller et al., Phys. Rev. Lett. 116, 073201 (2016)] for all considered geometries.
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I. INTRODUCTION

Studies of processes taking place in ion-atom collisions
are not only of fundamental interest but they have numer-
ous practical applications, including nuclear fusion reactors,
hadron therapy, transport of ions through gaseous and solid
targets, atmospheric science, astrophysics, etc. [1,2]. From
a theoretical point of view, accurate and reliable modeling
of the relevant processes over a wide range of projectile
energies requires the development of sophisticated computa-
tional approaches. The prototype of ion-atom collisions, which
served as a starting point for many theoretical approaches
[3–11], is the collision of antiprotons with atomic hydrogen.
In the regions of practical interest, this process can safely
be considered without accounting for rearrangement channels
that lead to protonium formation.

Recently, we developed a close-coupling approach to this
collision system based on wave-packet continuum discretiza-
tion [12]. When compared to other close-coupling models, a
distinct feature of our approach is its ability to generate the
target continuum pseudostates with arbitrary ejection energies.
In principle, these can be aligned across different angular
momenta of the target electron, which greatly improves
the accuracy of differential ionization studies. The above
approach, therefore, is ideal for calculating the most detailed
fully differential cross sections (FDCSs).

The idea of a wave-packet-based continuum-discretization
approach to the target description can be extended to more
complex targets. Regarding the level of computational com-
plexity, the next target to consider is helium, i.e., a two-
electron system. Antiproton-helium scattering is, in fact, the

simplest quantum-mechanical four-body problem that allows
for studying electron-correlation effects of the target.

The currently available theoretical approaches applied to
this system mainly differ in two aspects: (i) the way the
corresponding four-body Schrödinger equation (SE) is solved
and (ii) the treatment of the helium target. Earlier works
[13,14] based on perturbative methods produced reasonable
results for several integrated cross sections representing single-
electron processes at high impact energies. More sophisti-
cated approaches [4,5,15–24] are based on the semiclassical
close-coupling formalism, in which the antiproton motion
is treated classically by means of straight-line trajectories.
This approximation is well accepted in ion-atom collisions.
Its validity to reproduce reliable integrated cross sections for
all processes involved in antiproton-helium collisions above
1 keV was demonstrated in Refs. [25,26], where comparisons
were made with predictions from fully quantum-mechanical
treatments of the problem.

Various approaches were developed to address the electron-
correlation effects in the target. Close-coupling calculations
[4,5,15,18,19,24] that do not solve the SE directly, but rather
convert it into a set of coupled differential equations by expand-
ing the total scattering wave function in terms of target pseu-
dostates, can only produce cross sections for single-ionization
processes. Within the framework of such a close-coupling
scheme, a number of works assumed a static correlation of
the outer electron with the inner one confined to the 1s orbital,
i.e., the frozen-core (FC) approximation. More sophisticated
calculations by Igarashi et al. [15], Pindzola et al. [21], and
Foster et al. [22], which allowed for multiple configurations for
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both target electrons, produced total ionization cross sections
that differed considerably from the values obtained in the
frozen-core approximation. However, in these calculations
the type of basis functions used to diagonalize the target
Hamiltonian does not allow for inclusion of double-continuum
states in the description of the He structure, since one would
run into the problem of mixing single- and double-ionization
channels. The root of the problem lies in the fact that for
different configurations of the target electrons the energy
levels of the individual one-electron functions that construct
the helium states are generated randomly and not aligned.
A combination of multiple electronic configurations of the
target, represented by the product of one-electron functions
with different continuum energy distributions, produce target
state wave functions that do not allow for separating one-
electron processes from the processes where both electrons
are involved.

Borbély et al. [27] reported accurate total and doubly
differential cross sections obtained by directly solving the fully
correlated two-electron time-dependent Schrödinger equation
using the time-dependent close-coupling method. Baxter
and Kirchner [28,29] used time-dependent density-functional
theory to investigate the role of electron correlations in the
integrated single and double ionization in antiproton-helium
collisions.

Technically, the problem can be addressed effectively with
the use of wave packets. Helium wave packets can be obtained
in several steps. First, following the configuration-interaction
approach, the helium wave function is expressed as a linear
combination of products of two one-electron functions. Next,
a basis of N1 He+ radial functions representing the bound and
continuum eigenstates of one of the electrons is created. This
step can be carried out fully analytically. In the third step, the
two-electron helium wave function, which contains the He+

radial functions calculated in the previous step, is inserted into
the appropriate SE for the helium target. This converts the tar-
get SE into a set of coupled integrodifferential equations for N2

radial functions representing the state of the second electron.
This set of integrodifferential equations is solved numerically
subject to appropriate asymptotic boundary conditions.

As a result, a set of N1 × N2 one-electron functions
representing various electronic configurations is obtained.
Some of the one-electron radial functions from this set
represent continuum states of the electrons. These states
are not normalizable and, consequently, are not suited for
close-coupling scattering calculations. However, this issue
can be resolved using the technique that was applied to the
description of atomic hydrogen [12], namely, one-electron
radial functions representing continuum states are replaced
by normalizable wave packets. Each of these wave packets
represents nonoverlapping subregions of the continuum and
are the integrals of continuum functions over the corresponding
subregion. In constructing wave packets for each electronic
configuration, it is necessary to use the same grid when
discretizing the continuum. This avoids any mixture of various
single- and double-ionization and excitation channels.

