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Due to recent experimental efforts on light muonic atoms, we consider the quantum electrodynamics (QED)
theory of two-body muonic atoms, namely, of those with A = 3. Here we present the results for the Lamb shift
and fine structure up to the order α5m for the n = 2 levels, which in particular include (1) pure QED contributions,
(2) the coefficient to the r2

N term with QED corrections (where rN is the rms nuclear charge radius), and (3) the
general expressions for the nuclear-structure contributions consistent with the presented QED theory. We revisit
theory for the muonic helium-3 ion by rechecking all the relevant theoretical contributions and develop a theory
of muonic tritium. We also reestimate the uncertainty of the nuclear-structure contribution.
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I. INTRODUCTION

Since recently the CREMA Collaboration has started a
program of the experiments on laser spectroscopy of the n = 2
energy levels in light muonic atoms. The first result has been
achieved on muonic hydrogen [1] and the measurement on
muonic deuterium followed [2], while the evaluation of the
data on muonic-helium ions is expected [3]. While the accurate
theory of ordinary hydrogenlike atoms is well established (see,
e.g., [4,5]), the theory for the muonic atoms (bound systems of
a nucleus and a muon) requires a special consideration. Since
the muon is orbiting around the nucleus at an essentially lower
orbit than that of the electron in an ordinary hydrogenlike
atom, the theory of the energy levels in a two-body muonic
atom differs from that for an ordinary atom.

The various intervals for n = 2 involve the hyperfine struc-
ture (HFS) (the nuclear-spin-dependent part of the spectrum)
and the Lamb shift (the nuclear-spin-independent part of the
spectrum). Their theory is quite different, and here we focus on
the theory of the Lamb shift in muonic tritium and helium-3.
The Lamb shift is basically the effect on the s states (we
discuss that more accurately below). In the meanwhile, the
experiments are targeting various 2s − 2p transitions. The
measured transitions in the case of muonic hydrogen are shown
in Fig. 1, and the same transitions are expected for muonic
helium [3]. (Still, there may be some additional transition(s)
measured as well.)

With the results of two transitions in hand one can extract
the “experimental” values of the 2s HFS interval and of the
2s − 2p Lamb shift. To make such a separation, a complete
theory of the 2p levels is also required.

We consider in this paper the Lamb shift in light muonic
atoms with the nuclear spin 1/2, while the case of the bosonic
nucleus will be considered elsewhere. The muonic hydrogen
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theory has been revisited by us in [6] (where references to
the earlier original works and reviews on muonic hydrogen
can be found). Here we consider the muonic tritium atom and
the muonic helium-3 ion. Both muonic atoms have the same
nuclear spin as the muonic hydrogen and therefore their level
structure (see Fig. 2) and certain QED and nuclear-structure
effects are described by the similar equations. We follow here
the logic of our review on muonic hydrogen [6]. Along with
the results on muonic tritium and helium-3 ion we present also
the results on the muonic hydrogen for comparison. The Lamb
shift is considered in the main body of the paper, while the
required theory of the 2p intervals is given in the Appendix.

The theoretical calculations require the input data, which
are the parameters that describe the nuclei and the muon.
The numerical values of the most important constants we
have used are R∞ = 13 605.693 009(84) meV and mμ/me =
206.768 282 6(46) [4]. The most important atomic parameters
are summarized in Table I. Here, RN stands for the rms charge
radius of a nucleus, while rN is its numerical value in fermi; mr

is the reduced mass of the muon, M is the nuclear mass. The
relativistic units in which h̄ = c = 1 are applied throughout
the paper.

In our calculations we have to deal with the nuclear
magnetic moment and the related g factor. We need the value
of the g factor of the nucleus in the terms of particle physics.
(We denote it η to avoid any confusion with the g factor in
nuclear physics, which differs.) In particle physics the g factor
is defined as

μx = ηx

Zxe

2mx

sx, (1)

i.e., it expresses the magnetic moment in terms of the Bohr
magneton for the x particle with mass mx , charge Zx , etc. It
is convenient to split it into the Dirac part and the anomalous
magnetic moment κN :

η = 2(1 + κN ). (2)
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FIG. 1. Transitions measured in muonic hydrogen within the
CREMA experiment at PSI (following [1]), not to scale.

We may also need some rough values of the nuclear radii to
estimate the importance of various corrections, proportional to
r2
N . We put into Table I the results from scattering, evaluated

in [7]. In our estimation we use round values: 0.84 fm for the
proton (which is consistent with muonic hydrogen value [1]),
1.7 fm for the triton, and 2.0 fm for the helion.

The relevant contributions for the muonic helium-3 ion have
been in principle already known (see the related references
while we discuss particular terms), while they are unknown
for muonic tritium. We systematically recheck all the QED
contributions for muonic helium-3 and calculate the missing
terms. Most of the muonic tritium results are calculated here.

II. OVERVIEW OF QED THEORY AND
THE LEVEL STRUCTURE

The level structure of the muonic tritium and muonic
helium-3 ion (see Fig. 2) is very similar to that in muonic

hydrogen (cf. [6,10,11]). The only difference is that while the
magnetic moment of the proton or triton is directed along its
spin, the magnetic moment of the helion, the nucleus of the
helium-3 atom, has the opposite direction. That changes the
sign of the hyperfine contribution and reverses the position
of the hyperfine components. In particular, while in hydrogen
and tritium the 2s singlet lies below the triplet, in the helium-3
ion the singlet is above the triplet.

