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Relativistic multireference coupled-cluster theory based on a B-spline basis:
Application to atomic francium
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In this paper, we report the relativistic Fock space multireference coupled-cluster method for atomic structure
calculations. We use the no-pair Dirac-Coulomb-Breit Hamiltonian, together with a finite B-spline basis set to
expand the large and small components of the Dirac wave function. Our method is applied to calculate ionization
energies, reduced matrix elements, lifetimes, and polarizabilities for many states of atomic francium. To evaluate
uncertainties of our results and investigate the role of electron correlation effects, we carry out calculations using
approximated models at different levels. The quality of our calculations is assessed by comparing with available
experimental results, showing a good agreement. In addition, the tune-out wavelengths of the ground state in
the range of 340–800 nm, the magic wavelengths for the transition 7s-8s in the range of 800–1500 nm and the
transition 7s-7p in the range of 600–1500 nm are determined by evaluating the dynamic polarizabilities of the
7s, 8s, and 7p states for a linearly polarized light. These tune-out and magic wavelengths may be useful for laser
cooling and trapping of the Fr atom, and for related high-precision trapping measurements.
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I. INTRODUCTION

Accurate knowledge of atomic properties for heavy atomic
systems has become increasingly demanding in many research
areas, including ultraprecise atomic clocks [1,2], quantum
information [3,4], determination of nuclear moments [5–7],
search for new physics beyond the standard model [8], and test-
ing of the Lorenz invariance [9]. For example, the uncertainty
in blackbody radiation shift, one of the largest contributions
to the uncertainty budget of atomic clocks [1], is currently
limited by the uncertainty in atomic transition matrix elements.
The magnetic dipole moment μ and electric quadrupole
moment Q of a nucleus can be derived from the hyperfine
constants A and B by combining theoretical calculations
and experimental measurements of sufficiently high accuracy
[5–7]. High-precision theoretical and experimental studies of
parity nonconservation can provide an atomic-physics-based
test of the standard model of electroweak interaction [8].
However, accurate theoretical predictions of atomic properties
for heavy atoms need to include high-order relativistic and
electron-electron correlation effects. It is therefore necessary
to develop a many-body method that can simultaneously treat
relativistic and electron correlation effects on the same footing.

Coupled-cluster (CC) theory is an all-order, size-extensive,
systematic, and very accurate many-body approach [10]. In the
past several decades, several kinds of coupled-cluster methods
have been developed and adapted widely into electronic
structure calculations [11]. In the CC domain, the method
of Fock-space multireference coupled-cluster (FSMRCC) is
one of the most familiar variants. The relativistic FSMRCC
in Gaussian basis sets has been developed by Kaldor and
coworkers and applied to calculations of energy levels of
atomic and molecular systems [12–14], such as the calcula-
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tions of ionization potentials, electron affinities, and excitation
energies in heavy and superheavy elements [15–19].

In atomic physics, one is not only interested in energy
levels, but also interested in transition matrix elements,
lifetimes, polarizabilities, hyperfine structure constants, and
other atomic properties, involving low-lying and highly ex-
cited Rydberg states. For this purpose, we present here a
relativistic Fock-space multireference coupled-cluster method
for atomic systems. We use the no-pair Dirac-Coulomb-Breit
Hamiltonian and expand the large and small components
of one-electron Dirac wave function in terms of a finite
B-spline basis set. The advantage of using B splines as
basis functions is that they are not only complete, but also
numerically stable; furthermore, they are highly localized,
flexible to construct, and capable of describing highly excited
Rydberg states [20]. A relativistic version of linear coupled-
cluster method in B-spline basis set was developed by
Johnson et al. [21,22], and applied successfully to study
the atomic properties of monovalent atomic systems [23–25].
Recently, Safronova et al. [26] and Dzuba [27] extended this
method to multiple-valent atomic systems, in combination
with the configuration interaction method. In these approx-
imations, the contributions from the Breit interaction are
treated using low-order many-body perturbation theory, and
the effects from nonlinear terms and higher-order correlation
are considered by a semiempirical scaling process [28]. The
present method has important differences from their methods.
For example, the Dirac-Fock-Breit equation is solved using
a completely self-consistent iteration method based on B-
spline basis set, and all matrix elements are evaluated by
using Gaussian-Legendre quadratures. The single and double
excitations of cluster operators are considered completely in
our approach, which includes all linear and nonlinear terms.
The nonlinear terms of cluster operators can be important for
heavy atoms [29,30]. We are also aware of other relativistic
versions of coupled-cluster methods for atomic systems using
Gaussian basis [31–35].
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As a test of our method, we calculate atomic properties
of Fr, including ionization energies, reduced matrix ele-
ments, lifetimes, and static polarizabilities involving many
atomic states. Fr is the heaviest atom in alkali-metal el-
ements, which has been proposed as a candidate for the
search of the permanent electric dipole moment of the
electron (e-EDM) and of parity-nonconservation (PNC) effects
[36–40]. Accurate knowledge of Fr atomic properties are very
useful for designing experiments and for analyzing systematic
uncertainties. We also present here the tune-out wavelengths of
the ground state and the magic wavelengths for the 7s-7p and
7s-8s transitions by evaluating the dynamic polarizabilities of
the 7s, 7p, and 8s states. The tune-out and magic wavelengths
may be used for laser cooling and trapping Fr atom, as well as
for related precision trapping measurements.

This paper is organized as follows. An introduction to the
Dirac-Fock-Breit calculation using B-spline basis set in the
framework of the no-pair Dirac-Coulomb-Breit Hamiltonian,
as well as to the basic theory of Fock space multireference
coupled-cluster method, is given in Sec. II. Numerical results
are presented in Sec. III, together with comparisons with
available experimental and theoretical data. Finally, a summary
is given in Sec. IV. Atomic units are used in this paper.

II. THEORETICAL METHOD

The no-pair Dirac-Coulomb-Breit Hamiltonian can be
written in the form

H =
∑

i

{cαi · pi + c2(βi − 1) + VN (r i)}

+�++
∑
i<j

gij�++, (1)

where �++ is the projection operator onto the subspace
spanned by the positive energy eigenfunctions, c is the speed
of light, pi is the momentum operator for ith electron, and,
αi and βi are the usual Dirac matrices. Also in the above,
VN (r i) is the Coulomb potential between ith electron and
nucleus, and the last part gij represents two-body potential
including the electron-electron Coulomb interaction and Breit
interaction, namely

gij =
[

1

rij

− αi · αj + (αi · r̂i j )(α j · r̂i j )

2rij

]
. (2)

The consideration of the Dirac-Coulomb-Breit Hamiltonian
without quantum electrodynamic (QED) corrections is
sufficient for the present paper. All effects through order α2

are included in the zeroth-order Hamiltonian.
It is well known that the exact wave function and total

energy of a many-electron atomic system can not be obtained
directly because of the electron-electron interaction potential.
In general, the Hamiltonian is divided into the zeroth-order part
H0, where the eigenfunctions of H0 can be solved precisely,
and the residual part V (or perturbation part). In the present
paper, H0 is chosen to be the Dirac-Fock-Breit Hamiltonian,
and V is incorporated through the coupled-cluster theory.
Thus, the first step is to perform a Dirac-Fock-Breit calculation
using B-spline basis set. By doing so one can generate the
energies and wave functions of single-particle orbitals. Then

the coupled equations of the single- and double-excitation
cluster amplitudes can be solved iteratively.

A. Dirac-Fock-Breit calculations in B-spline basis

The zeroth-order approximation H0 is chosen to be

H0 =
∑

i

[cαi · pi + c2(βi − 1) + VN (r i) + U (r i)]

=
∑

i

h0. (3)

The eigenfunctions of H0 are the determinantal functions based
on the occupied one-electron eigenfunctions |ϕv〉 of h0, where
|ϕv〉 and the corresponding eigenvalue ε satisfy the following
equation:

[cα · p + c2(β − 1) + VN (r) + U (r)]|ϕv〉 = ε|ϕv〉 (4)

with

U |ϕv〉 =
occ∑
b

[〈ϕb|gvb|ϕb〉|ϕv〉 + 〈ϕb|gvb|ϕv〉|ϕb〉]. (5)

|ϕv〉 can be written as

|ϕv〉 = 1

r

(
Pnκ (r)�κm(r̂)

iQnκ (r)�−κm(r̂)

)
, (6)

where the radial wave functions Pnκ (r) and Qnκ (r) are the large
and small components, respectively, and �κm(r̂) and �−κm(r̂)
are the corresponding angular components. The large and small
components are expanded in terms of an N-dimensional B-
spline basis of order k

Pnκ (r) =
N∑

i=1

C
P,n
i Bi,k(r), (7)

Qnκ (r) =
N∑

i=1

C
Q,n
i Bi,k(r). (8)

The B splines in the domain [0,Rmax] are defined on an
nondecreasing knot sequence [ti] satisfying an exponential
distribution [20]. The order index k of a B spline will be
omitted in following expressions.