The wave-packet-based model of the helium target
described in this paper not only benefits the current status of
theoretical studies of collisions involving helium targets but
it will also serve as the background for developing a powerful

approach to collisions with diatomic molecules. Such an
approach will allow for conducting currently unavailable
differential ionization studies of molecular targets.

The idea of a wave-packet-based description of the target
was previously applied to ionization of helium by Barna
et al. [30]. The authors constructed a basis of He one-electron
functions from Slater orbitals and wave packets built from
hydrogenic Coulomb functions. Reasonable results for single-
and double-ionization cross sections were obtained at high
impact energies.

As a starting point for the present paper, we will de-
velop a semiclassical one-center close-coupling approach
to antiproton-helium scattering based on a wave-packet
continuum-discretization procedure, with one of the helium
electrons being confined to the 1s orbital. As described above,
the continuous spectrum of the second electron is discretized
using the wave packets constructed from the continuum
wave function, using the eigenstates of the frozen-core target
Hamiltonian. The approach starts from the semiclassical four-
body SE for the scattering wave function and leads to a set
of coupled differential equations for the transition probability
amplitudes. To demonstrate the utility of the method, various
cross sections, from angle-integrated to fully differential,
will be calculated for single-electron processes occurring in
antiproton-helium collisions.

Comparison of the prediction with experimental data from
recent measurements of fully differential single-ionization
cross sections for the scattering of energetic 1-MeV protons
on helium targets [31] will also be used to test the developed
approach comprehensively. The experimental setup, based
on the well-established cold-target recoil-ion momentum
spectroscopy technique, allowed for obtaining the highest
resolution in the ejected-electron angular distribution data ever
reported in the collision plane, as well as generating data in
several other planes. Generally good agreement was reported
[31] between the measured data and first Born calculations for
all planar geometries considered.

This was not the case for the differential studies of single
ionization of helium under the impact of heavier projectiles
of C6+. The experiment for C6+ projectiles [32] initiated
numerous discussions in the field. Even today, the most
advanced theories remain in strong disagreement with the
measurements of the fully differential single-ionization cross
sections for the plane perpendicular to the momentum transfer
direction. The question whether this disagreement is due
to shortages in the theoretical approaches or insufficient
experimental resolution still needs to be answered. In this
regard it is interesting to see whether more sophisticated
close-coupling calculations of proton impact single ionization
of helium might yield significant corrections to the first Born
calculations, especially for the perpendicular plane geometry.

The single-center close-coupling approach developed in
the present paper is capable of producing cross sections to
compare with the measured differential ionization data. At
the experimentally considered collision energy of 1 MeV, the
electron capture channels are several orders of magnitude
less important than the direct ionization channel. In this
regime, therefore, single-center approaches are expected to be
reliable for studying also the scattering of positively charged
projectiles.
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In Sec. II we give a brief outline of the formalism and
describe the procedure for generating the wave packets. Details
of the calculations are described in Sec. III, and the results
are presented in Sec. IV. Finally, in Sec. V, we highlight the
principal findings and draw conclusions from the present paper.
Unless specified otherwise, atomic units are used throughout
this paper.

II. WAVE-PACKET APPROACH

We treat antiproton-helium scattering within the framework
of the one-center semiclassical convergent close-coupling
(CCC) method developed previously [12,33,34]. The approach
follows from the exact four-body formalism, where the
total scattering wave function �+

i satisfies the nonrelativistic
Schrödinger equation

(H − E)�+
i = 0. (1)

The four-body Hamiltonian operator H is written as

H = − ∇2
R

2μ
− ∇2

r1

2
− ∇2

r2

2
− 2

r1
− 2

r2

+ 1

|R − r1| + 1

|R − r2| − 2

R
, (2)

where μ is the reduced mass of the projectile-target system,
while R, r1, and r2 are the positions of the incident antiproton
and the two orbital electrons relative to the helium nucleus. The
target nucleus is located at the origin, and we assume that the
projectile is moving along a classical trajectory R ≡ R(t) =
b + vt , where b is the impact parameter and v is the initial
velocity of the projectile relative to the target. It is defined
such that b · v = 0.

We separate the total scattering wave function �+
i into

nuclear and electronic parts according to (see, e.g., Bransden
and McDowell [35])

�+
i = eiq·R�e, (3)

where q is the incident momentum of the projectile relative to
the target nucleus. After inserting this into Eq. (1) and using
the semiclassical approximation, we obtain the nonrelativistic
semiclassical time-dependent Schrödinger equation for the
electronic part of the total scattering wave function:

(Ht + V )�e(t,r1,r2,R) = i
∂�e(t,r1,r2,R)

∂t
. (4)

Here Ht is the target Hamiltonian

Ht = −∇2
r1

2
− ∇2

r2

2
− 2

r1
− 2

r2
+ 1

|r1 − r2| , (5)

and

V = − 2

R
+ 1

|R − r1| + 1

|R − r2| (6)

is the interaction potential between the projectile and the target
constituents.

The scattering wave function is expanded in terms of basis
functions ψα(r1,r2), which are suitably chosen to represent

the entire set of target states, as

�e(t,r1,r2,R) =
N∑

α=1

aα(t,b)ψα(r1,r2)e−iεα t , (7)

where N is the number of basis functions and εα is the
energy of the target electronic state α. The latter collectively
denotes the full set of quantum numbers representing that state.
The expansion coefficients aα(t,b) at t → +∞ represent the
transition amplitudes into the various target states.