The labels LS∗, FS∗, and HFS∗ roughly describe the Lamb
shift, and the fine and hyperfine-structure intervals. There is
a small additional term � which may be included in those
intervals differently, and we present our definitions below
along with a brief overview of QED theory.

In particular, we define the Lamb-shift, and the fine- and
hyperfine-structure intervals as

�EHFS(2p3/2) ≡ �E(2p3/2(F = 2) − 2p3/2(F = 1)),

�EHFS(2p1/2) ≡ �E(2p1/2(F = 1) − 2p1/2(F = 0)),

�E(2p3/2) ≡ 5
8�E(2p3/2(F = 2))

+ 3
8�E(2p3/2(F = 1)),

�E(2p1/2) ≡ 3
4�E(2p1/2(F = 1))

+ 1
4�E(2p1/2(F = 0)),

�EFS(2p) ≡ �E(2p3/2) − �E(2p1/2),

�EHFS(2s) ≡ �E(2s1/2(F = 1) − 2s1/2(F = 0)),

�E(2s) ≡ 3
4�E(2s1/2(F = 1))

+ 1
4�E(2s1/2(F = 0)),

�EL(2p1/2 − 2s) ≡ �E(2p1/2) − �E(2s). (3)

The values of all the actual n = 2 energy levels can be therefore
presented in the terms of the Lamb-shift interval �EL(2p1/2 −
2s), fine-structure interval �EFS(2p), and the HFS intervals
�EHFS(2s), �EHFS(2p1/2), and �EHFS(2p3/2), and the value
of the 2s binding energy �E(2s).

In some papers a separate term, named �, is introduced
and the actual energy levels are presented in the terms of
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FIG. 2. Level structure at n = 2 in muonic tritium (a) and the helium-3 ion (b) (cf. [6,10,11]), not to scale. Note, the magnetic moment
of the helion, the nucleus of the He-3 atom, is negative, and the HFS structure is “reversed.” The states with a higher value of total angular
momentum F are below the states with the smaller F . Here, LS∗, FS∗, and HFS∗ are for the solution of the Schrödinger-Coulomb equation and
for the calculation of the diagonal terms of the relativistic perturbation. See this section, Sec. III A, and the Appendix for more explanations.
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TABLE I. Parameters of light muonic atoms with the nuclear
spin 1/2 [4]: charge Z and mass M of the nucleus, the reduced
muon mass mr , the characteristic atomic momentum p for the n = 2
energy levels, the rms nuclear charge radii from scattering [7], a value
of which can be useful for rough preliminary estimations, the nuclear
g factor in the terms of particle physics [see Eq. (1)] and the related
anomalous magnetic moment κN , and the minimal nuclear excitation
energy �EN [8,9].

μH μT μ3He

Z 1 1 2
M [u] 1.007 276 3.015 501 3.014 932
mr [u] 0.101 948 55 0.109 316 94 0.109 316 19
p = Zαmr/2 0.346 495 0.371 538 0.378 395
[MeV/c]
mμ/M 0.112 61 0.037 615 0.037 6224
rN 0.895(18) 1.744(87) 1.959(34)
ηN 5.585 69 17.8363 −6.368 31
κN 1.792 85 7.918 17 −4.184 15
�EN [MeV] 134.98 6.257 5.493

the six intervals mentioned above (but defined somewhat
differently—cf. LS∗, FS∗, and HFS∗ in Fig. 2) and the “mixing
term” �. We briefly discuss this term below in this section.

In classification of the QED contributions we completely
follow our review on muonic hydrogen [6] and we give the
muonic hydrogen results for comparison. First of all, we
note that the muon-to-nucleus mass ratio is not so small
as in ordinary atoms and we have to really deal with a
two-body problem. For most of the contributions we follow
the effective Dirac equation (EDE) approach, while for some
we use the Breit-type equation approach (see [6] for detail).
Both approaches present an efficient way to take into account
two-body effects for the relativistic contributions.

The result for the binding energy of the solution of the EDE
for the nlj states is of the form [12,13]

E = mr (fD − 1) − m2
r

2(M + m)
(fD − 1)2, (4)

where we introduce the dimensionless Dirac energy, which for
the n = 2 states is

fD(Zα; 2s) = fD(Zα; 2p1/2) =
√

1 +
√

1 − (Zα)2

2
,

fD(Zα; 2p3/2) =
√

1 − (Zα)2

4
. (5)

Since the energy of the solutions of EDE is expressed in the
terms of the Dirac energy only, with the 2s1/2 and 2p1/2 levels
having the same energy, the leading EDE energy (4) does not
contribute to the Lamb shift. That does not cover two important
corrections due to the Barker-Glover and Brodsky-Parsons
terms:

BG Barker and Glover [14] obtained a complete contribu-
tion in order (Zα)4m exactly in m/M on the base of the Breit-
type equation approach. It happens that this contribution splits
the 2s1/2 and 2p1/2 energy levels in order (Zα)4(m/M)2m.
(The related correction is a small, but observable contribution
to the Lamb shift of ordinary and muonic hydrogen.)

