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P-state positronium for precision physics: An ultrafine splitting at α6
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An “ultrafine” splitting in positronium between the L = 1 spin-singlet state and the spin average of
the spin-triplet states is shown to arise only at order α6. The QED prediction for n = 2 states is �2,P =
(683/172 800)mα6 = 73.7(2.6) kHz. This represents the smallest leading-order QED splitting known. Current
experimental efforts could observe this splitting, and its observation can constrain new ultralight interactions,
such as axions or Z′.
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I. INTRODUCTION

Spectroscopy of positronium represents a precision test of
quantum electrodynamics (QED). The low mass of the electron
compared to other mass scales renders the contributions from
strong, electroweak, and heavier lepton loops negligible within
the accuracy of current experiments. QED predictions for the
positronium energy levels exist completely at order α6 [1–5].
Research is active to compute the incomplete α7 correction
[6–21]. These predictions are in agreement with existing mea-
surements for a number of level transitions: 2 3S1-1 3S1 (1S-2S

interval) [22], 1 3S1-1 1S0 (ground-state hyperfine splitting)
[23,24], and 2 3S1 → 2 2S+1PJ (fine structure and Lamb shift)
[25,26].

Energy levels are derived as a double power series in
αg lnh(α) starting at α2. The coefficients Cgh(n,L,J,S) can be
zero [i.e., the α 3 and α4 lnh(α) terms]. Cancellations between
Cgh(n,L,J,S) can further occur in level transitions. The 1S-2S

interval depends only on spin-independent coefficients and
begins at α2. The fine-structure and ground-state hyperfine
splittings (hfs’s) are sensitive only to spin-dependent terms
and are nonzero at α4. The Lamb shift (defined as the
spin-independent 2S-2P splitting) starts only at α5 ln(α).

This work focuses on the hyperfine splitting between the
spin-singlet state n 1P1 and the spin average of the spin-triplet
n 3PJ states:

�n,P ≡ M(n 1P1) − 1
9 [M(n 3P0) + 3M(n 3P1) + 5M(n 3P2)],

(1)

where M(n2s+1LJ ) is the energy level of the state of given
quantum numbers. Naively, one might expect this splitting to
be on the order of gigahertz like the Lamb shift or hfs. Using
the existing fine-structure measurements (compiled in Table I),
one instead finds �2,P = 4.31(6.50) MHz [26–28]. This result
is consistent with zero within the experimental uncertainty at
the parts per thousand level. Analogous experimental splittings
in heavy quarkonium are consistent with zero to even higher
precision, and Eq. (1) has been suggested as a method for
studying the exotic spectrum of quarkonium [29].

In this paper, we investigate the physical origin underpin-
ning this precise cancellation in positronium. We show that this
particular hyperfine splitting arises only at α6 and is further
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suppressed parametrically, justifying calling it an ultrafine
splitting. Finally, we briefly discuss how �n,P constrains new
ultralight interactions.

II. ULTRAFINE SPLITTING

To understand the smallness of �n,P , it is useful to study the
matrix elements of operators contributing to a f f̄ bound state
following the same discussion in the context of heavy quarko-
nium [29]. The set of spin-independent operators depending on
powers of squared momenta is infinite. In stark contrast, only
a finite set of linearly independent spin-dependent operators
exists given the fermion spins Sf ,Sf̄ and the orbital angular
momentum L. Wigner-Eckart theorem restricts nonzero matrix
elements of spin operators in states with total spin S to those
which transform under an irreducible representation k < 2S.
For states built from only two fermions, S = 0,1, and therefore
the largest irreducible representation is k = 2.

A particularly useful set of linearly independent matrix
elements up to quadratic order is

Sf · Sf̄ (hyperfine), (2)

S · L (spin orbit), (3)

T
↔ ≡ (Sf · r̂)(Sf̄ · r̂) − 1

3 Sf · Sf̄ (tensor), (4)

where S ≡ Sf + Sf̄ . In a given spin multiplet, all other spin
operators can be constructed from this set.

Using Wigner-Eckart theorem, the spin-orbit and tensor
matrix elements must vanish for S = 0 states because they
transform as S = 1 and S = 2, respectively. For L = 0 states,
these matrix elements are also zero, so any n 3S1-n 1S0 splitting
depends only on Sf · Sf̄ . For states of S = 1 and L > 0,
the spin-orbit and tensor matrix elements do not vanish but
are given via the total angular momentum J = L + 1,L,

and L − 1:

〈S · L〉 = 1
2 [J (J + 1) − L(L + 1) − S(S + 1)] (5)

and

〈T↔〉 =

⎧⎪⎨
⎪⎩

− L+1
6(2L−1) , J = L − 1,

+ 1
6 , J = L,

− L
6(2L+3) , J = L + 1.