Substituting this representation of the scattering wave
function into the semiclassical Schrödinger equation (4), and
using the orthogonality properties of the basis functions, one
obtains the following set of first-order differential equations
for the time-dependent coefficients:

i
daα(t,b)

dt
=

N∑
β=1

ei(εα−εβ )t 〈ψα|V |ψβ〉aβ(t,b), (8)

where α = 1,2, . . . ,N . This system is solved subject to the
initial boundary conditions

aα(−∞,b) =δα,1s , (9)

which assume the atom is initially in the 1s state. If the basis
functions are known, the matrix elements 〈ψα|V |ψβ〉 can be
evaluated numerically [25].

A. Target description

In the quantum-mechanical convergent close-coupling
(QM-CCC) approach [36], the two-electron helium target was
described using the configuration interaction approach, where
the target states were taken as a sum of products of one-
electron orbitals. The one-electron orbitals were composed of
orthogonal Laguerre functions. Two different approximations,
frozen-core and multicore models of the helium target, were
employed. In the frozen-core approximation, one of the
electrons was confined to the 1s orbital. In addition to the
bound states, the model also generated a set of positive-
energy pseudostates that simulate the contribution of the entire
continuum. Similar to the case of atomic hydrogen [12] the
energies of the He continuum pseudostates for different values
of the angular momentum l are not aligned, and there exist
some difficulties with creating the desired energy distribution
of the continuum pseudostates. Below we will extend the ideas
of the wave-packet continuum-discretization approach to the
two-electron helium target, which will allow us to construct
basis states with arbitrary energies and distribution.

As shown in Ref. [12], the wave-packet continuum pseu-
dostates for atomic hydrogen can be obtained by energy inte-
gration of the hydrogen continuum functions. For both bound
and continuum states of atomic hydrogen, the Schrödinger
equation has an analytical solution. Consequently, it was
significantly easier to implement the wave-packet continuum-
discretization approach for this target. For the helium atom,
on the other hand, the Schrödinger equation needs to be
solved numerically. As a first step, we develop a wave-
packet-based description of the helium atom in the frozen-core
approximation. Within this approximation and assuming that
the total electronic spin of He, S = 0, is conserved during the
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collision, the spatial part of the target wave function is written
as

ψα(r1,r2) = φHe+
1s (r2)ϕα(r1) + φHe+

1s (r1)ϕα(r2). (10)

Here we use a single set of quantum numbers, α, for the target
state, since only one electron can be excited. The total wave
function of He is antisymmetric due to the antisymmetric spin-
wave function of the singlet spin state. Then the Schrödinger
equation for He becomes

Htψα(r1,r2) = (
εα + εHe+

1s

)
ψα(r1,r2), (11)

where εα is the state energy of the active electron and εHe+
1s

is the energy of the frozen electron, which corresponds to the
ground-state energy of He+, i.e., −2 a.u. Substituting Eq. (10)
into Eq. (11) and projecting onto φHe+

1s , we obtain the following
integrodifferential equation for ϕα:[∇2

r1
− 2VH(r1) + 2εα

]
ϕα(r1)

+ 2εα

〈
φHe+

1s

∣∣ϕα

〉
φHe+

1s (r1)

+ 〈
φHe+

1s

∣∣[∇2
r2

+ 4

r2

]
|ϕα〉r1φ

He+
1s (r1)

− 2
〈
φHe+

1s

∣∣ 1

|r1 − r2| |ϕα〉r1φ
He+
1s (r1) = 0, (12)

where

VH(r1) = −2/r1 + 〈
φHe+

1s

∣∣ 1

|r1 − r2|
∣∣φHe+

1s

〉
r1

(13)

is the Hartree potential for e − He+ scattering. For negative-
energy states of the active electron, the radial and angular parts
are separable according to

ϕα(r) = Rnl(r)Ylm(r̂). (14)

For positive-energy states, as

ϕα(r) ≡ ϕκ (r) =
√

2

π

∑
lm

il exp(−iηl)Rκl(r)Y ∗
lm(κ̂)Ylm(r̂),

(15)

where n,l, and m are the principal, orbital, and magnetic
quantum numbers of the state α, κ is the momentum of the
continuum state and ηl is the continuum phase shift.

For both negative and positive energies, Eq. (12) reduces
to the following one-dimensional integrodifferential equation
for the radial function Rα(r):

d2Rα(r)

dr2
−

[
l(l + 1)

r2
− 4

r
+ 2W0

[
RHe+

1s ,RHe+
1s

] − 2εα

]
Rα(r)

=
[

2

2l + 1
Wl

[
RHe+

1s ,Rα

]

− 2
∫ ∞

0
RHe+

1s (t)W0
[
RHe+

1s ,RHe+
1s

]
Rα(t)dt

]
RHe+

1s (r),

(16)

where RHe+
1s (r) = 4

√
2 exp(−2r)r and

Wl[f,g] = 1

rl+1

∫ r

0
f (t)g(t)t ldt + rl

∫ ∞

r

f (t)g(t)

t l+1
dt.

(17)

TABLE I. Energies (eV) of selected bound states of the helium
atom. The present results are compared with the energies of the
frozen-core Laguerre pseudostates (LPS) [36] and the data derived
from optical spectra by Moore [37].