BP The Brodsky-Parsons Dirac equation [both ordinary
and within EDE, cf. Eq. (4)] does not take into account the
HFS interaction. Once we take it into account, we note that the
matrix element between the 2p1/2(F = 1) and 2p3/2(F = 1)
states does not vanish. In the meantime, the difference in their
energy is very small. That produces an enhanced second-order
perturbation-theory term (with the HFS interaction as the
perturbation). The term is denoted as � in Fig. 2 and it is
of order (Zα)4(m/M)2m.

There is also a standard nonrelativistic explanation of the
term [10,11]. While starting with the Breit-type equation
approach, the wave functions are nonrelativistic ones and
the perturbation includes in particular the diagonal nonrecoil
relativistic contributions (which are dominant for the fine
structure) and the diagonal HFS contributions (which are
dominant for the HFS interval). There are also off-diagonal
contributions due to the nonvanishing matrix element between
the 2p1/2(F = 1) and 2p3/2(F = 1) states. Starting with
the nonrelativistic wave functions, the 2p1/2(F = 1) and
2p3/2(F = 1) states are degenerate and in such a case the
standard perturbation theory suggests the rediagonalization
procedure, which “mixes” the 2p1/2(F = 1) and 2p3/2(F = 1)
(see Appendix for more explanation). Indeed, the result is the
same as within the relativistic approach, based on the Dirac
equation.

In both approaches there are higher-order corrections of this
type (see, e.g., [6] for detail).

We study all those corrections in Sec. III A.
Once we solve the unperturbed Coulomb problem and,

if necessary, add the quantum-mechanical corrections, we
turn to a calculation of various QED effects. Quantum
electrodynamics in the terms of the Lagrangian and Feynman
rules is very similar for ordinary and muonic atoms. However,
the solution of the Coulomb bound problem has very different
scales and because of that the relative importance of various
QED effects in ordinary and muonic atoms is very different.

The specific part of the muonic-atom QED theory includes
the contributions with closed electron loops [see, e.g., Fig. 3
for α(Zα)2m and Fig. 4 for α2(Zα)2m contributions]. The
characteristic atomic momentum Zαmr/2 (see Table I) in light
muonic atoms (for n = 2) is comparable with the electron mass
me, which enhances the contributions. In the ordinary atoms
the vacuum polarization is responsible for a small part of the
Lamb shift, while in muonic atoms it dominates.

These corrections are considered in detail in Sec. III A. They
include the electronic vacuum polarization (eVP) contributions

e

µ

FIG. 3. The leading contribution to the Lamb shift in muonic
hydrogen (eVP1). The related potential is known as the Uehling
potential.

022505-3



KARSHENBOIM, KORZININ, SHELYUTO, AND IVANOV PHYSICAL REVIEW A 96, 022505 (2017)

e

µ

e

e

µ

ee

µ

FIG. 4. Characteristic diagrams for the second-order eVP contri-
butions (eVP2). The first diagram denotes the complete irreducible
two-loop vacuum polarization contribution. The potential related
to the first two diagrams is often referred to as the Källen-Sabry
potential. The double line in the third graph is for the reduced
Coulomb Green’s function of the orbiting muon, which is to appear in
the second order of the nonrelativistic perturbation theory. A number
of suitable presentations for that nonrelativistic Coulomb Green’s
function in coordinate space are available (see, e.g., [15–18]).

up to the third order, as well as the contribution of the virtual
scattering of light by light.

The muon-specific contributions dominate, but still there
are many pieces of the QED theory which are basically the
same as in ordinary atoms. Those are the contributions without
the closed fermion loops or with the muon vacuum polar-
ization. They can easily be “rescaled” from the conventional
theory (see, e.g., [5]).

The remaining part of the theory is due to the nuclear-
structure contributions. The paper is basically on the QED
theory. However, the purpose of the study of the light muonic
atoms is to find the rms nuclear charge radius RN . In order to
do that we present the result for the observable transitions as

point like numerical value + coefficient × R2
N

+ some nonpointlike corrections.

To find an accurate value of the radius we have in particular
to find QED corrections to the “coefficient” in the expression
above. We have also to take care that the “pointlike” and “non-
pointlike” physics are defined consistently.

III. QED THEORY OF THE MUONIC ATOMS WITH A = 3

A. Effective Dirac equation and the “unperturbed”
energy levels

As we already mentioned, using the effective Dirac equation
(see the previous section), we express the energy in the terms of
the Dirac equation (with the reduced mass). The Dirac equation
leaves the 2s1/2 and 2p1/2 states degenerate. The contributions
to the 2s1/2 − 2p1/2 appear only through the terms beyond (4).

Those are the BG and BP terms. Both affect only the 2p states.
The former is of the form [14]

�EBG(nl) = (Zα)4m3
r

2n3M2

(
1

j + 1/2
− 2

3

)
(1 − δl0). (6)

The numerical results are the quantum-mechanical two-body
contributions to the energy. They are summarized for the
Lamb-shift interval in Table II. The term referred to here
as the BP term includes higher-order corrections, which are
considered in detail in the Appendix (cf. [6]).

The most important contributions are given in the table with
the bold letters. Those in muonic hydrogen are relevant for the
so-called proton radius puzzle (see, e.g., [1,2,4,6]). We use
the bold italic for the Brodsky-Parsons term to stress that they
are relevant for the puzzle and they are defined differently in
different papers. We include the BP contributions as a part of
the Lamb shift and fine structure. The alternative way of the
definition is to completely exclude them from LS and FS and
to keep � as a separate term.