(6)

2469-9926/2017/96(2)/022515(4) 022515-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.022515


HENRY LAMM PHYSICAL REVIEW A 96, 022515 (2017)

TABLE I. Experimental and theoretical values for the n = 2 fine-structure transitions. The theoretical error is obtained from estimating the
size of higher-order corrections and is explained in the text with more detail.

Transition �Eexp (MHz) �Etheory (MHz) δE (MHz)

2 3S1 → 2 1P1 11180(5)(4) [25] 11185.37(8) [1] −5.37(500)(400)(8)
2 3S1 → 2 3P0 18499.65(120)(400) [26] 18498.25(8) [1] 1.40(120)(400)(8)
2 3S1 → 2 3P1 13012.42(67)(154) [26] 13012.41(8) [1] −0.01(67)(154)(8)
2 3S1 → 2 3P2 8624.38(54)(140) [26] 8626.71(8) [1] 2.30(54)(140)(8)

In this multiplet, (S · L)2 occurs as an order α6 correction, and
therefore the following relation is useful [30]:

〈(S · L)2〉 = L(L+1)

3
〈S2〉−〈S · L〉− (2L−1)(2L−3)〈T↔〉, (7)

where S2 has been used for compactness but is directly related
to Sf · Sf̄ .

Due to these additional nonzero matrix elements in L > 0
states, individual 2 3S1 → 2 2S+1PJ transitions have a more
complicated spin dependence. The spin-orbit and tensor
elements can be made to vanish by construction in a sum
weighted by the 2J + 1 degenerate spin states. This sum
receives contributions only from Sf · Sf̄ and is given by

�n,L ≡ M(n 1LJ=L) − 2L − 1

3(2L + 1)
M(n 3LJ=L−1)

− 2L+1

3(2L+1)
M(n 3LJ=L)− 2L+3

3(2L+1)
M(n 3LJ=L+1),

(8)

from which we have derived Eq. (1) for the L = 1 case. �n,L

can be thought of as analogous to the hfs for L > 0 states
as both are purely hyperfine operator dependent. One might
guess that �n,L should be an order α4 observable like the hfs.
Instead, due to the dynamics underlying the nonrelativistic
hyperfine operator, �n,L arises only at higher order in
positronium.

The nonrelativistic positronium potential V (r) to order α5

has long been known (a modern derivation using nonrelativistic
QED can be found in Ref. [31]). The hyperfine operator arises
at α4, and the only term up to α5 is proportional to δ(3)(r) [32],
implying it arises as contact interaction from the reduction of
the QED interaction. A natural way to see this starts from the
Dirac equation with the Breit interaction [33]. In this Hamilto-
nian, the spin-spin coupling comes from the Laplacian operator
acting on the Coulomb potential 1/r , i.e., the Fourier transform
of the massless propagator 1/q2. This term is a generic feature
of massless gauge theories like quantum chromodynamics
as well and therefore a source of hyperfine splitting in
quarkonium.

The nonrelativistic wave functions near the origin scale as
rL; thus only L = 0 states receive contributions from δ(3)(r)
terms. Therefore �n,L must come from at least α6 corrections
with more nontrivial r dependence. The vanishing of �n,L

at O(α5) is a unique characteristic of positronium. Heavier
leptonic systems like true muonium (μ+μ−) have typical
momentum αmμ ∼ me and therefore receive corrections at
α5 due to electron loop corrections to the potential [34,35].

For quarkonium states, both lighter flavors and the gluon
self-coupling introduce corrections at α5

s [29].
For the L = 1 states, the α6 contributions were computed

in Refs. [3,4] (with small misprints corrected in Ref. [1]).
The general L > 0 state energy levels up to order α6 were
computed in Ref. [5]. From these, we find that the nonzero
contributions to �n,P come from

δE = mα6

n 3

[
1

2000

(
46 − 43

n2

)
(S · L)2 − 1

2000

(
14 − 17

n2

)
S2

− 1

7680

(
227 + 90

n
− 108

n2

)
κ2

]
, (9)

where κ = 1
5 [−2(L · S)2 + 4L · S + 4

3 S2] and terms known to
vanish in �n,P have been neglected. The remaining terms are
all necessarily proportional to Sf · Sf̄ . This expression is the
sum of a number of physically distinct processes: second-order
relativistic corrections to the Coulomb potential, first-order
relativistic corrections to single magnetic photon exchange,
and iterating the Breit interaction [3,4]. These contributions
are nonzero because they arise from higher moments of the
wave function 〈r−k〉.