State Present LPS [36] Moore [37]

1s −23.7416 −23.74139 −24.5862
2s −3.9035 −3.90343 −3.97155
3s −1.6483 −1.64828 −1.66705
2p −3.3307 −3.33198 −3.36931
3p −1.48847 −1.48950 −1.50035
3d −1.51024 −1.51150 −1.51329

Equation (16) is solved by iteration. The zeroth-order approx-
imation R(0)

α (r) is obtained by setting the right-hand side of
Eq. (16) to zero. Subsequent approximations are derived using
the previous-order approximations. At each iteration the linear
inhomogeneous second-order differential equation for R(i)

α (r)
is solved by the Numerov method. The iteration process is
continued until an accuracy |R(i+1)

α (r) − R(i)
α (r)| < 10−5 is

achieved for each point in the r grid. For the bound states
of the active electron (εα < 0), we require limr→∞ Rα(r) = 0.
The bound states are found by utilizing a standard shooting
method by requiring the continuity of Rα(r) and dRα(r)/dr at
r0, where

l(l + 1)

r2
− 4

r
+ 2W0

[
RHe+

1s ,RHe+
1s

] = 0. (18)

For the continuum states, Rα(r) is matched to the Coulomb
function at large r , which is also used to derive the continuum
phase shift ηl . In the final step, the active-electron wave
functions are normalized to satisfy

〈Rα′ |Rα〉 = δα′α (19)

for bound states (εα < 0) and

〈Rα′ |Rα〉 = δ(κα′ − κα) (20)

for the continuum states (εα > 0).
Table I lists the results for the ionization potential of

the selected helium bound states obtained by applying the
Numerov method described above. The present results are
compared with the corresponding energy levels of the frozen-
core Laguerre pseudostates constructed from a basis of size
20 − l and falloff parameter λl = 1 for l = 0–2, respectively.
Also given are the benchmark results of Moore [37] derived
from an analysis of optical spectra. At least a three-digit
agreement is observed between the present results and the
energy levels of the frozen-core Laguerre pseudostates. The
derivation of bound states with higher energies requires a
longer radial range in the solution of Eq. (16). According
to Ref. [36], better agreement with the results of Moore [37]
was achieved when relaxing a frozen-core approximation.

Unlike bound states, which only exist at discrete levels of
the target energy spectrum, continuum states can be generated
by solving Eq. (16) for arbitrary electron ejection energies.
This greatly simplifies calculations of differential ionization
cross sections in the first Born approximation (FBA). However,
the non-normalizable nature of the He continuum wave

022702-4



WAVE-PACKET CONTINUUM-DISCRETIZATION APPROACH . . . PHYSICAL REVIEW A 96, 022702 (2017)

function makes it inapplicable for close-coupling scattering
models.

To overcome this problem while keeping the flexibility of
generating a state for arbitrary continuum energies, we use
the wave-packet continuum-discretization approach, which
was recently applied to describe the structure of atomic
hydrogen [12]. To construct normalizable wave packets, we
first take the continuous spectrum of the active electron
with some maximum value of energy Emax and then divide
the entire interval [0,Emax] into Nc nonoverlapping intervals
(discretization bins) [Ei−1,Ei]

Nc
i=1 with E0 = 0 and ENc = Emax.

To obtain converged cross sections, Emax and Nc must be
sufficiently large. Every such energy bin corresponds to the
interval [κi−1,κi] in momentum space, where κi = √

2Ei . The
wave packet (WP) corresponding to each of the bins is built
from the following integral of the continuum function [which
is the solution of Eq. (16)]:

RWP
il (r) = νil

∫ κi

κi−1

dκRκl(r), (21)

where νil is the normalization coefficient. Then the wave
packet based on two-electron helium wave functions is written
as

ψWP
α (r1,r2) = φHe+

1s (r2)RWP
nαlα

(r1)Ylαmα
(r̂1)

+ φHe+
1s (r1)RWP

nαlα
(r2)Ylαmα

(r̂2). (22)

From the normalization condition〈
ψWP

α

∣∣ψWP
α

〉 = 1, (23)

one finds that

νnαlα = [
2
(〈
RWP

nαlα

∣∣RWP
nαlα

〉 + δlα0δmα0
〈
RWP

nαlα

∣∣RHe+
1s

〉)]−1/2
. (24)

For atomic hydrogen, these normalization coefficients were
directly related to the width of the ith bin [12]. In addition,
condition (20) ensures the orthogonality of the wave-packet
pseudostates: 〈

ψWP
α

∣∣ψWP
α

〉 = δα′α. (25)

Nc wave-packet pseudostates representing the [0,Emax]
region of the active electron continuum, together with Nb

bound states, form a practically complete set of pseu-
dostates for a particular angular momentum l, provided
Nc and Nb are sufficiently large. Including other an-
gular momenta, the total number of channels becomes
N = ∑lmax

l=0(2l + 1)(Nb − l + Nc), where lmax is the maximum
allowed angular momentum. The number of negative- and
positive-energy states is increased until adequate convergence
is achieved in the predicted cross sections that we are interested
in.