B. Electronic vacuum polarization and light-by-light
scattering contributions

The leading contribution to the Lamb shift in muonic atoms
(the so-called Uehling-potential term, see Fig. 3) is very
different from the leading contribution to the Lamb shift in
ordinary hydrogen. It is of the order α(Zα)2m, which makes
the Lamb shift (i.e., the 2s − 2p interval) larger than the
fine-structure 2p3/2 − 2p1/2 interval. [See Figs. 1 and 2 for
the level structure in muonic hydrogen, tritium, and helium-3
ion. The fine-structure interval is of the order (Zα)4m.]

The complete account of muon-specific contributions to
the Lamb shift in muonic hydrogen, tritium, and helium-3
ion is presented in Table III. Some contributions are rather
trivial, since the analytic expressions have been known for
arbitrary atoms, such as the leading Uehling term and the
related relativistic correction (see Fig. 3).

The relativistic-recoil correction to the Uehling-potential
contribution (no. 1.3 in Table III) was calculated for a
number of occasions; however, initially a number of the earlier
results were either incorrect or incomplete (see [6,19] and the
references therein). The correct result was obtained in [20] and
[19] for light muonic atoms, including muonic hydrogen and
the muonic helium-3 ion. The related result for muonic tritium
is found here following [19].

The two-loop electronic vacuum polarization (term no. 2
in Table III, see Fig. 4) has been studied in [11,21] in the

TABLE II. Contributions to the “unperturbed” energy levels for the Lamb-shift interval �E(2p1/2 − 2s1/2) in muonic tritium and the
muonic helium-3 ion. The corrections marked with an asterisk (∗) are exact in m/M . The order shown is the leading order in m/M . Such a
notation is used for all the tables through the paper. (Zα)4+ stands for (Zα)4 and all higher-order terms in (Zα). � Here we present the complete
BP term (given with the bold italic font), not only its leading term (see Appendix for details). The most important contributions are given with
the bold font.

No. Designation Order Refs. �E(μH) [meV] �E(μT) [meV] �E(μ3He) [meV]

0.1 Rel (Zα)4+m 0 0 0
0.2 Rel-Rec∗ (Zα)4m2/M 0 0 0
0.3 BG∗ (Zα)4(m/M)2m [14] 0.057 47 0.007 91 0.1265
0.4 BP� (Zα)4(m/M)2m Table XIV −0.108 42 −0.163 89 −0.1298
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TABLE III. Specific muonic-atom contributions to the Lamb-shift interval �E(2p1/2 − 2s1/2) in muonic tritium and the muonic helium-3
ion due to closed e-loops. �The LbL contribution is a combination of terms with a different Z dependence (cf. Table VI). We follow the notation
of [6].

No. Designation Order �E(μH) [meV] �E(μT) [meV] �E(μ3He) [meV]

1.1 eVP1 (NR)* α(Zα)2m 205.007 37 235.911 10 1641.8860
1.2 eVP1 (Rel) α(Zα)4m 0.020 84 0.023 43 0.5257
1.3 eVP1 (Rel-Rec)* α(Zα)4 m2

M
−0.002 08 −0.000 885 −0.0163

2 eVP2 (NR)* α2(Zα)2m 1.658 85 1.903 51 13.0843
3 eVP3 (NR)* α3(Zα)2m 0.007 52 0.008 74(9) 0.073(3)
4 LbL∗� α5m −0.000 89(2) −0.000 99(1) −0.013 4(6)
5 eVP+SE α2(Zα)4m −0.002 54 −0.0031(3) −0.0627
6 SE[eVP] α2(Zα)4m −0.001 52 −0.001 87 −0.0299

nonrelativistic approximation for muonic hydrogen (cf. [22]).
The relativistic corrections were considered in Refs. [23] and
[24]. The nonrelativistic muonic helium result, which is only
relevant for α5m theory, is taken from [23]. The muonic tritium
result is found here following [23,24].

The third-order vacuum polarization contributions (term 3
in Table III, see Fig. 5) were studied for muonic hydrogen
in Refs. [25–27]. The adjustment of the μH result to the
Lamb shift in light muonic atoms was done in [28]; however,
the list of those atoms included neither muonic helium-3,
nor muonic tritium. Following [28], the result for the former
was previously given by us in [23], the details of which are
presented here in Table IV. We have also generalized the results
[28] for the muonic tritium atom, which are summarized in
Table V.

The contributions, which include the insertion of the
virtual scattering of light by light (term 4 in Table III, see
Fig. 6), have been studied for muonic hydrogen for a while
(see, [6,28,29] and references therein). The complete results
for all three types of diagrams in Fig. 6 were obtained in
[28,29] for a few light muonic atoms, including muonic
hydrogen and excluding the A = 3 atoms. Following [28,29],
the result for the muonic helium-3 ion was previously given
by us in [23] (see Table VI here for individual contributions)
and for muonic tritium in this paper (see Table VI for the
contributions of the individual diagrams).

The combined contributions of the self-energy and electron
vacuum polarization (see Fig. 7) have order α6m, but they are
enhanced by a large logarithm. Term 5 in Table III includes the

TABLE IV. The individual eVP3 contribution to the �E(2p1/2 −
2s1/2) interval in the muonic helium-3 (see Fig. 5). The notation
follows [25].