Using the Galerkin method with the relativistic wave
function boundary conditions proposed by Johnson et al. [21],
a 2N × 2N generalized symmetric eigenvalue equation can be
obtained

Aυ = εOυ. (9)

The Hamiltonian matrix A is

A = ADC +
(

BQQ BQP

BPQ BPP

)
, (10)

and the overlap matrix O is

O =
(

SPP 0
0 SQQ

)
. (11)

Here ADC corresponds to the matrix of the Dirac-Fock equation
in the no-pair Dirac-Coulomb Hamiltonian. The explicit ex-
pressions for ADC, SPP , and SQQ can be found in our previous
work [41]. BQQ, BQP , BPQ, and BPP are from the Breit
interaction, the explicit expressions are given in the Appendix.
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All matrix elements are evaluated using Gaussian-Legendre
quadratures, and the single-particle orbitals and energies are
obtained by solving the generalized eigenvalue equation with
a completely self-consistent iteration method.

The method of B-spline basis was first adopted to solve the
Dirac and Dirac-Fock (DF) equations by Johnson et al. [21],
which is called the Notre Dame (ND) method. In the ND
method, the DF equation is solved using a point-by-point
numerical integration scheme, and the matrix ADC is con-
structed by combining the obtained core DF orbitals with
B-spline basis set. We note that there exist other types of
B-spline basis sets satisfying more complex conditions in
order to avoid spurious-state problem [42–47]. For example,
Shabaev et al. introduced a dual kinetic balance basis using
B splines for solving the Dirac equation with a finite nuclear-
charge distribution [42]. Fischer and Zatsarinny proposed a
stable (Bk,Bk±1) basis for the Dirac equation [47]. Among all
these schemes, the ND one is the simplest form.

In the present paper, we expand the large and small
components of the wave functions using 50 B splines of
order 13 defined on the finite domain [0,280]. We find that
the calculations do not suffer from the spurious-state problem
when we use B splines of order 13 or higher.

B. Multireference coupled-cluster method

According to Lindgren [10], the exact wave function |
〉 for
a system can be generated by a normal-ordered wave operator
� acting on a model function

|
〉 = �|�〉 , (12)

where

� = [eS] , (13)

and S is called the cluster operator, which is defined with re-
spect to a closed-shell reference determinant. In the framework
of multireference coupled-cluster method [12–14], the cluster
operator S is partitioned into

S =
∑
m�0

∑
n�0

( ∑
��m+n

S
(m,n)
�

)
, (14)

where m and n are, respectively, the number of valence holes
and the number of valence particles to be excited with respect
to the reference determinant, and � is the number of excited
electrons. The coupled equations for the cluster operators are
derived from the generalized Bloch equation by considering
only the connected terms

Q
[
S

(m,n)
� ,H0

]
P = Q

[
(V � − �Heff)

(m,n)
�

]
connP (15)

Heff = P (V �)(m,n)
conn P, (16)

where P and Q are the usual projection operators, which act on
the model space and its orthogonal complement, respectively,
and Heff represents the effective Hamiltonian.

For atomic systems, spherical symmetry allows for the
separation of angular and radial parts. Using angular diagram
theory, the angular part can further be simplified to some
factors containing the 3j and 6j symbols. Thus, we only need
to evaluate the radial integrals. In practice, the equations for

the sector S(0,0) are first solved iteratively until a convergence
is reached. The sector S(0,1) or S(1,0) is then solved using the
known S(0,0), and so on. In this paper, we use the (m,n) = (0,0)
and (0,1), and � is truncated to 2, which corresponds to
single and double excitations (CCSD). The cluster operators
S(0,0) and S(0,1) are similar to the T and S operators in the
traditional coupled-cluster method [29,30].

C. Transition matrix elements

After obtaining the cluster amplitudes, the transition matrix
element of operator Ô can be evaluated according to

Owv = 〈
w|O|
v〉√〈
w|
w〉〈
v|
v〉

= 〈�w|eS†OeS |�v〉√
〈�w|eS†eS |�w〉〈�v|eS†eS |�v〉

, (17)

where |
w〉 represents a state with a closed core and a valence
orbital w, and |�w〉 = a†

w|�〉. In calculating atomic properties,
we only consider the linearized expansion of the coupled-
cluster wave functions with the single and double excitations
(LCCSD)

eS†OeS ≈ O + [S(0,0)†O + H.c.] + [S(0,1)†O + H.c.]

+ S(0,0)†OS(0,0) + [S(0,0)†OS(0,1) + H.c.]

+ S(0,1)†OS(0,1) (18)

and

eS†eS ≈ 1 + S(0,0)†S(0,0) + S(0,1)†S(0,1), (19)

where H.c. stands for the Hermitian conjugate part.

III. RESULTS

A. Energies and reduced matrix elements

The energy levels for the ns(n = 7–13), np(n = 7–13),
nd(n = 6–12), nf (n = 5–9), and ng(n = 5–8) states of Fr
are calculated using relativistic coupled-cluster method in
single and double approximation. To understand the role
of electron correlation effects, we present the energies of
these states in Table I using the DF (labeled EDF), LCCSD
(labeled ELCCSD), and CCSD (labeled ECCSD) methods, and
compared with available experimental values from NIST [48].
δ represents the relative difference between calculated and
experimental values δ1 = |EExpt − ELCCSD|/EExpt, and δ2 =
|EExpt − ECCSD|/EExpt.

From Table I, one can find that: (i) The electron correlation
effects of the 6d states are the largest among all states.
(ii) The DF energies of the d5/2 states are lower than d3/2,
but the LCCSD and CCSD energies of d3/2 are lower than
d5/2. (iii) The LCCSD method overestimates the electron
correlation effects. The contributions from the nonlinear terms
of the cluster operator have opposite sign with respect to
the LCCSD values. (iv) The energies and fine structure
energies from the CCSD method are in better agreement
with available experimental values than from the LCCSD
method for all states; in other words, the CCSD method
improves substantially the LCCSD method. Therefore, the
nonlinear terms are important in precise prediction of the
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TABLE I. Theoretical and experimental energy levels of Fr in
cm−1. EDF denotes the lowest-order Dirac-Fock energy; ELCCSD

and ECCSD are the energies obtained using the LCCSD and CCSD
approximations, respectively. δ1 = |EExpt − ELCCSD|/EExpt, and δ2 =
|EExpt − ECCSD|/EExpt. Values marked by a are our recommended
values that can not be found from NIST database.

Levels EDF ELCCSD ECCSD NIST [48] δ1(%) δ2(%)

7s1/2 −28761.22 −33339.50 −32908.18 −32848.87 1.5 0.18
7p1/2 −18840.94 −20800.19 −20603.78 −20611.46 0.9 0.03
7p3/2 −17650.88 −19067.97 −18923.02 −18924.87 0.8 0.01
6d3/2 −13837.93 −17293.25 −16628.45 −16619.00 4.1 0.05
6d5/2 −13938.52 −16991.53 −16423.95 −16419.23 3.5 0.03
8s1/2 −12279.50 −13187.18 −13125.19 −13108.89 0.6 0.13
8p1/2 −9235.22 −9777.02 −9731.64 −9735.91 0.4 0.04
8p3/2 −8809.57 −9225.50 −9188.72 −9190.56 0.4 0.02
7d3/2 −7730.28 −8706.81 −8603.36 −8604.84 1.2 0.02
7d5/2 −7752.98 −8597.42 −8511.93 −8515.94 1.0 0.05
9s1/2 −6857.11 −7202.08 −7183.27 −7177.87 0.3 0.08
5f7/2 −6867.13 −6969.24 −6960.38 –6960(4)a

5f5/2 −6866.22 −6968.35 −6959.47 −6959(4)a

9p1/2 −5518.28 −5753.03 −5734.63 −5730.66 0.4 0.07
9p3/2 −5317.75 −5502.33 −5486.92 −5482.67 0.4 0.08
8d3/2 −4859.89 −5279.00 −5245.87 −5248.21 0.6 0.04
8d5/2 −4865.73 −5227.67 −5200.41 −5203.50 0.5 0.06
10s1/2 −4380.15 −4549.49 −4540.86 −4538.25 0.2 0.06
6f7/2 −4396.66 −4457.31 −4451.78 −4452(3)a

6f5/2 −4395.91 −4456.59 −4451.03 −4451(3)a

5g7/2 −4389.51 −4402.47 −4401.44 −4401(1)a

5g9/2 −4389.51 −4402.47 −4401.44 −4401(1)a

10p1/2 −3673.79 −3797.79 −3787.31 −3784.69 0.3 0.07
10p3/2 −3563.59 −3662.42 −3653.23 −3650.78 0.3 0.07
9d3/2 −3325.07 −3545.38 −3530.75 −3532.37 0.4 0.05
9d5/2 −3326.74 −3517.18 −3505.12 −3507.05 0.3 0.05
7f7/2 −3053.39 −3091.20 −3087.66 −3088(2)a

7f5/2 −3052.87 −3090.69 −3087.14 −3087(2)a

6g7/2 −3048.28 −3056.68 −3056.01 −3056(1)a

6g9/2 −3048.28 −3056.68 −3056.01 −3056(1)a

11s1/2 −3040.22 −3136.15 −3131.47 −3129.96 0.2 0.05
11p1/2 −2622.38 −2696.05 −2690.05 −2687.80 0.3 0.08
11p3/2 −2555.43 −2614.64 −2609.42 −2607.27 0.3 0.08
10d3/2 −2414.87 −2545.52 −2537.78 −2538.91 0.3 0.04
10d5/2 −2415.30 −2528.36 −2521.96 −2523.27 0.2 0.05
12s1/2 −2233.49 −2293.20 −2290.38 −2289.37 0.2 0.04
8f7/2 −2243.18 −2268.01 −2265.65 −2265(2)a