B. Scattering amplitudes

The full scattering amplitude can be calculated from the
scattering wave function �+

i according to [38,39]

Tf i(qf ,qi) = 〈�−
f |←−H − E|�+

i 〉, (26)

where qf and qi are the momenta of the scattered and
incident projectile, respectively, �−

f is the asymptotic wave
function describing the final state, and the arrow over the

four-body Hamiltonian operator H indicates the direction of its
action. As discussed in Ref. [12], scattering amplitudes for the
transitions into bound states of the target are directly defined
by the transition amplitudes T N

f i (qf ,qi), whereas the scattering
amplitude for ionization of the active electron with momen-
tum κ contains the overlap between the two-electron wave
packet ψWP

f and the active electron’s continuum functions ϕf

defined in Eq. (15). Accordingly, the ionization amplitude is
written as

Tκi(qf ,qi) = 〈
ϕf

∣∣ψWP
f

〉
T N

f i (qf ,qi)

=
lmax∑
l=0

l∑
m=−l

(−i)leiσl Ylm(κ̂)T N
nlm i(qf ,qi)

2πκ
√

wn

, (27)

where the index n corresponds to the bin with width wn and
κ = κn = √

2En. Consequently, both excitation and ionization
amplitudes are obtained upon calculation of the transition
matrix elements T N

f i (q f ,qi ), which are related to the impact-
parameter space transition probability amplitudes through [40]

T N
f i (qf ,qi) = 1

2π

∫
dbei p⊥b[af (∞,b) − δf i]

= eim(ϕf +π/2)
∫ ∞

0
dbb[ãf (∞,b) − δf i]Jm(p⊥b),

(28)

where p = qi − qf and ãf (t,b) = eimφbaf (t,b). The required
impact-parameter space transition probability amplitudes
themselves are obtained by solving the system of differential
equations (8) using standard Runge-Kutta routines. Depending
on the type of the pseudostates utilized, the matrix elements
in Eq. (8) are calculated using the strategy that works best for
that particular case. For Laguerre pseudostates the calculation
strategy for the matrix elements is described in Ref. [36]. With
the proposed wave-packet pseudostates, they are calculated
using the expression

〈ψα|V |ψβ〉 = 2X[ϕα,ϕβ ] + 2
〈
φHe+

1s

∣∣ϕβ

〉
X

[
ϕα,φHe+

1s

]
+ 2

〈
ϕα

∣∣φHe+
1s

〉
X

[
φHe+

1s ,ϕβ

]
+ 2

〈
ϕα

∣∣ϕβ

〉
X

[
φHe+

1s ,φHe+
1s

]
, (29)

where

X[f,g] =
∫

d rf (r)

(
− 1

R
+ 1

|R − r|
)

g(r) (30)

is the one-electron transition matrix element similar to that
emerging in the formulation of antiproton-hydrogen collisions.
Details of X[f,g] are given in Ref. [41].

Once the scattering amplitudes have been obtained, various
differential and integrated cross sections can be calculated as
described in Ref. [12].

III. DETAILS OF CALCULATIONS

In this section we provide some details of our antiproton-
helium calculations. As mentioned earlier, the present
calculations are based on the frozen-core approximation to the
helium target. Consequently, any of the target states considered
can be characterized with a set of only three quantum numbers
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{n,l,m} representing the active electron. The strategy used
for convergence studies of the final results, therefore, can be
the same as that used for antiproton-hydrogen collisions [12],
where the target states were also described by the same set of
quantum numbers.

Several parameters associated with the target and the
projectile need to be investigated to establish the conver-
gence of the predictions. Parameters characterizing the active
electron of the target, such as the maximum allowed orbital
quantum number lmax, the number of bound (negative-energy)
eigenstates Nb − l, the maximum energy Emax of the active
electron continuum covered by wave-packet bins, and the
number of bins within this interval Nc, define the overall
target structure. Each of these parameters is systematically
increased while fixing the others at sufficiently large values.
This procedure is continued until the parameter-dependent
variation of the results is reduced to a level of less than 1% . For
antiproton-helium collisions at intermediate and high energies,
this was achieved with lmax = 7, Nb = 10 − l, Emax = 400 eV,
and Nc = 30.

With the above parameters, the total number of target states
in the present calculations was N = ∑lmax

l=0(Nb + Nc − l)(2l +
1) = 2112 at all antiproton energies considered. This number
also defines the size of the system of coupled differential
equations (8). Another parameter that determines the accuracy
of the target structure calculations is the number of quadrature
points for integration within each bin. It was chosen depending
on the width of the bin. Typically, at least 40 points were used
for the small bins, and the number of points was increased for
larger bins as required.

The target-structure parameters, which produced converged
results for antiproton impact single ionization of helium,
also yield converged results for the proton impact at 1-MeV
incident energy considered in this paper. At this impact energy,
electron-capture channels associated with proton projectiles
are negligible compared to the direct ionization channel. Hence
the single-center close-coupling approach developed here is
adequate.

Apart from establishing convergence of the final results
with respect to the target-structure parameters, we also
validated our code by switching off the coupling between
the discretized channels. We obtained excellent agreement
with the first Born results calculated in the full treatment.
Unlike in the case of proton or antiproton impact ionization of
hydrogen, for the helium target there is no closed analytical
expression for the ionization amplitude. However, it is possible
to numerically calculate the wave version of the first Born
amplitude in the helium frozen-core approximation by using
the partial-wave expansion method. This method of calculating
ionization amplitude requires the direct use of the active-
electron continuum function instead of the wave packets.
In this case one can compare the results obtained using the
continuum functions and the wave packets for each partial-
wave term individually.