E(2s) E(2p) E(2p − 2s)
No. [ α3

π3 (Zα)2mr ] [ α3

π3 (Zα)2mr ] [ α3

π3 (Zα)2mr ]

c3 −0.032 80 −0.039 04 −0.006 24
c111 −0.029 90 0.001 64 0.031 54
c2(1) 0.0195(20)
c12 −0.128 35 0.003 63 0.132 00
c1c2 −0.061 79 −0.011 20 0.050 59
c1c11 −0.038 39 −0.000 06 0.038 33
c1c1c1 −0.002 47 −0.000 35 0.002 12

Uehling correction to the muon self-energy and was calculated
for all the muonic atoms in the table in [30]. The electron
vacuum polarization insertion into the self-energy was studied
in [5,23,31] for some light muonic atoms except for muonic
tritium. Here we adjust the result for the latter following [5,31].

e

µ

c3

e

µ

c2(1)

e

e

µ

c12

e

e

e

µ

c111

ee

µ

c1c2 c1c11

µ

e
e

e

eee

µ

c1c1c1

FIG. 5. Characteristic vacuum polarization contributions in order
α3(Zα)2m (eVP3). The first graph is for the complete irreducible eVP
of the third order without any internal eVP loops, while the second
is for the complete irreducible contribution with an internal eVP. The
other types of contributions are either due to the reducible part of
the three-loop eVP or for iterations of the Uehling and Källen-Sabry
potentials.
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TABLE V. The individual eVP3 contribution to the �E(2p1/2 −
2s1/2) interval in muonic tritium (see Fig. 5). The notation follows
[25].

E(2s) E(2p) E(2p − 2s)
No. [ α3

π3 (Zα)2mr ] [ α3

π3 (Zα)2mr ] [ α3

π3 (Zα)2mr ]

c3 −0.027 55 −0.011 22 0.016 33
c111 −0.007 11 0.000 255 0.007 365
c2(1) 0.0144(14)
c12 −0.049 09 0.002 79 0.051 88
c1c2 −0.027 89 −0.000 902 0.026 99
c1c11 −0.010 63 0.000 037 0.010 67
c1c1c1 −0.001 29 −0.000 010 0.001 28

C. Rescaled QED terms

While the dominant contributions to the Lamb shift of light
muonic atoms are from the muon-specific terms, there is a set
of contributions which are of the same form for muonic and
electronic hydrogenlike atoms. The collection of the related
contribution can be found, e.g., in [5]. The summary of relevant
contributions is presented in Table VII (cf. [6]). The leading
rescaled term is of the order α5m. The numerical coefficients
of the universal contributions used to be larger than those of the
specific contributions and we include a part of the α6m terms.

IV. NUCLEAR-STRUCTURE AND QED EFFECTS

A. Nuclear-structure contributions: Leading term
and higher-order corrections

The Lamb shift in light muonic atoms is affected by various
nuclear-structure effects stronger than the Lamb shift in an
ordinary atom. There are three types of contributions, which
we are to discuss.

(1) There are nuclear-size contributions, i.e., the contribu-
tions, which can be parameterized by the size parameters, such
as the rms nuclear charge radius RN , and which vanish once
we set RN = 0. The leading contribution is of the form

�Elead(nl) = 2π

3
(Zα) R2

N |ψnl(0)|2 = 2

3
(Zα)4m3

r R2
N

δl0

n3

=

⎧⎪⎨
⎪⎩

(
41.580 r2

p
δl0
n3

)
meV, for μH,(

51.263 r2
t

δl0
n3

)
meV, for μT,(

820.18 r2
h

δl0
n3

)
meV, for μ3He,

(7)

µµ µ

eee

(1:3) (2:2) (3:1)

FIG. 6. Characteristic diagrams induced by the light-by-light
scattering.

µµ

e

e

(b)(a)

FIG. 7. Logarithmically enhanced α6m contributions. Left: a
characteristic Feynman diagram for the Uehling-potential correction
to the muon self-energy; right: a characteristic graph of the contribu-
tion of the two-loop muon self-energy with an eVP insertion.

where ψnl(r) is the wave function of the nonrelativistic
Coulomb problem for the light muonic atom of interest (with
the reduced mass introduced) and rN is the numerical value
(in the fermis, aka femtometers) of the rms charge radius of
the nucleus RN . This correction is used as the main “signal”
to determine the rms charge radius.

There are a number of QED corrections to this leading term
which have the same form (i.e., ∝ R2

N ), and their clarification
is important for an accurate determination of RN . There are
also contributions of a more complicated form.

(2) There are the nuclear polarizability contributions, i.e.,
the two-photon contributions, where the intermediate nuclear
state is an excited one. In the case of A = 3 there is no
discrete excited nuclear states and the “excited states” means
the continuous spectrum of disintegrated nuclear constituents.

(3) A pointlike particle cannot possess an anomalous
magnetic moment.1 Its magnetic moment should be equal
to Ze/2M [cf. (1) and (2)]. However, the contributions,
which vanish with zero anomalous magnetic moment κN , do
not necessary belong to the nuclear-size contributions, i.e.,
they do not vanish if we set the nuclear radius to zero. (In
a phenomenological consideration, such parameters as the
anomalous magnetic moment and the charge and magnetic
radii are disentangled, while in a fundamental theory they are
expressed in the terms of the same fundamental parameters and
therefore can go to zero limit only altogether.) If we consider a
compound nucleus within the quantum mechanics, we have to
deal with an anomalous magnetic moment in a pointlike limit.