8f5/2 −2242.84 −2267.68 −2265.31 −2265(2)a

7g7/2 −2239.55 −2245.18 −2244.73 −2245(1)a

7g9/2 −2239.55 −2245.18 −2244.73 −2245(1)a

12p1/2 −1965.84 −2013.21 −2009.75 −2007.89 0.3 0.09
12p3/2 −1922.19 −1960.45 −1957.45 −1955.71 0.2 0.09
11d3/2 −1832.32 −1916.25 −1911.64 −1912.55 0.2 0.05
11d5/2 −1832.32 −1905.01 −1901.21 −1902.23 0.1 0.05
13s1/2 −1710.14 −1749.95 −1748.12 −1747.33 0.1 0.05
9f7/2 −1717.27 −1734.35 −1732.72 −1733(1)a

9f5/2 −1717.12 −1734.18 −1732.54 −1733(1)a

8g7/2 −1714.66 −1718.58 −1718.26 −1718(1)a

8g9/2 −1714.64 −1718.56 −1718.24 −1718(1)a

13p1/2 −1528.22 −1560.49 −1558.14 −1557.15 0.2 0.06
13p3/2 −1498.28 −1524.37 −1522.33 −1521.41 0.2 0.06
12d3/2 −1437.44 −1494.48 −1491.49 −1492.37 0.1 0.06
12d5/2 −1437.25 −1486.69 −1484.25 −1485.22 0.1 0.06

energy levels. The biggest difference between the CCSD
results and experimental values is 0.18%. Most of the CCSD
ionization energies agree with experiment values within 0.1%.
If the contributions from QED effects, triple and higher-order
excitation corrections are included, the differences may be
further reduced. For example, Dzuba et al. estimated the QED
contribution of the 7s state as 77cm−1 [49]. If we add this QED
value to our CCSD result of the 7s state, the difference 0.05%
instead of 0.18%. In NIST database [48], we do not see data
for f and g states. We include in Table I our recommended
values for these states as labeled by index a.

The electric and magnetic multipole transition matrix
elements among above-mentioned states can be calculated
using our code in Eq. (18) and Eq. (19). Here we just list some
interesting reduced dipolar matrix elements, which are relevant
to the lifetimes and polarizabilities. The final recommended
values (absolute values) of reduced electric dipolar matrix
elements are given in Table II. To estimate the uncertainties
of our results, we perform the calculations using four different
approximation models: LCCSD, CCSD, and LCCSD and
CCSD with semiempirical scaling process [28] (labeled by
LCCSDs , and CCSDs). In the LCCSDs and CCSDs calcula-
tions, the single-excitation coefficients of the valence electron
are replaced by new single-excitation coefficients that are equal
to the old single-excitation coefficients multiplied by the factor
δ(EExpt

v )/δ(ETheory
v ). Here δ(EExpt

v ) represents the correlation
energy of the valence electron v, i.e., δ(EExpt

v ) = E
Expt
v − EDF

v .
In the present work, we take the LCCSD results as the

recommended values for s-p transitions and take the CCSD
results as the recommended values for other transitions. The
uncertainties are evaluated as the maximum differences be-
tween the recommended values and the results from LCCSDs

or CCSDs . For all transitions, the CCSD values agree with the
CCSDs ones at the level of 2%. For most of the transitions, the
results from the CCSD, LCCSDs , and CCSDs are in agreement
within 3%. For the transitions 8p-6d and nf -(n + 1)d,
however, the LCCSDs values have larger uncertainties. More
detailed tabulation for the electric dipolar matrix elements
using the DF method and the four approximation models are
given in the Supplemental Material [50].

B. Lifetimes

The lifetime of a state |
v〉 is defined by

τv =
∑
w

1

Avw

, (20)

where Avw is the transition rate and the summation includes all
possible electromagnetic transitions from |
v〉. For the states
considered here, the contributions from other electromagnetic
multipolar transitions, except the electric dipole transitions,
are very small and they can thus be neglected. The electric
dipole transition rate Avw is evaluated according to

Avw = 2.02615 × 1018

λ3(2jv + 1)
Swv (21)

where λ represents the transition wavelength in Å and Swv

is the line strength that equals the square of electric dipolar
reduced matrix element.
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TABLE II. Recommended values of the reduced matrix elements (denoted by D) for the electric dipole transitions in Fr. Uncertainties are
given in parentheses.