Finally, we also obtained convergent results with respect
to the parameters associated with the projectile. The set of
coupled differential equations (8) was solved by varying the
z component (z ≡ vt) of the projectile position from −200
to +200 a.u. at all energies. The upper limit for the impact
parameter bmax was proportionally increased from 10 a.u. at
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FIG. 1. Fully differential cross section in the collision plane
for antiproton impact ionization of helium in its ground state for
a projectile energy Ep, momentum transfer p, and energy of the
ejected electron Ee. The results of the semiclassical CP approach of
McGovern et al. [4] are also shown. The arrow indicates the direction
of the momentum transfer.

1 keV to 40 a.u. at 1 MeV. At all considered energies the radial
grid required for the calculations of the matrix elements was
extended up to 500 a.u..

To ensure consistency of our calculations, we always pay
particular attention to obtaining the same total ionization cross
section by either summing over the partial cross sections for
excitation of the positive-energy states or by integrating the
fully (fivefold) differential cross section

d5σ (qf ,qi ,κ)

dEd�ed�f

= μ2 qf κ

qi

|Tκi(qf ,qi)|2 (31)

over all variables. The fully differential cross section describes
a scattering event when the electron is ejected into the solid
angle d�e around the direction �e = (θe,φe) with the energy
between E and E + dE, while the projectile is scattered into
the solid angle d�f around the direction �f = (θf ,φf ).

IV. RESULTS AND DISCUSSION

In this section we present our wave-packet based CCC
(WP-CCC) results for antiproton-helium fully and partially
differential ionization cross sections, as well as the total
ionization cross section. The collision geometries and pro-
jectile energies are chosen in a way that allows for the most
comprehensive comparison with our quantum-mechanical
CCC results published in Ref. [36] and predictions from other
semiclassical theories [4,5]. Lastly, we show in-plane and out-
of-plane triply differential single-ionization cross sections for
1-MeV proton-helium collisions, which were obtained using
the present single-center convergent close-coupling approach,
and compare them with recent experimental data [31].

A. Single ionization of He by antiprotons

Figure 1 exhibits our results for the fully differential cross
section in the collision plane for 1-MeV antiproton helium
collisions. The present WP-CCC results are compared with the
coupled-pseudostate (CP) calculations of McGovern et al. [4].
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FIG. 2. The triply differential cross section d3σ/dEed�e for
antiproton impact ionization of helium at 60 and 500 keV for
the ejected-electron energy of 5 eV. The present WP-CCC results
are compared with those of the coupled pseudostates approach of
McGovern et al. [4].

Here the direction of the scattered antiprotons is fixed and
given by the value of the momentum transfer, p = 0.4 a.u.,
while the electron-ejection angle θe runs from −180 to 180◦
relative to the direction of the incident antiproton. Since the
coplanar geometry is considered, the azimuthal coordinates of
the ejected electron φe and the antiproton φf are set to zero.
The arrow indicates the direction of the momentum transfer p.
The ejected-electron energy is fixed at 5 eV. We note that the
flexibility of the presently developed WP basis in distributing
the positive-energy states arbitrarily allows us to have a state
with energy 5 eV for all l. This helps to improve the accuracy
of the calculations.

As seen from the figure, for every indicated antiproton
energy and momentum transfer the WP-CCC and the CP
calculations of McGovern et al. [4] are in excellent agreement.
Both theories predict the binary and recoil peaks at the
same electron-ejection angle, which qualitatively describes
the phenomenon of suppressed electron ejection along the
direction of the scattered antiprotons (essentially near the
forward direction). Due to the repulsive Coulomb force
between the antiproton and the electron, the binary peak is
shifted to the right from the momentum-transfer direction.

The triply differential (in energy and two-dimensional solid
angle of the ejected electron) cross sections (TDCSs) [42],
d3σ/dEed�e, are presented in Fig. 2 for the ejected-electron
energy of Ee = 5 eV and various energies of the incident
antiproton as a function of the electron-ejection angle θe.
The results of the coupled-pseudostate approach of McGovern
et al. [4] are also shown for comparison. Since this TDCS is
formed by integrating the FDCS over the solid angle of the
projectile, the results displayed in Fig. 1 retain some features
of the corresponding FDCS shown in Fig. 1. As expected,
electron emission is suppressed at small ejection angles when
the projectile energy is low and relatively flat at the higher
energy. The features seen around 80◦ and at 180◦ are results
from integration over the binary and recoil peaks of the FDCS,
respectively. The small difference between the WP-CCC and
CP results of McGovern et al. [4] could be due to the
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FIG. 3. The doubly differential cross section d2σ/d�e for an-
tiproton impact single ionization of helium at 60 keV. Results of
the coupled pseudostates approach of McGovern et al. [5] are also
presented.

absence of a Laguerre pseudostate exactly at 5 eV in the latter
calculations.

Figure 3 displays our results for the doubly differential
cross section in the ejection angle of the electron, d2σ/d�e, in
comparison with the calculations of McGovern et al. [4]. The
presently calculated cross section has a small maximum at zero
ejection angle, a more pronounced maximum around 60◦, and
a minimum around 110◦. The relatively large cross section
in the backward direction indicates the propensity for the
electron to be ejected in the opposite direction to the antiproton.
The agreement between the present WP-CCC results and the
semiclassical approaches of McGovern et al. [5] is generally
good.