1There may be a certain confusion about that. Various effects of
the electron structure are measurable, such as the extended size,
polarizability, and anomalous magnetic moment. The electron is
called “pointlike” and “structureless” because we can in principle
calculate all of them. They originate from the same type of diagrams.
For example, the vertex diagram produces the anomalous magnetic
moment of the electron and its magnetic form factor. Structure effects
come together with the anomalous magnetic moment.

The Lagrangian for a theory of a pointlike particle with a nonzero
anomalous magnetic moment would lead to additional divergences
and a problem with the renormalization. At the level of the Lagrangian
we have to choose either to deal with a pointlike particle without any
anomalous magnetic moment or to have an effective field theory for a
particle with an anomalous magnetic moment and internal structure.
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TABLE VI. The individual light-by-light contributions to the �E(2p1/2 − 2s1/2) interval in muonic tritium at order α5m. The notation
follows [29] (see Fig. 6).

No. Designation Order �E(μH) [meV] �E(μT) [meV] �E(μ3He) [meV]

4.1 LbL (1:3) α(Zα)4m –0.001 018(4) –0.001 12 –0.019 73(6)
4.2 LbL (2:2) α2(Zα)3m 0.001 15(1) 0.001 26(1) 0.011 3(4)
4.3 LbL (3:1) α3(Zα)2m –0.001 02(1) –0.001 12(1) –0.005 0(2)

Such a contribution is of the order (Zα)5(m/M)3m. We refer
to such a contribution as the κ term.

All these three types of contributions are considered below.
We start with the complete r2

N term up to order α5m. The
results are summarized in Table VIII. The leading term [see
Eq. (7)] is well known. Term 11 is the relativistic correction to
this term [32,33] known in a closed analytic form.

The relativistic higher-order nuclear-finite-size correction,
referred to as 11 in Table VIII, is of the order (Zα)6m. There
are two approaches to estimate it. One, following [5,34], deals
with the contribution in the logarithmic approximation. The
other uses a complete evaluation [33,35]. As it is suggested
in [5,34], we expect that the logarithmic approximation is
sufficient because the contribution under question is a small
one. Besides, any complete evaluation requires a model of
the charge distribution and therefore it is model dependent.
However, the expression in logarithmic approximation fol-
lowing (7.69) of [5] (and copied later in many reviews and
compilations including ours [6]) contains a misprint. The
correct one can be found from [33,35]. We use the correction in
the form

�Efns:rel = (Zα)2

[
1 − 2

3
(mrRN )2

]
�Elead ln

1

ZαmRN

,

where �Elead is defined in (7), and assign them the uncertainty
of 50%.

Term 12 is the correction to Eq. (7) due to the Uehling
potential (see Fig. 8), which can be parameterized as

�EeVP(nl) = CeVP(nl)
α

π

(Zα)4

n3
m3

r R2
N. (8)

The related coefficients are summarized in Table IX. The result
for muonic hydrogen has been known for a while (see [5,6] and
references therein). Here, for the muonic tritium and helium-3
we follow [26,36,37] for the 2s states and [6] for the 2p states.
Our result for muonic helium-3 ion is consistent with that in
[38].

Term 13 is the one-loop QED correction to the leading
nuclear-finite-size contribution in Eq. (7) (see [5]). It is of
order α(Zα)5m and it is known in a closed analytic form. We
do not include it into the final theoretical summary.

There are many contributions which come from the “hard”
two-photon exchange (TPE), which accounts for the nuclear
structure. Two of the most important nuclear-structure effects
are the higher-order finite-nuclear-size contribution (the so-
called Friar terms and the recoil corrections to it) and the
nuclear polarizability contribution. We briefly overview them
in Sec. VI A. However, we consider one specific hard TPE
term. It is a recoil contribution with a pointlike nucleus with
a nonzero anomalous magnetic moment (see [6]), denoted as
term 14.κ in Table VIII. The result has been found in [39] in
the closed analytic form

�Eκ = − (Zα)5 m4
r

π

κN

8 M2(M − m)

[
−3(1 + κN ) ln

M

m

+ (1 − κN )

(
ln 2 − 1

4

)
+ B

(
m

M

)2]
, (9)

where κN is the anomalous magnetic moment (2). The value of
B ≈ O(1), known in detail [39], is negligible and contributes
neither to the central value of the Lamb shift nor to its
uncertainty.

B. Nuclear-line QED terms

Following [5], we introduce the leading nuclear-line QED
correction as

�EN:QED(nl) = 4(Z2α)(Zα)4

πn3

m3
r

M2

{[
1

3
ln

M

(Zα)2mr

+ 11

72

]
δl0

− 1

3
ln k0(nl)

}
, (10)

TABLE VII. The rescaled QED terms, originating from the theory of ordinary hydrogen. The results are presented for the Lamb-shift
�E(2p1/2 − 2s1/2) interval in muonic hydrogen and tritium atoms and the muonic helium-3 ion. Here, the designation is not unique, but
together with the order of the terms it is sufficient to distinguish the corrections. We follow the notation of [6].