Transitions D Transitions D Transitions D Transitions D Transitions D

7s1/2-7p1/2 4.27(7) 7s1/2-7p3/2 5.87(10) 9s1/2-9p1/2 17.40(5) 8d5/2-12p3/2 2.07(3) 8f5/2-9d3/2 3.02(46)
7s1/2-8p1/2 0.327(20) 7s1/2-8p3/2 0.930(21) 9s1/2-9p3/2 22.65(4) 8d5/2-13p3/2 1.37(2) 8f5/2-10d3/2 94.07(19)
7s1/2-9p1/2 0.110(6) 7s1/2-9p3/2 0.434(7) 9s1/2-10p1/2 1.83(29) 9d3/2-11p1/2 17.64(3) 8f5/2-11d3/2 54.06(28)
7s1/2-10p1/2 0.0554(40) 7s1/2-10p3/2 0.269(7) 9s1/2-10p3/2 3.87(3) 9d3/2-12p1/2 5.29(6) 8f5/2-12d3/2 11.59(6)
7s1/2-11p1/2 0.0340(38) 7s1/2-11p3/2 0.190(6) 10s1/2-9p1/2 16.09(13) 9d3/2-13p1/2 2.81(2) 8f5/2-8d5/2 1.03(3)
7s1/2-12p1/2 0.0234(30) 7s1/2-12p3/2 0.144(5) 10s1/2-9p3/2 27.00(18) 9d5/2-11p3/2 18.37(9) 8f5/2-9d5/2 1.17(10)
7s1/2-13p1/2 0.0173(19) 7s1/2-13p3/2 0.115(3) 10s1/2-10p1/2 26.61(1) 9d5/2-12p3/2 5.98(7) 8f5/2-10d5/2 25.47(3)
8s1/2-8p1/2 10.03(7) 8s1/2-8p3/2 13.26(10) 10s1/2-10p3/2 34.30(1) 9d5/2-13p3/2 3.24(3) 8f5/2-11d5/2 13.83(7)
8s1/2-9p1/2 0.988(10) 8s1/2-9p3/2 2.241(10) 11s1/2-9p1/2 3.12(2) 10d3/2-12p1/2 25.49(30) 8f5/2-12d5/2 3.08(1)
8s1/2-10p1/2 0.382(7) 8s1/2-10p3/2 1.049(6) 11s1/2-9p1/2 3.80(5) 10d3/2-13p1/2 7.58(9) 8f7/2-6d5/2 2.22(3)
8s1/2-11p1/2 0.214(6) 8s1/2-11p3/2 0.652(6) 11s1/2-10p1/2 24.60(24) 10d5/2-12p3/2 26.63(50) 8f7/2-7d5/2 3.24(7)
8s1/2-12p1/2 0.142(4) 8s1/2-12p3/2 0.462(4) 11s1/2-10p3/2 40.88(19) 10d5/2-13p3/2 8.60(9) 8f7/2-8d5/2 4.61(16)
8s1/2-13p1/2 0.104(2) 8s1/2-13p3/2 0.352(2) 11s1/2-11p1/2 37.66(3) 11d3/2-13p1/2 34.68(19) 8f7/2-9d5/2 5.27(44)
7p1/2-8s1/2 4.20(4) 8p1/2-8s1/2 10.03(6) 11s1/2-11p3/2 48.23(8) 11d5/2-13p3/2 36.30(40) 8f7/2-10d5/2 113.9(2)
7p1/2-9s1/2 1.018(6) 8p1/2-9s1/2 9.30(5) 12s1/2-9p1/2 1.543(12) 5f5/2-6d3/2 7.08(60) 8f7/2-11d5/2 61.79(31)
7p1/2-10s1/2 0.544(5) 8p1/2-10s1/2 1.941(6) 12s1/2-9p3/2 1.780(21) 5f5/2-7d3/2 24.82(4) 8f7/2-12d5/2 13.78(6)
7p1/2-11s1/2 0.361(3) 8p1/2-11s1/2 0.990(5) 12s1/2-10p1/2 4.56(4) 5f5/2-6d5/2 1.97(14) 9f5/2-6d3/2 1.41(2)
7p1/2-12s1/2 0.266(3) 8p1/2-12s1/2 0.645(4) 12s1/2-10p3/2 5.40(8)) 5f5/2-7d5/2 6.674(4) 9f5/2-7d3/2 1.93(4)
7p1/2-13s1/2 0.207(3) 8p1/2-13s1/2 0.470(2) 13s1/2-9p1/2 0.990(17) 5f7/2-6d5/2 8.83(63) 9f5/2-8d3/2 2.59(7)
7p1/2-6d3/2 7.15(9) 8p1/2-6d3/2 2.25(45) 13s1/2-9p3/2 1.120(13) 5f7/2-7d3/2 29.84(2) 9f5/2-9d3/2 3.18(17)
7p1/2-7d3/2 3.53(6) 8p1/2-7d3/2 18.29(5) 6d3/2-9p1/2 0.725(24) 5f5/2-8d3/2 11.59(11) 9f5/2-10d3/2 1.77(50)
7p1/2-8d3/2 1.839(27) 8p1/2-8d3/2 5.035(9) 6d3/2-10p1/2 0.401(5) 6f5/2-6d3/2 3.79(7) 9f5/2-11d3/2 124.6(3)
7p1/2-9d3/2 1.192(15) 8p1/2-9d3/2 2.663(15) 6d3/2-11p1/2 0.269(2) 6f5/2-7d3/2 5.24(50) 9f5/2-12d3/2 73.60(27)
7p1/2-10d3/2 0.862(9) 8p1/2-10d3/2 1.745(9) 6d3/2-12p1/2 0.199(2) 6f5/2-8d3/2 44.43(10) 9f5/2-6d5/2 0.384(6)
7p1/2-11d3/2 0.665(7) 8p1/2-11d3/2 1.273(5) 6d3/2-13p1/2 0.156(2) 6f5/2-9d3/2 23.10(17) 9f5/2-7d5/2 0.546(9)
7p1/2-12d3/2 0.535(5) 8p1/2-12d3/2 0.988(4) 7d3/2-9p1/2 6.02(29) 6f7/2-6d5/2 4.67(17) 9f5/2-8d5/2 0.757(18)
7p3/2-8s1/2 7.416(38) 8p3/2-8s1/2 13.26(10) 7d3/2-10p1/2 1.855(3) 6f7/2-7d5/2 7.07(49) 9f5/2-9d5/2 1.02(4)
7p3/2-9s1/2 1.40(2) 8p3/2-9s1/2 15.87(6) 7d3/2-11p1/2 1.007(8) 6f7/2-8d5/2 53.62(7) 9f5/2-10d5/2 0.94(11)
7p3/2-10s1/2 0.715(7) 8p3/2-10s1/2 2.468(13) 7d3/2-12p1/2 0.668(5) 6f7/2-9d5/2 26.38(20) 9f5/2-11d5/2 33.78(4)
7p3/2-11s1/2 0.467(5) 8p3/2-11s1/2 1.198(7) 7d3/2-13p1/2 0.491(3) 7f5/2-6d3/2 2.494(3) 9f5/2-12d5/2 18.83(5)
7p3/2-12s1/2 0.341(4) 8p3/2-12s1/2 0.767(5) 6d5/2-9p3/2 0.230(24) 7f5/2-7d3/2 3.55(16) 9f7/2-6d5/2 1.72(3)
7p3/2-13s1/2 0.265(4) 8p3/2-13s1/2 0.555(2) 6d5/2-10p3/2 0.417(26) 7f5/2-8d3/2 4.13(46) 9f7/2-7d5/2 2.44(3)
7p3/2-6d3/2 3.27(7) 8p3/2-6d3/2 0.67(19) 6d5/2-11p3/2 0.279(13) 7f5/2-9d3/2 67.37(14) 9f7/2-8d5/2 3.40(8)
7p3/2-7d3/2 2.19(2) 8p3/2-7d3/2 8.30(4) 6d5/2-12p3/2 0.206(9) 7f5/2-10d3/2 37.22(23) 9f7/2-9d5/2 4.59(16)
7p3/2-8d3/2 1.012(13) 8p3/2-8d3/2 3.407(5) 6d5/2-13p3/2 0.160(8) 7f5/2-11d3/2 9.52(6) 9f7/2-10d5/2 4.27(48)
7p3/2-9d3/2 0.629(8) 8p3/2-9d3/2 1.573(18) 7d5/2-9p3/2 6.19(26) 7f5/2-12d3/2 3.90(2) 9f7/2-11d5/2 151.1(3)
7p3/2-10d3/2 0.445(5) 8p3/2-10d3/2 0.979(5) 7d5/2-10p3/2 2.043(17) 7f7/2-6d5/2 3.052(4) 9f7/2-12d5/2 84.19(26)
7p3/2-11d3/2 0.339(4) 8p3/2-11d3/2 0.696(5) 7d5/2-11p3/2 1.124(20) 7f7/2-7d5/2 4.61(15) 11s1/2-12p1/2 4.15(4)
7p3/2-12d3/2 0.270(3) 8p3/2-12d3/2 0.532(3) 7d5/2-12p3/2 0.749(11) 7f7/2-8d5/2 6.16(46) 11s1/2-12p3/2 8.25(3)
7p3/2-6d5/2 10.07(17) 8p3/2-6d5/2 2.24(50) 7d5/2-13p3/2 0.550(5) 7f7/2-9d5/2 81.47(11) 12s1/2-12p1/2 50.57(6)
7p3/2-7d5/2 6.21(6) 8p3/2-7d5/2 25.24(8) 8d3/2-10p1/2 11.15(15) 7f7/2-10d5/2 9.52(6) 12s1/2-12p3/2 64.45(19)
7p3/2-8d5/2 2.945(30) 8p3/2-8d5/2 9.517(10) 8d3/2-11p1/2 3.38(3) 7f7/2-11d5/2 8.02(5) 12s1/2-13p1/2 5.64(4)
7p3/2-9d5/2 1.845(15) 8p3/2-9d5/2 4.512(12) 8d3/2-12p1/2 1.81(1) 7f7/2-12d5/2 4.67(2) 12s1/2-13p3/2 11.02(5)
7p3/2-10d5/2 1.313(11) 8p3/2-10d5/2 2.837(8) 8d3/2-13p1/2 1.197(14) 8f5/2-6d3/2 1.82(2) 13s1/2-13p1/2 65.30(5)
7p3/2-11d5/2 1.003(8) 8p3/2-11d5/2 2.026(7) 8d5/2-10p3/2 11.56(9) 8f5/2-7d3/2 2.54(4) 13s1/2-13p3/2 82.89(6)
7p3/2-12d5/2 0.801(6) 8p3/2-12d5/2 1.553(7) 8d5/2-11p3/2 3.79(3) 8f5/2-8d3/2 3.39(16)

The lifetimes for the ns(n = 8-13), np(n = 7-13), and
nd(n = 6-12) states are determined using our recommended
values of the matrix elements and the transition energies from
available experiments [48]. The results are listed in Table III,
and compared with experimental and other theoretical values.
Our results are in excellent agreement with the experimental
values for the 7p1/2,3/2 [51], 8p1/2,3/2 [52], 8s [53], 9s [52],
and 7d3/2,5/2 [54] states. Safronova et al. [55] calculated the

lifetimes for the 7p1/2,3/2, 8p1/2,3/2, 8s, and 7d3/2,5/2 states
using a relativistic all-order method. Our results are very close
to theirs. Sahoo et al. reported the lifetimes of the 6d states
using the relativistic coupled-cluster method in Gaussian
basis [56], where the differences between our results and
theirs are about 8%. The reason for the discrepancy is that
their electric dipole reduced matrix elements for the 6d-7p

transitions are larger than ours by about 4%. Wijngaarden et al.
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TABLE III. Radiative lifetimes of Fr in nanoseconds. Uncertain-
ties are given in parentheses.

States Present Other Expt.

7p1/2 29.57(96) 28.44 [57] 29.45(11) [51]
29.62 [55]

7p3/2 21.23(71) 20.90 [57] 21.02(11) [51]
21.28 [55]

6d3/2 583(15) 540(10) [56]
559.2 [57]

6d5/2 1854(61) 1704(32) [56]
1915 [57]

8s1/2 53.40(67) 54.36 [55] 53.30(44) [53]
63.06 [57]

8p1/2 145(12) 102.5 [57] 149.3(3.5) [52]
8p3/2 81.8(2.3) 61.13 [57] 83.5(1.5) [52]
7d3/2 72.3(2.0) 73.08 [55] 73.6(3) [54]

75.90 [57]
7d5/2 67.8(1.3) 67.93 [55] 67.7(2.9) [54]

70.29 [57]
9s1/2 107.6(9) 124.3 [57] 107.53(90) [52]
9p1/2 319(10) 233.4 [57]
9p3/2 186(2) 130.7 [57]
8d3/2 105(3) 99.87 [57]
8d5/2 101(3) 95.89 [57]
10s1/2 200(2) 230.4 [57]
10p1/2 566(7) 424.3 [57]
10p3/2 346(5) 231.3 [57]
9d3/2 164(4) 144.9 [57]
9d5/2 159(2) 141.7 [57]
11s1/2 337(5) 393.5 [57]
11p1/2 905(4) 691.2 [57]
11p3/2 573(8) 374.8 [57]
10d3/2 248(4) 208.4 [57]
10d5/2 241(4) 205.8 [57]
12s1/2 531(10) 624.4 [57]
12p1/2 1351(12) 1029 [57]
12p3/2 878(11) 562.4 [57]
11d3/2 360(6) 291.7 [57]
11d5/2 352(5) 289.8 [57]
13s1/2 787(12) 935.5 [57]
13p1/2 1926(40) 1482 [57]
13p3/2 1278(30) 799.9 [57]
12d3/2 507(6) 396.7 [57]
12d5/2 496(4) 395.6 [57]

computed the lifetimes and polarizabilities for 60 low-lying
S, P , D, and F states using a Coulomb approximation [57].
It is found that there are obvious differences between ours
and their results. Since our approach is an ab initio one, our
results are expected to be more reliable.