Carrying out kinematically complete experiments is a
complicated task due to the difficulties related with the pro-
duction of a stable high-intensity antiproton beam. However,
the recent developments of recoil-ion and ejected-electron
momentum spectroscopy make accurate measurements of
differential cross sections in the momenta of these particles
possible. In fact, the recoil ion carries as much information
on the three-body ionization dynamics as the projectile and
the ejected electron. Such a pioneering experiment [14] on
antiproton impact ionization of He was reported at 945 keV,
where the singly differential cross section was measured as a
function of the longitudinal recoil-ion and the ejected-electron
momenta.

These quantities can be obtained from the triply differential
ionization cross section d3σ (qf ,qi,κ)/dEd�e if we impose
the following dynamic constraints required by energy and
momentum conservation:

pr‖ = p‖ − κ‖ = εf − ε0

v
− κ cos θe, (32)

where pr‖ and κ‖ are, respectively, the longitudinal momenta
for the recoil ion and the ionized electron, while p‖ is the
longitudinal projectile momentum transfer. With this we can
write

dσ

dκ‖
=

∫ ∞

κ2
‖ /2

1

κ

d2σ

dEd�e

dE, (33)
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FIG. 4. Ejected-electron longitudinal momentum distribution for
single ionization of helium by 945-keV antiproton impact. The
experimental data, CDW, and CTMC calculations are due to Khayyat
et al. [14]. The CDW-EIS and QM-CCC calculations are due to
Fainstein and Rodriguez [13] and Abdurakhmanov et al. [36].

and

dσ

dpr‖
=

∫ ε+

ε−

1

κ

d2σ

dEd�e

dE. (34)

The integration limits of Eq. (34) can be obtained from Eq. (32)
or the relationship

κ± = v cos θe ±
√

v2 cos2 θe + 2(pr‖v − |ε0|) (35)

using ε± = (κ±)2/2.
Figure 4 shows the ejected-electron longitudinal momen-

tum distribution in single ionization of helium by antiproton
impact at 945 keV. We compare our FC results with the
experimental data of Khayyat et al. [14] and predictions from
continuum distorted-wave (CDW), classical trajectory Monte
Carlo (CTMC), continuum distorted-wave eikonal initial state
(CDW-EIS) and QM-CCC calculations. Apart from the CTMC
calculations, there is reasonably good agreement between the
various theories and experiment.

The corresponding recoil-ion longitudinal momentum dis-
tribution is given in Fig. 5. Only the CTMC approach clearly
fails to reproduce the experimental data. The CDW results
show a systematic discrepancy at positive momentum values.
Similar measurements, but at lower impact energies, would be
helpful in testing the theoretical approaches to fully differential
ionization by antiproton impact.

Figure 6 shows the total cross section for antiproton impact
single ionization of helium for incident energies ranging from
1 keV to 1 MeV. The latest experiment was carried out at CERN
[43], where data were obtained starting from antiproton impact
energies as low as 3.42 keV. These measurements exhibit a
rather slow falloff of the cross section with the decreasing
impact energy. We see that the highest two energy points of
this dataset agree reasonably well with the earlier experiment
by Hvelplund et al. [44], which itself is in overall agreement
with the first experiment reported by Andersen et al. [45].

The lines represent various theoretical calculations based
on the frozen-core approximation of the helium target
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FIG. 5. Recoil-ion longitudinal momentum distribution for single
ionization of helium by 945-keV antiproton impact. The experimental
data, CDW, and CTMC calculations are due to Khayyat et al. [14],
and the CDW-EIS calculations are due to Fainstein and Rodriguez
[13]. The frozen-core QM-CCC calculations are from [36].

[4,15,19,36]. All of these calculations start off by diago-
nalizing the helium Hamiltonian in a suitable two-electron
basis with the assumption that the inner electron is always
in the ground state. The only difference is that different
representations of the radial part of the target active electron
wave function are used: wave-packet bin pseudostates in the
present approach, Slater-type orbitals by Lee et al. [19],
Sturmian functions by Igarashi et al. [15], and Laguerre
functions by McGovern et al. [4] and Abdurakhmanov
et al. [36]. The calculation of Abdurakhmanov et al. [36]
also differs from the others by the fact that the approach
is fully quantum mechanical. All presented calculations are
in quite good agreement with each other and experiment
above 100 keV. However, below 100 keV there is some
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FIG. 6. Total single-ionization cross section for antiproton-
helium scattering. The present calculations (WP-CCC) are compared
with experimental data by Knudsen et al. [43], Andersen et al. [45]
and Hvelplund et al. [44], QM-CCC results [36], and various
semiclassical calculations by McGovern et al. [4], Igarashi et al. [15],
and Lee et al. [19].
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FIG. 7. Fully differential cross sections for single ionization
of helium by 1-MeV protons in the collision plane. The electron
emission energy is Ee = 6.5 eV, and the total momentum transfer
p = 0.75 a.u. The present calculations (WP-CCC) are compared with
the experimental data and FBA calculations by Gassert et al. [31].
The arrow indicates the direction of the momentum transfer.

variation and also disagreement with the experiment. This
may indicate that a more accurate multicore treatment of
the helium target is required to reproduce the low-energy
behavior of the total ionization cross section. The semiclassical
straight-line trajectory approximation is expected to slowly
deteriorate with reducing energy, therefore around 1 keV
QM-CCC is more reliable as it is fully quantum mechanical
and does not use a straight-line trajectory. Interestingly, using
a more accurate description of the helium target, beyond the
frozen-core approximation, will likely result in a reduction of
the predicted cross sections, at least at high energies [23,36].
Assuming the experimental data are normalized correctly, an
improvement in the theoretical description may thus lead to
a slight deterioration of the agreement between theory and
experiment. This issue will be addressed in our future studies.