No. Designation Order �E(μH) [meV] �E(μT) [meV] �E(μ3He) [meV]

7.1 QED (Rad)∗ α(Zα)4m – 0.663 45 –0.809 73 –10.6525
7.2 QED (Rad) α(Zα)5m −0.004 43 −0.005 47 −0.1749
7.3 QED (Rad-Rec) α(Zα)5 m2

M
0.000 19 0.000 088 0.002 81

8 QED (Rec)∗ (Zα)5m2/M – 0.044 97 –0.018 79 –0.558 11
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TABLE VIII. Some nuclear-structure contributions to �E(2p1/2 − 2s1/2) in muonic tritium and the muonic helium-3 ion. Here we
summarize the finite-nuclear-size contribution (FNS) and the “pointlike” TPE κ term. We use two related equations, where rN is the numerical
value of RN in the fermis. The results given in italic are not used directly and are given for reference purposes only. The numerical values are
given for Rp = 0.84 fm, Rt = 1.8 fm, Rh = 2.0 fm to characterize the contributions.

�E for H [meV] �E for T [meV] �E for 3He [meV]

No. Designation Order Value Estimation Value Estimation Value Estimation

10 FNS (NR) (Zα)4(mRN )2m −5.1974 r2
p –3.7 −6.4078 r2

t – 21 −102.52 r2
h – 410

11 FNS (Rel) (Zα)6(mRN )2m −0.0016 r2
p −0.0017 r2

t −0.090 r2
h

+0.000 24(r2
p)2 −0.0001 +0.000 30(r2

t )2 −0.0023 +0.016(r2
h)2 −0.11

12 FNS (eVP) α(Zα)4(mRN )2m −0.0282 r2
p −0.020 −0.0363 r2

t −0.12 −0.85 r2
h −3.4

13 FNS (SE+μVP) α(Zα)5(mRN )2m 0.0006 r2
p 0.0005 0.0008 r2

t 0.002 0.02 r2
h 0.10

14.κ TPE (κ) (Zα)5m4/M3 −0.003 05 −0.002 98 −0.0187

where ln k0(nl) is the Bethe logarithm. The related numerical
results for the muonic atoms of interest are

�EN:QED(2p1/2 − 2s1/2) =
{−0.010 41 meV, for μH,

−0.001 58 meV, for μT,
−0.088 30 meV, for μ3He.

(11)

C. Hadronic vacuum polarization

The calculation of the hadronic vacuum polarization pro-
duces rather a marginal contribution (cf. [23]),

�EhVP(2p1/2 − 2s1/2) =
{

0.0106(10) meV, for μH,
0.0132(10) meV, for μT,
0.21(2) meV, for μ3He,

(12)

with accuracy sufficient for the comparison of theory and
experiment for the Lamb shift. The result is consistent with
those in [35,38]. While applying this correction, one has to
remember that it is not that important what exact model
has been used for the calculations. It is more important
that the hadronic vacuum polarization should be taken into
account consistently in all the competitive evaluations (for
spectroscopy of ordinary atoms, the Lamb shift in muonic
atoms, elastic electron-proton scattering, etc.).

V. QED SUMMARY

We consider above all the α5m contributions. Some of
them have small numerical values, however, it is important

µµ

ee

FIG. 8. The characteristic diagrams for the eVP correction to the
finite-nuclear-size term. The first diagram represents contributions
similar to (7) but with the wave function corrected due to eVP. The
second diagram is for the finite-nuclear-size correction to the eVP
potential.

to consider all of them. The smallness of the result for a
particular contribution does not mean that it is negligible
without any calculations. It may be not clear a priori that such
a contribution is small. We have also taken into account the
logarithmically enhanced α6m terms. The results for muonic
hydrogen, tritium, and helium-3 ions are summarized in
Table X. We include in the QED table pure QED contributions
as well as the QED contributions to the r2

N term.
The muonic hydrogen result,

�EQED(2p1/2 − 2s1/2) = [
205.9211(10) − 5.2271(8) r2

p

+0.0002(1)
(
r2
p

)2]
meV, (13)

is slightly different from our result in [6], because we
have corrected a minor error for the BP contribution in
Table II. We also excluded the α(Zα)5(mRN )2m term and
included a (Zα)6(mRN )2m contribution, since the former is
not logarithmically enhanced and the latter is.

The result for the muonic helium-3 ion is found to be

�EQED(2p1/2 − 2s1/2) = [
1644.17(2) − 103.47(5) r2

h

+0.02(1)
(
r2
h

)2]
meV. (14)

The contributions have been previously reviewed in [35,38].
Those reviews present a theory of the α5m contributions
and a partial consideration of the α6m terms. In the case of
[38] the consideration of some particular higher-order terms
is incomplete (cf., e.g., the three-loop electronic vacuum
polarization [38], where the third-order diagram is missing,
with our complete calculation in [23]). The difference in the
α5m theory is the minor one. In the journal version of [35] the
result on the relativistic-recoil correction to the Uehling term
is incorrect, which has been fixed in the subsequent eprint
versions. The term no. 14.κ is not taken into consideration in
[35,38], however, it plays rather a marginal role. Therefore we

TABLE IX. The Uehling correction (8) to the leading nuclear-
finite-size term for the n = 2 states in muonic hydrogen, tritium, and
helium-3 ion.

μH μT μ3He

CeVP(2s) 1.543 01 1.611 63 2.359 36
CeVP(2p) − 0.011 64 − 0.012 49 − 0.021 73
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TABLE X. The QED summary table on the Lamb-shift interval �E(2p1/2 − 2s1/2) in muonic tritium and the muonic helium-3 ion. We
follow the notation in [6]. The uncertainty in the total values is due to the estimation of the higher-order contributions.