Using Eq. (7), we can derive a general relation for reducing
general spin-operator contributions into Sf · Sf̄ ones:

�n,L((S2)m(L · S)n)

= 2m

9
[(−1 − L)n + 3(−1)n + 5Ln]�n,L(Sf · Sf̄ ), (10)

where �n,L(O) defines the spin-averaged matrix element of the
operator O in the spin-triplet with quantum numbers n and L.
An expression for �n,L>1 could be derived by using the results
of [5], but we see that �n,L>1 ∝ α6 as well. These splittings
will be even more parametrically suppressed due to the larger
n required, but given that no experimental measurements have
been undertaken to measure L > 1 state energies, a nonzero
measurement of �n,L>1 is not possible in the foreseeable
future. For P states, we then find that

�n,P = mα6

60

(
137

90n 3
+ 1

n4
− 1

2n5

)
�n,P (Sf · Sf̄ ). (11)

Using �n,P (Sf · Sf̄ ) = −1 and setting n = 2, we find

�2,P = 683mα6

172800
= 73.7(2.6) kHz, (12)

which is about 90 times smaller than the existing experimental
accuracy. The smallness of �2,P compared to other splittings
is dramatic. The hfs is 203 GHz, while the typical Lamb-shift-
like splittings in Table I are 10 GHz. The theoretical error was
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estimated by considering the α expansion,

�n,P = mα6

(
C0 + C11α ln α + C10

α

π
+ · · ·

)
, (13)

where the coefficients Cgh start at α6.
There are a number of ways to estimate the error; one is

to take the leading unknown contribution with a coefficient
of 1. This would be 670 kHz for the missing α7 ln α to �2,P .
A further assumption could be to take n−3 scaling to yield
an estimate of 80 kHz. Another common estimate is to take
some fraction of the highest-order contribution that is known.
This was done previously for the values in Table I, where
the error is given by half the α7 ln2(α) contribution [1]. This
would suggest an estimate of 40 kHz for �2,P . The knowledge
that the coefficients of �2,P are parametrically suppressed both
because |ψnP (0)| ∼ 0 and because of the cancellations by con-
struction, these estimates are unreasonably conservative, and
we propose another. We take C0 ∼ C11 ∼ C10 to approximate
the parametric suppression of the coefficients, in which case
the O(α ln α) term dominates the theoretical error in Eq. (12).
Comparing this to Table I, we see removing the dependence
upon 2 3S1 where there is no parametric suppression reduces
the theoretical error by a factor of 30.

Having shown that existing measurements are too imprecise
to resolve this splitting, one can ask about the future prospects.
Upcoming experiments at University College London plan to
remeasure the n = 2 fine structure with a reduced uncertainty,
yielding �2,P ∼ 100 kHz [36–38]. A measurement of �2,P

would require only a factor of 2 improvement. A precision of
∼10 kHz would translate into a 5σ detection.

The spin weighting of the ultrafine splitting means the
uncertainty on 2 3S1 → 2 1P1 contributes 86% of the error,
assuming the transitions are measured with equal accuracy.
The situation is worse because 2 3S1 → 2 1P1 is a forbid-
den single-photon transition. Previous measurements of this
transition were performed in magnetic fields where mixing

with the other 2P states occurs. With this mixing, the single-
photon transition is allowed, and the multiple measurements
at different magnetic fields are extrapolated to the zero-field
limit via the known theoretical dependence [39]. This method
inherently has larger uncertainties compared to the allowed
2 3S1 → 2 3PJ states.

Beyond measuring QED precisely, the ultrafine splitting
can constrain new ultralight spin-dependent interactions like
the exchange of an axion or Z′. The nonrelativistic reduction of
these interactions is a Yukawa potential α′Sf · Sf̄

e
−mφr

r
, where

α′ is the new coupling and mφ is the mass of the new particle.
From this, the correction to �2,P is

δ�2,P = mαα′

8
(
1 + 2 mφ

mα

)4 . (14)

Comparing this expression to Eq. (12), we see that a measure-
ment of �2,P constrains α′ ∼ α5 ∼ 10−11 in the mφ = 0 limit.
This would be competitive with other model-independent
constraints on ultralight particles in atomic systems [40–45].

III. CONCLUSIONS

In this work, we have pointed out a previously overlooked
ultrafine splitting in positronium. At O(mα6), the �2,P =
0.0737(12) MHz splitting represents the smallest leading-
order splitting from QED known. While existing measure-
ments are too imprecise, it should be resolved in the near term.
Further theoretical work needs to be done to compute the
O(mα7 ln α) contribution. Additionally, this very small effect
presents a new opportunity to constrain ultralight particles with
coupling to electrons.
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