B. Single ionization of He by 1-MeV protons

A recent experiment by Gassert et al. [31] provided data
on the fully differential cross sections for single ionization of
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FIG. 8. Same as in Fig. 7 but multiplied by | sin θe|.
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FIG. 9. Same as in Fig. 7 but for emission into the azimuthal
plane (θe = 90◦) given as a function of the azimuthal emission angle
φe.

helium by 1-MeV protons in the collision plane and several
other planar geometries. Since this is in the high-energy
regime, the present single-center close-coupling approach can
be applied with confidence to calculate the cross sections for
the measured differential ionization data. Here the electron
capture channels associated with proton impact are expected
to be several orders of magnitude less important than the direct
ionization channels and, consequently, can be neglected.

Figure 7 compares our results for the FDCS in the collision
(C) plane with the experimental data and the first Born
approximation calculations of Gassert et al. [31,46]. For
this scattering regime, where the ejected-electron energy is
6.5 eV and the scattering angle of the protons is given by the
momentum transfer of p = 0.75 a.u., we see good agreement
with experiment at all electron emission angles considered
here. Furthermore, in comparison with the FBA results, the
present calculations show better agreement with experiment
at the electron emission angles in the region from −180 to
80◦ and around 180◦. The experimental data peak at about
θe = 61.5◦, while our results peak at 73.5◦. This is a slight
improvement from the first Born calculations that peak at
76.5◦. The WP-CCC results are fully convergent (within the
frozen-core approximation). Therefore, we believe that the
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FIG. 10. Same as in Fig. 7 but for 0.5- and 2-MeV protons.
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FIG. 11. Same as in Fig. 9 but for 0.5- and 2-MeV protons.

remaining discrepancy in the peak angle could be due to
the frozen-core approximation used. A multicore approach
may lead to a better agreement with the experiment. At
the same time, we have to mention that the experimental
angular resolution is reported to be ±10◦ [31]. So, the
aforementioned discrepancy is very close to the experimental
uncertainty.

The same FDCSs but multiplied by | sin θe| (as presented in
Ref. [31]) are shown in Fig. 8, which highlights the vicinity of
the node separating the binary and the recoil peak. Note that
the experimental peak shifts to θe = 67.5◦. The maximum of
the WP-CCC results shifts to 77◦. However, there is nothing
physical in the shift and it is purely due to the extra | sin θe|
factor in the FDCS.

Figure 9 shows the same comparison for the azimuthal
(A) plane (θe = 90◦). Here we also see good agreement with
experiment at almost all electron emission angles considered.
At backward electron emission angles, the present results lie
slightly below the measured data, whereas the previous FBA
results were slightly higher. Note that the WP-CCC results are
fully symmetric around φe = 0◦.

Figures 10 and 11 show our predictions for the FDCS in the
collision and azimuthal planes for 0.5- and 2-MeV protons, in
anticipation of experimental data [47] at these impact energies.

V. CONCLUSIONS AND OUTLOOK

The problem of antiproton scattering from helium has been
considered within the framework of the recently developed
wave-packet based target continuum-discretization approach
[12]. The electron-electron correlation of the target was
taken into account in the frozen-core approximation. Two-

electron wave functions describing the target were built from
a linear combination of products of one-electron functions
representing the core ion of He+ and the active electron. While
the He+ core was described by its ground-state wave function,
the basis of active-electron functions was generated from
numerically calculated discrete negative-energy state wave
functions and continuum wave packets. The wave packets are
the integrals of the radial continuum wave function over the
regions of the bins discretizing the continuum. The energies of
the continuum wave packets were chosen so that they aligned
for different orbital angular momenta.

The above approach is ideal for detailed differential
ionization studies. The density of the continuum discretization
can be as high as necessary. The generated orthonormal basis of
two-electron wave functions was used in the target-based one-
center expansion of the total scattering wave function. This
converts the semiclassical three-body Schrödinger equation
into a set of coupled-channel differential equations, which need
to be solved for a range of impact parameters. A comprehensive
set of results, from integrated to fully differential cross sections
for antiproton impact single ionization of helium in the energy
range from 1 keV to 1 MeV, was generated.

Furthermore, we applied our wave-packet single-center
convergent close-coupling approach to study fully differential
single ionization of helium by 1-MeV proton impact. This was
done by changing the charge of the projectile in the code for
antiproton-helium scattering. Our calculations are in very good
agreement with recent experimental measurements [31] for
all experimentally considered geometries. Predictions for 0.5-
and 2-MeV protons are also given, in anticipation of further
measurements.

The development of a multicore treatment of the helium tar-
get based on the wave-packet target continuum-discretization
approach is planned for the near future. This will not only
improve the accuracy of the predicted cross sections for
single-electron processes but also enable the calculation of
cross sections for two-electron processes. Extension of the
two-center CCC method [48] to the proton-helium system is
currently underway.
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