C. Dipolar scalar and tensor polarizabilities

The dynamic dipole polarizability of a state |
v〉 at photon
energy ω is defined by

α1(ω) =
∑

i

f
(1)
vi

ε2
vi − ω2

, (22)

where f (1) represents the dipole oscillator strength, summation
includes all intermediate states |
i〉. The dipole polarizability

has a tensor component if J > 1/2, which can be written as

αT
1 (ω) = 6

(
5Jg(2Jg − 1)(2Jg + 1)

6(Jg + 1)(2Jg + 3)

)1/2

×
∑
Ji

(−1)Jg+Ji

[
Jg 1 Ji

1 Jg 2

]
f

(1)
gi

ε2
gi − ω2

. (23)

The dynamic polarizability is reduced to the static one if ω = 0.
The polarizability for a state with nonzero angular momentum
J depends on the magnetic projection Mg

α1,Mg
= α1 + αT

1

3M2
g − Jg(Jg + 1)

Jg(2Jg − 1)
. (24)

The dynamic polarizability includes contributions from
the core that is represented by a pseudo-oscillator strength
distribution [41]. In this work, αcore = 20.4 was used. The
summation includes the contributions from all bound states and
the continuum. For the low-lying intermediate states, we used
the recommended reduced matrix elements given in the above
section. For the contributions from higher-lying states and the
continuum, we used the reduced matrix elements obtained
by the Dirac-Fock plus core potential method (DFCP) [41].
In DFCP, 80 B splines of order 15 were used. The size of the
B-spline domain was set to be 500 a.u. All polarizabilities were
computed using available experimental transition energies.

Table IV lists the static dipole polarizabilities for S, P ,
and D states (in multiples of 1000) and a comparison with
other theoretical results. For the ground state, our value for
α(1) is 315(9), which is in agreement with the value 317.8(2.4)
of Derevianko et al. using an all-order method [58], with the
value 316.81 of Singh et al. using the RCC method [59], with
the value 315.2 of Lim et al. [60] and with the value 311.5
of Borschevsky et al. [61] using the RCC and a finite field
method. For the 7p states, our results are different from the
ab initio results of Singh et al. [59] by about 5%.
Wijngaarden et al. reported the polarizabilities for the S, P ,
D, and F states using a Coulomb approximation [57]. Similar
to the case of lifetimes of excited states, our results have larger
discrepancy from theirs. For the D states, we find that the
contributions from the f states have large cancellation with
the p states, leading to larger uncertainties.

D. Tune-out and magic wavelengths

Recently, Dammalapati et al. reported the tune-out wave-
lengths of 7s and the magic wavelengths of 7s-8s and 7s-7p

transitions in Fr [62]. In their calculations, they ignored the
contributions from atomic core part and from the transitions
8s-np(n = 7-10) and 7p-6d. Thus, Singh et al. recalculated
the magic wavelengths for the 7s-7p transition using the
RCC method, and reported a few different results [59]. In
this paper, we evaluated the tune-out wavelengths for 7s

and the magic wavelengths for the transitions 7s-8s and
7s-7p using our recommended reduced matrix elements
and experimental transition energies. For the reduced matrix
elements of 7s-7p1/2 and 7s-7p3/2, we used 4.277 and 5.898
that are extracted from the lifetime measurements [51].

Table V lists the tune-out wavelengths of the ground state
in the range of 340–800 nm. A comparison is made with

022513-6



RELATIVISTIC MULTIREFERENCE COUPLED-CLUSTER . . . PHYSICAL REVIEW A 96, 022513 (2017)

TABLE IV. Static dipole scalar and tensor polarizabilities (in
multiples of 1000) for Fr. Uncertainties are given in parentheses.

States α(1) α
(1)
t

Present Others Present Others

7s1/2 0.315(9) 0.31681 [59]
0.3178(24) [58]

0.315 [60]
0.305 [57]

8s1/2 4.700(71) 4.600 [57]
9s1/2 26.33(21) 27.0 [57]
10s1/2 95.27(87) 105.9 [57]
11s1/2 262.0(4.1) 319.6 [57]
12s1/2 606.9(20.0) 815.2 [57]
13s1/2 1201(45) 1840 [57]
7p1/2 1.154(22) 1.225 [59]

1.106 [57]
8p1/2 22.68(11) 22.490 [57]
9p1/2 160.1(8) 148.9 [57]
10p1/2 710(4) 636.0 [57]
11p1/2 2385(16) 2061 [57]
12p1/2 6658(56) 5671 [57]
13p1/2 16231(71) 13390 [57]
7p3/2 2.155(60) 2.304 [59] −0.446(7) −0.467 [59]

2.102 [57] −0.403 [57]
8p3/2 43.10(31) 42.930 [57] −6.572(27) −6.463 [57]
9p3/2 313.9(1.4) 285.9 [57] −42.59(37) −38.91 [57]
10p3/2 1417(5) 1250 [57] −181.2(1.3) −160.7 [57]
11p3/2 4824(19) 4045 [57] −591(7) −501.7 [57]
12p3/2 13583(50) 11020 [57] −1623(18) −1334 [57]
13p3/2 33326(61) 26420 [57] −3884(6) −3137 [57]
6d3/2 −0.274(29) −0.330 [57] 0.242(12) 0.254 [57]
7d3/2 −0.336(78) −0.270 [57] 4.078(41) 4.016 [57]
8d3/2 −20.07(86) −12.56 [57] 31.23(28) 28.94 [57]
9d3/2 −141.5(4.9) −97.17 [57] 145.0(2.0) 130.2 [57]
10d3/2 −598.0(18.0) −400.4 [57] 502.0(7.0) 445.6 [57]
11d3/2 −1917(54) −1298 [57] 1434(20) 1286 [57]
12d3/2 −5039(153) −3411 [57] 3530(47) 3103 [57]
6d5/2 −0.610(8) 0.269 [57] 0.872(15) −0.048 [57]
7d5/2 −7.398(50) −7.367 [57] 18.38(11) 18.36 [57]
8d5/2 −73.42(83) −59.69 [57] 142.8(4) 128.1 [57]
9d5/2 −386.0(5.0) −308.3 [57] 666.0(2.0) 578.9 [57]
10d5/2 −1442(18) −1075 [57] 2315(7) 1907 [57]
11d5/2 −4310(55) −3102 [57] 6607(21) 5266 [57]
12d5/2 −10951(140) −7787 [57] 16353(55) 12760 [57]

the results reported by Dammalapati et al. [62]. Our results
are in reasonable agreement with theirs except those lying
between the 7s-8p1/2 and 7s-8p3/2 transition energies, which
have about 2.6 nm difference.

Table VI lists the magic wavelengths for 7s-7p in the range
of 600–1500 nm and for 7s-8s in the range of 800–1500 nm,
together with a comparison with other theoretical results. The
major differences between our results and the values from
Ref. [62] and Ref. [59] are highlighted in bold. For the 7s-7p

transition, some significant discrepancies between ours and
the results of Ref. [62] are observed. It is noted that ours are
consistent with the those by Singh et al. [59]. The contributions
from the 7p-6d and 7p-8s transitions were not included in

TABLE V. Tune-out wavelengths of the ground state of Fr in
nanometers. Uncertainties are given in parentheses. The values with
an asterisk (*) are from the experimental lifetimes of the 7p1/2,3/2

states.

Resonance λRes. λTune Ref. [62]

7s-7p1/2 817.1664
782.084(7) 782.96,781.65*

7s-7p3/2 718.1846
7s-8p1/2 432.6577 433.70(15) 433.87

427.11(14) 424.49
7s-8p3/2 422.6845
7s-9p1/2 368.7559 368.87(2) 368.96

366.57(3) 365.76
7s-9p3/2 365.4143
7s-10p1/2 344.0661 344.09(1)
7s-10p3/2 342.4881 342.97(2)

Ref. [62] that may explain the observed discrepancies. The
slight discrepancies between our magic wavelengths and the
results by Singh et al. [59] could be attributed to the different
reduced matrix elements used by us and by Singh et al. [59].

For the 7s-8s transition, the magic wavelength in the
range of 800–1500 nm occurs near the resonant position of
8s-np(n = 10-18). In this range, 19 magic wavelengths were
determined in our calculations, while Dammalapati et al. only
gave two magic wavelengths. This may be due to the fact
that they ignored the contributions from 8s-np(n = 7-10). The
determinations of these magic wavelengths require knowledge
of the transition matrix elements from 8s to higher p states.
In our CC calculations, we obtained np(n = 7-13) bound
states. The higher-lying np(n = 14-22) bound states and the
continuum were obtained using the DFCP method.

IV. SUMMARY

In this paper, we have presented a relativistic Fock space
multireference coupled-cluster method for atomic structure
calculations. The no-pair Dirac-Coulomb-Breit Hamiltonian
is our starting point, together with a finite B-spline basis
set to expand the large and small components of the Dirac
wave functions. We have used this method to calculate the
Fr atomic properties, including ionization energies, reduced
matrix elements, lifetimes, and static electric dipolar scalar
and tensor polarizabilities. To investigate the role of electron
correlation effects and evaluate the uncertainties of our results,
we have performed the calculations using the LCCSD, CCSD,
LCCSDs , and CCSDs approximation models. Our results have
shown that the nonlinear terms of the cluster operators are
important for precise determinations of atomic properties,
especially for the ionization energies. Most of our CCSD
ionization energies agree with experimental values at the level
of 0.1%. Our lifetimes for the 8s, 9s, 7p, 8p, and 7d states are
in excellent agreement with the experimental values.

Furthermore, the tune-out wavelengths of the ground state
and magic wavelengths for the 7s-8s and 7s-7p transitions
have been determined by evaluating the dynamic polarizabil-
ities of the 7s, 8s, and 7p states. Our magic wavelengths
for the 7s-7p transition in the range of 600–1500 nm are
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TABLE VI. Magic wavelengths for 7s-8s and 7s-7p transitions in Fr with linearly polarized light in the range of 600–1500 nm. Uncertainties
are given in parentheses.

7s-7p1/2,|mj | = 1/2 7s-7p3/2,|mj | = 1/2 7s-7p3/2,|mj | = 3/2 7s-8s1/2,|mj | = 1/2

Present Others Present Others Present Others Present Others

1484(4) 1479.49 [59] 1025(3) 1017.45 [59] 1098(6) 1076.60 [59] 1356.5(1)
1266.3 [62] 1117.7 [62]

839.2(2) 838.08 [59] 968.79(1) 968.79 [59] 967.03(1) 967.03 [59] 1073.4(1)
871.62 [62] 968.83 [62] 967.19 [62] 1061.7(1)

771.9(1) 771.03 [59] 852.84(3) 852.84 [59] 783.17(1) 782.83 [59] 959.75(2) 960.13 [62]
797.75 [62] 853.93 [62] 783.35 [62] 953.39(2) 953.09 [62]

745.57(2) 745.6 [59] 798.87(3) 798.74 [59] 731.91(4) 731.88 [59] 900.86(1)
745.36 [62] 784.62 [62] 731.77 [62] 897.02(2)

645.69(15) 646.05 [59] 731.21(4) 731.21 [59] 729.78(2) 729.77 [59] 865.68(2)
642.85 [62] 731.32 [62] 729.73 [62] 863.17(2)

621.43(2) 621.48 [59] 729.65(2) 729.63 [59] 649.50(1) 649.50 [59] 842.75(2)
621.11 [62] 730.51 [62] 649.51 [62] 841.00(1)

694.91(1) 694.92 [59] 645.52(6) 645.64 [59] 826.87(1)
694.67 [62] 645.95 [62] 825.60(1)

649.65(1) 649.65 [59] 610.18(1) 610.18 [59] 815.37(1)
649.65 [62] 610.20 [62] 814.42(1)

646.42(7) 646.49 [59] 607.22(5) 607.59 [59] 806.77(1)
645.11 [62] 606.66 [62] 806.02(1)

632.79(1) 632.83 [59] 800.15(1)
632.38 [62] 799.54(1)

610.27(5) 610.27 [59]
607.90(4) 608.15 [59]

605.64 [62]
600.86(1) 600.89 [59]

600.33 [62]

consistent with the results reported by Singh et al. [59]. For
the 7s-8s transition, we have found that there are 19 magic
wavelengths in the range of 800–1500 nm. We hope that the
atomic properties and magic wavelengths for Fr reported in
this paper will be useful for analyzing systematic uncertainties
and for designing experiments.
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APPENDIX: MATRIX ELEMENTS OF BREIT INTERACTION

B
QQ
ij =

∑
b,K

Db,K

[
eQbQb (K)RQbQb

ij (K + 1) + f QbQb (K)RQbQb

ij (K − 1) + g(K)RQbQb

ij (K)
]
, (A1)

BPP
ij =

∑
b,K

Db,K

[
ePbPb (K)RPbPb

ij (K + 1) + f PbPb (K)RPbPb

ij (K − 1) + g(K)RPbPb

ij (K)
]
, (A2)

B
QP
ij =

∑
b,K

Db,K

{
eQbPb (K)RQbPb

ij (K + 1) + f QbPb (K)RQbPb

ij (K − 1) + g(K)RQbPb

ij (K)

+h
[
W

QbPb

ij (K − 1) − W
QbPb

ij (K + 1)
]} = B

PQ
ij , (A3)
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where

R
XbYb

ij (K) =
N∑
k,l

C
Xb

k C
Yb

l

∫
Bi(r1)Bk(r1)dr1

[ ∫ r1

0

rK
2

rK+1
1

Bj (r2)Bl(r2)dr2 +
∫ Rmax

r1

rK
1

rK+1
2

Bj (r2)Bl(r2)dr2

]
, (A4)

W
XbYb

ij (K) =
N∑
k,l

C
Xb

k C
Yb

l

∫
Bi(r1)Bk(r1)dr1

[ ∫ r1

0

rK
2

rK+1
1

Bj (r2)Bl(r2)dr2 −
∫ Rmax

r1

rK
1

rK+1
2

Bj (r2)Bl(r2)dr2

]
, (A5)

with

eXY (K) =

⎧⎪⎪⎨
⎪⎪⎩

− [(K+1)+(κv−κb)][(K+3)(κb−κv )+K(K+1)]
2(K+1)(2K+3) , X = Y = Q

[K(K+1)2+(3+K)(κv−κb)2]
2(K+1)(2K+3) , X = Q, Y = P

− [(K+1)+(κb−κv )][(K+3)(κv−κb)+K(K+1)]
2(K+1)(2K+3) , X = Y = P

(A6)

f XY (K) =

⎧⎪⎪⎨
⎪⎪⎩

[K+(κb−κv )][(K−2)(κv−κb)+K(K+1)]
2K(2K−1) , X = Y = Q

− [(K−2)(κb−κv )2+K2(K+1)
2K(2K−1) , X = Q, Y = P

[K+(κv−κb)][(K−2)(κb−κv )+K(K+1)]
2K(2K−1) , X = Y = P

(A7)

Db,K = (2jb + 1)

(
jv K jb

−1/2 0 1/2

)2

, (A8)

g(K) = (κb + κv)2

K(K + 1)
, (A9)

h = (κv − κb)

2
. (A10)

In the above, b represents a core orbital, running over all core orbitals.

[1] K. Beloy, N. Hinkley, N. B. Phillips, J. A. Sherman, M.
Schioppo, J. Lehman, A. Feldman, L. M. Hanssen, C. W. Oates,
and A. D. Ludlow, Phys. Rev. Lett. 113, 260801 (2014).

[2] P. Dubé, A. A. Madej, M. Tibbo, and J. E. Bernard, Phys. Rev.
Lett. 112, 173002 (2014).

[3] M. Saffman and T. G. Walker, Phys. Rev. A 72, 022347
(2005).

[4] A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P.
Zoller, and M. D. Lukin, Phys. Rev. Lett. 102, 110503 (2009).

[5] B. K. Sahoo, Phys. Rev. A 80, 012515 (2009).
[6] M. S. Safronova, U. I. Safronova, A. G. Radnaev, C. J. Campbell,

and A. Kuzmich, Phys. Rev. A 88, 060501 (2013).
[7] Y. Singh, D. K. Nandy, and B. K. Sahoo, Phys. Rev. A 86,

032509 (2012).
[8] S. G. Porsev, K. Beloy, and A. Derevianko, Phys. Rev. Lett. 102,

181601 (2009).
[9] T. Pruttivarasin, M. Ramm, S. G. Porsev, I. I. Tupitsyn, M. S.

Safronova, M. A. Hohensee, and H. Häffner, Nature (London)
517, 592 (2015).

[10] I. Lindgren and J. Morrison, Atomic Many-Body Theory, 2nd
ed. (Springer, Berlin, 1986), Vol. 26, p. 1362.

[11] R. J. Bartlett and M. Musiał, Rev. Mod. Phys. 79, 291 (2007).
[12] E. Ilyabaev and U. Kaldor, Chem. Phys. Lett. 194, 95

(1992).
[13] E. Ilyabaev and U. Kaldor, J. Chem. Phys. 97, 8455 (1992).
[14] E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 49, 1724

(1994).

[15] E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 52, 2765
(1995).

[16] E. Eliav, U. Kaldor, Y. Ishikawa, and P. Pyykkö, Phys. Rev. Lett.
77, 5350 (1996).

[17] E. Eliav, S. Shmulyian, U. Kaldor, and Y. Ishikawa, J. Chem.
Phys. 109, 3954 (1998).

[18] E. Eliav, A. Landau, Y. Ishikawa, and U. Kaldor, J. Phys. B 35,
1693 (2002).

[19] L. F. Pašteka, E. Eliav, A. Borschevsky, U. Kaldor, and P.
Schwerdtfeger, Phys. Rev. Lett. 118, 023002 (2017).

[20] Y. Tang, Z. Zhong, C. Li, H. Qiao, and T. Shi, Phys. Rev. A 87,
022510 (2013).

[21] W. R. Johnson, S. A. Blundell, and J. Sapirstein, Phys. Rev. A
37, 307 (1988).

[22] S. A. Blundell, W. R. Johnson, Z. W. Liu, and J. Sapirstein,
Phys. Rev. A 39, 3768 (1989).

[23] S. A. Blundell, W. R. Johnson, Z. W. Liu, and J. Sapirstein,
Phys. Rev. A 40, 2233 (1989).

[24] S. A. Blundell, W. R. Johnson, and J. Sapirstein, Phys. Rev. A
43, 3407 (1991).

[25] M. S. Safronova, W. R. Johnson, and A. Derevianko, Phys. Rev.
A 60, 4476 (1999).

[26] M. S. Safronova, M. G. Kozlov, W. R. Johnson, and D. Jiang,
Phys. Rev. A 80, 012516 (2009).

[27] V. A. Dzuba, Phys. Rev. A 90, 012517 (2014).
[28] M. S. Safronova and U. I. Safronova, Phys. Rev. A 83, 052508

(2011).

022513-9

https://doi.org/10.1103/PhysRevLett.113.260801
https://doi.org/10.1103/PhysRevLett.113.260801
https://doi.org/10.1103/PhysRevLett.113.260801
https://doi.org/10.1103/PhysRevLett.113.260801
https://doi.org/10.1103/PhysRevLett.112.173002
https://doi.org/10.1103/PhysRevLett.112.173002
https://doi.org/10.1103/PhysRevLett.112.173002
https://doi.org/10.1103/PhysRevLett.112.173002
https://doi.org/10.1103/PhysRevA.72.022347
https://doi.org/10.1103/PhysRevA.72.022347
https://doi.org/10.1103/PhysRevA.72.022347
https://doi.org/10.1103/PhysRevA.72.022347
https://doi.org/10.1103/PhysRevLett.102.110503
https://doi.org/10.1103/PhysRevLett.102.110503
https://doi.org/10.1103/PhysRevLett.102.110503
https://doi.org/10.1103/PhysRevLett.102.110503
https://doi.org/10.1103/PhysRevA.80.012515
https://doi.org/10.1103/PhysRevA.80.012515
https://doi.org/10.1103/PhysRevA.80.012515
https://doi.org/10.1103/PhysRevA.80.012515
https://doi.org/10.1103/PhysRevA.88.060501
https://doi.org/10.1103/PhysRevA.88.060501
https://doi.org/10.1103/PhysRevA.88.060501
https://doi.org/10.1103/PhysRevA.88.060501
https://doi.org/10.1103/PhysRevA.86.032509
https://doi.org/10.1103/PhysRevA.86.032509
https://doi.org/10.1103/PhysRevA.86.032509
https://doi.org/10.1103/PhysRevA.86.032509
https://doi.org/10.1103/PhysRevLett.102.181601
https://doi.org/10.1103/PhysRevLett.102.181601
https://doi.org/10.1103/PhysRevLett.102.181601
https://doi.org/10.1103/PhysRevLett.102.181601
https://doi.org/10.1038/nature14091
https://doi.org/10.1038/nature14091
https://doi.org/10.1038/nature14091
https://doi.org/10.1038/nature14091
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1016/0009-2614(92)85748-Y
https://doi.org/10.1016/0009-2614(92)85748-Y
https://doi.org/10.1016/0009-2614(92)85748-Y
https://doi.org/10.1016/0009-2614(92)85748-Y
https://doi.org/10.1063/1.463416
https://doi.org/10.1063/1.463416
https://doi.org/10.1063/1.463416
https://doi.org/10.1063/1.463416
https://doi.org/10.1103/PhysRevA.49.1724
https://doi.org/10.1103/PhysRevA.49.1724
https://doi.org/10.1103/PhysRevA.49.1724
https://doi.org/10.1103/PhysRevA.49.1724
https://doi.org/10.1103/PhysRevA.52.2765
https://doi.org/10.1103/PhysRevA.52.2765
https://doi.org/10.1103/PhysRevA.52.2765
https://doi.org/10.1103/PhysRevA.52.2765
https://doi.org/10.1103/PhysRevLett.77.5350
https://doi.org/10.1103/PhysRevLett.77.5350
https://doi.org/10.1103/PhysRevLett.77.5350
https://doi.org/10.1103/PhysRevLett.77.5350
https://doi.org/10.1063/1.476995
https://doi.org/10.1063/1.476995
https://doi.org/10.1063/1.476995
https://doi.org/10.1063/1.476995
https://doi.org/10.1088/0953-4075/35/7/307
https://doi.org/10.1088/0953-4075/35/7/307
https://doi.org/10.1088/0953-4075/35/7/307
https://doi.org/10.1088/0953-4075/35/7/307
https://doi.org/10.1103/PhysRevLett.118.023002
https://doi.org/10.1103/PhysRevLett.118.023002
https://doi.org/10.1103/PhysRevLett.118.023002
https://doi.org/10.1103/PhysRevLett.118.023002
https://doi.org/10.1103/PhysRevA.87.022510
https://doi.org/10.1103/PhysRevA.87.022510
https://doi.org/10.1103/PhysRevA.87.022510
https://doi.org/10.1103/PhysRevA.87.022510
https://doi.org/10.1103/PhysRevA.37.307
https://doi.org/10.1103/PhysRevA.37.307
https://doi.org/10.1103/PhysRevA.37.307
https://doi.org/10.1103/PhysRevA.37.307
https://doi.org/10.1103/PhysRevA.39.3768
https://doi.org/10.1103/PhysRevA.39.3768
https://doi.org/10.1103/PhysRevA.39.3768
https://doi.org/10.1103/PhysRevA.39.3768
https://doi.org/10.1103/PhysRevA.40.2233
https://doi.org/10.1103/PhysRevA.40.2233
https://doi.org/10.1103/PhysRevA.40.2233
https://doi.org/10.1103/PhysRevA.40.2233
https://doi.org/10.1103/PhysRevA.43.3407
https://doi.org/10.1103/PhysRevA.43.3407
https://doi.org/10.1103/PhysRevA.43.3407
https://doi.org/10.1103/PhysRevA.43.3407
https://doi.org/10.1103/PhysRevA.60.4476
https://doi.org/10.1103/PhysRevA.60.4476
https://doi.org/10.1103/PhysRevA.60.4476
https://doi.org/10.1103/PhysRevA.60.4476
https://doi.org/10.1103/PhysRevA.80.012516
https://doi.org/10.1103/PhysRevA.80.012516
https://doi.org/10.1103/PhysRevA.80.012516
https://doi.org/10.1103/PhysRevA.80.012516
https://doi.org/10.1103/PhysRevA.90.012517
https://doi.org/10.1103/PhysRevA.90.012517
https://doi.org/10.1103/PhysRevA.90.012517
https://doi.org/10.1103/PhysRevA.90.012517
https://doi.org/10.1103/PhysRevA.83.052508
https://doi.org/10.1103/PhysRevA.83.052508
https://doi.org/10.1103/PhysRevA.83.052508
https://doi.org/10.1103/PhysRevA.83.052508


YONG-BO TANG, BING-QIONG LOU, AND TING-YUN SHI PHYSICAL REVIEW A 96, 022513 (2017)

[29] B. K. Sahoo, Phys. Rev. A 93, 022503 (2016).
[30] B. K. Sahoo, D. K. Nandy, B. P. Das, and Y. Sakemi, Phys. Rev.

A 91, 042507 (2015).
[31] H. S. Nataraj, B. K. Sahoo, B. P. Das, and D. Mukherjee,

Phys. Rev. Lett. 101, 033002 (2008).
[32] B. K. Mani, K. V. P. Latha, and D. Angom, Phys. Rev. A 80,

062505 (2009).
[33] M. Das, R. K. Chaudhuri, S. Chattopadhyay, and U. S.

Mahapatra, Phys. Rev. A 84, 042512 (2011).
[34] H. Pathak, B. K. Sahoo, B. P. Das, N. Vaval, and S. Pal,

Phys. Rev. A 89, 042510 (2014).
[35] S. Sasmal, H. Pathak, M. K. Nayak, N. Vaval, and S. Pal,

Phys. Rev. A 91, 022512 (2015).
[36] T. M. R. Byrnes, V. A. Dzuba, V. V. Flambaum, and D. W.

Murray, Phys. Rev. A 59, 3082 (1999).
[37] S. N. Atutov, R. Calabrese, L. Corradi, A. Dainelli, C. de Mauro,

A. Khanbekyan, E. Mariotti, P. Minguzzi, L. Moi, S. Sanguinetti,
G. Stancari, and L. Tomassetti, Proc. SPIE 7027, 70270C
(2008).

[38] D. Mukherjee, B. K. Sahoo, H. S. Nataraj, and B. P. Das, J. Phys.
Chem. A 113, 12549 (2009).

[39] Y. Sakemi, K. Harada, T. Hayamizu, M. Itoh, H. Kawamura, S.
Liu, H. S. Nataraj, A. Oikawa, M. Saito, T. Sato et al., J. Phys.:
Conf. Ser. 302, 012051 (2011).

[40] B. K. Sahoo, T. Aoki, B. P. Das, and Y. Sakemi, Phys. Rev. A
93, 032520 (2016).

[41] Y.-B. Tang, C.-B. Li, and H.-X. Qiao, Chin. Phys. B 23, 063101
(2014).

[42] V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, G. Plunien, and
G. Soff, Phys. Rev. Lett. 93, 130405 (2004).

[43] A. Igarashi, J. Phys. Soc. Jpn. 75, 114301 (2006).
[44] A. Igarashi, J. Phys. Soc. Jpn. 76, 054301 (2007).
[45] K. Beloy and A. Derevianko, Comput. Phys. Commun. 179, 310

(2008).
[46] I. P. Grant, J. Phys. B 42, 055002 (2009).

[47] C. F. Fischer and O. Zatsarinny, Comput. Phys. Commun. 180,
879 (2009).

[48] A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD
Team, NIST Atomic Spectra Database (version 5.0.0) (2012),
http://physics.nist.gov/asd

[49] V. A. Dzuba, V. V. Flambaum, and O. P. Sushkov, Phys. Lett. A
95, 230 (1983).

[50] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.96.022513 more detailed tabulation for the
electric dipolar matrix elements using the DF method and the
four approximation models.

[51] J. E. Simsarian, L. A. Orozco, G. D. Sprouse, and W. Z. Zhao,
Phys. Rev. A 57, 2448 (1998).

[52] S. Aubin, E. Gomez, L. A. Orozco, and G. D. Sprouse,
Phys. Rev. A 70, 042504 (2004).

[53] E. Gomez and L. A. Orozco, in APS Division of Atomic,
Molecular and Optical Physics Meeting Abstracts (APS, Ridge,
2005).

[54] J. M. Grossman, R. P. Fliller, III, L. A. Orozco, M. R. Pearson,
and G. D. Sprouse, Phys. Rev. A 62, 062502 (2000).

[55] U. I. Safronova, W. R. Johnson, and M. S. Safronova, Phys. Rev.
A 76, 042504 (2007).

[56] B. K. Sahoo and B. P. Das, Phys. Rev. A 92, 052511 (2015).
[57] W. van Wijngaarden, J. Quant. Spectrosc. Radiat. Transfer 61,

557 (1999).
[58] A. Derevianko, W. R. Johnson, M. S. Safronova, and J. F. Babb,

Phys. Rev. Lett. 82, 3589 (1999).
[59] S. Singh, B. K. Sahoo, and B. Arora, Phys. Rev. A 94, 023418

(2016).
[60] I. S. Lim, P. Schwerdtfeger, B. Metz, and H. Stoll, J. Chem.

Phys. 122, 104103 (2005).
[61] A. Borschevsky, V. Pershina, E. Eliav, and U. Kaldor, J. Chem.

Phys. 138, 124302 (2013).
[62] U. Dammalapati, K. Harada, and Y. Sakemi, Phys. Rev. A 93,

043407 (2016).

022513-10

https://doi.org/10.1103/PhysRevA.93.022503
https://doi.org/10.1103/PhysRevA.93.022503
https://doi.org/10.1103/PhysRevA.93.022503
https://doi.org/10.1103/PhysRevA.93.022503
https://doi.org/10.1103/PhysRevA.91.042507
https://doi.org/10.1103/PhysRevA.91.042507
https://doi.org/10.1103/PhysRevA.91.042507
https://doi.org/10.1103/PhysRevA.91.042507
https://doi.org/10.1103/PhysRevLett.101.033002
https://doi.org/10.1103/PhysRevLett.101.033002
https://doi.org/10.1103/PhysRevLett.101.033002
https://doi.org/10.1103/PhysRevLett.101.033002
https://doi.org/10.1103/PhysRevA.80.062505
https://doi.org/10.1103/PhysRevA.80.062505
https://doi.org/10.1103/PhysRevA.80.062505
https://doi.org/10.1103/PhysRevA.80.062505
https://doi.org/10.1103/PhysRevA.84.042512
https://doi.org/10.1103/PhysRevA.84.042512
https://doi.org/10.1103/PhysRevA.84.042512
https://doi.org/10.1103/PhysRevA.84.042512
https://doi.org/10.1103/PhysRevA.89.042510
https://doi.org/10.1103/PhysRevA.89.042510
https://doi.org/10.1103/PhysRevA.89.042510
https://doi.org/10.1103/PhysRevA.89.042510
https://doi.org/10.1103/PhysRevA.91.022512
https://doi.org/10.1103/PhysRevA.91.022512
https://doi.org/10.1103/PhysRevA.91.022512
https://doi.org/10.1103/PhysRevA.91.022512
https://doi.org/10.1103/PhysRevA.59.3082
https://doi.org/10.1103/PhysRevA.59.3082
https://doi.org/10.1103/PhysRevA.59.3082
https://doi.org/10.1103/PhysRevA.59.3082
https://doi.org/10.1117/12.822449
https://doi.org/10.1117/12.822449
https://doi.org/10.1117/12.822449
https://doi.org/10.1117/12.822449
https://doi.org/10.1021/jp904020s
https://doi.org/10.1021/jp904020s
https://doi.org/10.1021/jp904020s
https://doi.org/10.1021/jp904020s
https://doi.org/10.1088/1742-6596/302/1/012051
https://doi.org/10.1088/1742-6596/302/1/012051
https://doi.org/10.1088/1742-6596/302/1/012051
https://doi.org/10.1088/1742-6596/302/1/012051
https://doi.org/10.1103/PhysRevA.93.032520
https://doi.org/10.1103/PhysRevA.93.032520
https://doi.org/10.1103/PhysRevA.93.032520
https://doi.org/10.1103/PhysRevA.93.032520
https://doi.org/10.1088/1674-1056/23/6/063101
https://doi.org/10.1088/1674-1056/23/6/063101
https://doi.org/10.1088/1674-1056/23/6/063101
https://doi.org/10.1088/1674-1056/23/6/063101
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1143/JPSJ.75.114301
https://doi.org/10.1143/JPSJ.75.114301
https://doi.org/10.1143/JPSJ.75.114301
https://doi.org/10.1143/JPSJ.75.114301
https://doi.org/10.1143/JPSJ.76.054301
https://doi.org/10.1143/JPSJ.76.054301
https://doi.org/10.1143/JPSJ.76.054301
https://doi.org/10.1143/JPSJ.76.054301
https://doi.org/10.1016/j.cpc.2008.03.004
https://doi.org/10.1016/j.cpc.2008.03.004
https://doi.org/10.1016/j.cpc.2008.03.004
https://doi.org/10.1016/j.cpc.2008.03.004
https://doi.org/10.1088/0953-4075/42/5/055002
https://doi.org/10.1088/0953-4075/42/5/055002
https://doi.org/10.1088/0953-4075/42/5/055002
https://doi.org/10.1088/0953-4075/42/5/055002
https://doi.org/10.1016/j.cpc.2008.12.010
https://doi.org/10.1016/j.cpc.2008.12.010
https://doi.org/10.1016/j.cpc.2008.12.010
https://doi.org/10.1016/j.cpc.2008.12.010
http://physics.nist.gov/asd
https://doi.org/10.1016/0375-9601(83)90612-6
https://doi.org/10.1016/0375-9601(83)90612-6
https://doi.org/10.1016/0375-9601(83)90612-6
https://doi.org/10.1016/0375-9601(83)90612-6
http://link.aps.org/supplemental/10.1103/PhysRevA.96.022513
https://doi.org/10.1103/PhysRevA.57.2448
https://doi.org/10.1103/PhysRevA.57.2448
https://doi.org/10.1103/PhysRevA.57.2448
https://doi.org/10.1103/PhysRevA.57.2448
https://doi.org/10.1103/PhysRevA.70.042504
https://doi.org/10.1103/PhysRevA.70.042504
https://doi.org/10.1103/PhysRevA.70.042504
https://doi.org/10.1103/PhysRevA.70.042504
https://doi.org/10.1103/PhysRevA.62.062502
https://doi.org/10.1103/PhysRevA.62.062502
https://doi.org/10.1103/PhysRevA.62.062502
https://doi.org/10.1103/PhysRevA.62.062502
https://doi.org/10.1103/PhysRevA.76.042504
https://doi.org/10.1103/PhysRevA.76.042504
https://doi.org/10.1103/PhysRevA.76.042504
https://doi.org/10.1103/PhysRevA.76.042504
https://doi.org/10.1103/PhysRevA.92.052511
https://doi.org/10.1103/PhysRevA.92.052511
https://doi.org/10.1103/PhysRevA.92.052511
https://doi.org/10.1103/PhysRevA.92.052511
https://doi.org/10.1016/S0022-4073(98)00028-4
https://doi.org/10.1016/S0022-4073(98)00028-4
https://doi.org/10.1016/S0022-4073(98)00028-4
https://doi.org/10.1016/S0022-4073(98)00028-4
https://doi.org/10.1103/PhysRevLett.82.3589
https://doi.org/10.1103/PhysRevLett.82.3589
https://doi.org/10.1103/PhysRevLett.82.3589
https://doi.org/10.1103/PhysRevLett.82.3589
https://doi.org/10.1103/PhysRevA.94.023418
https://doi.org/10.1103/PhysRevA.94.023418
https://doi.org/10.1103/PhysRevA.94.023418
https://doi.org/10.1103/PhysRevA.94.023418
https://doi.org/10.1063/1.1856451
https://doi.org/10.1063/1.1856451
https://doi.org/10.1063/1.1856451
https://doi.org/10.1063/1.1856451
https://doi.org/10.1063/1.4795433
https://doi.org/10.1063/1.4795433
https://doi.org/10.1063/1.4795433
https://doi.org/10.1063/1.4795433
https://doi.org/10.1103/PhysRevA.93.043407
https://doi.org/10.1103/PhysRevA.93.043407
https://doi.org/10.1103/PhysRevA.93.043407
https://doi.org/10.1103/PhysRevA.93.043407