No. �E(μH) [meV] �E(μT) [meV] �E(μ3He) [meV] Refs.

Unperturbed quantum mechanics
0 –0.050 95 –0.155 98 –0.0032 Table II

Specific QED
1 205.026 13 235.933 65 1642.3956 Table III
2 1.658 85 1.903 51 13.084 27 Table III
3 0.007 52 0.008 74(9) 0.073(3) Table III
4 −0.000 89(2) −0.000 99(2) −0.0134(6) Table III
5 −0.002 54 −0.004 12 −0.062 69 Table III
6 −0.001 52 −0.001 87 −0.0299 Table III

Rescaled QED
7 −0.667 69 −0.815 11 −10.8246 Table VII
8 −0.044 97 −0.018 79 −0.5581 Table VII

Nuclear-line QED
9 −0.010 41 −0.001 58 −0.0883 Eq. (11)

Nuclear finite size
10 −5.1974 r2

p −6.407 8 r2
t −102.52 r2

h Table VIII
11 −0.0016 r2

p −0.0017 r2
t −0.091 r2

h

+0.000 24 (r2
p)2 +0.0003 (r2

t )2 +0.016 (r2
h)2 Table VIII

12 −0.0282 r2
p −0.0363 r2

t −0.85 r2
h Table VIII

14.κ −0.003 05 −0.002 98 −0.0187 Table VIII

Hadronic VP
16 0.010 6(10) 0.013 2(10) 0.21(2) Eq. (12)

Total 205.9211(10)−5.2271(8) r2
p 236.8577(11)−6.446(8) r2

t 1644.16(2)−103.47(5) r2
h

+0.000 24(12) (r2
p)2 +0.0003(2) (r2

t )2 +0.016(8) (r2
h)2

consider the QED theory of the muonic helium-3 ion as well
established.

The result for muonic tritium,

�EQED(2p1/2 − 2s1/2) = [
236.8577(11) − 6.446(8) r2

t

+0.0003(2)
(
r2
t

)2]
meV, (15)

has been obtained here. The first term differs from that for
muonic hydrogen [see Eq. (13)] by approximately 15%, which
is basically an effect of the different values of the reduced mass
in the leading term (cf. term no. 1 in Table X).

VI. THE HARD TWO-PHOTON EXCHANGE

A. Nuclear polarizability, Friar term, etc.

Two-photon-exchange contributions play a certain role in
the central value of the theoretical prediction for the Lamb shift
in light muonic atoms and a crucial role in the determination of
its uncertainty. There are three kinds of the TPE contributions.

FIG. 9. Two-photon exchange: the inelastic contribution (the
proton polarizability). The intermediate state is not equal to the
reference nuclear state.

(1) There are indeed pure QED TPE contributions. They
are well known (see term no. 8 in Table VII in Sec. III C and
in the QED summary table in the previous section).

(2) The other contributions involve the nuclear-structure
effects. The elastic part of TPE deals with the form factors of
the nucleus. If the nucleus is literally described as a certain
extended object, then there is a small part that does not vanish
once we put the nuclear size to zero. It is related to the
anomalous magnetic moment and has been already taken into
account (see term 14.κ in Table VIII in Sec. IV A and in the
QED summary table in the previous section). The rest of the
elastic contribution, where the so-called Friar term dominates,
we discuss in this section.

(3) The calculation of the TPE contributions involves an
intermediate state of the nucleus. The elastic contributions are
those where such an intermediate state relates to the unchanged
nuclear state. If the intermediate state changes, then that is
a part of the inelastic term, aka the nuclear polarizability
contribution (see Fig. 9).2 In the case of the helion and
triton there is only one bound state, the ground state of the
nucleus. Any excited states actually belong to the continuum
of the states of the disintegrated nucleus, either a nucleon +

2While calculating the TPE contribution to the Lamb shift in muonic
hydrogen, the dispersion approach has been used. In this case the term
inelastic is often used, which is presented as a dispersion integral,
while the subtraction term is considered separately (see, e.g., [6] and
references therein).
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deuteron, or three separate nucleons. A more hard excitation
may produce additional particles, such as mesons, or turn a
nucleon into the � particle or another baryon.

The basic theoretical expressions for the muonic atoms
with a nucleus with spin 1/2 are the same as for the muonic
hydrogen (cf. [34,40–47]). However, their relative importance
is different, as well as the methods by which they are
calculated.

The elastic part of TPE can be presented in the form [6,39]

�EeTPE(nl) = �EFr(nl) + �Erec(nl),

�Erec(nl) = −16(Zα)5 m4
r

π
Irec

δl0

n3
,

Irec = Iκ + IEF + IM1 + IM2,

Iκ = κ

∫ ∞

0

dq

q4
{(2 + κ)fM1 + fM2},

IEF =
∫ ∞

0

dq

q4
fEF (m,M; q2)([GE(q2)]2 − 1),

IM1 =
∫ ∞

0

dq

q4
fM1([GM (q2)]2 − (1 + κ)2),

IM2 =
∫ ∞

0

dq

q4
fM2[GM (q2)GE(q2) − (1 + κ)],

(16)

where the Friar term is defined as (see, e.g., [5,11])

�EFr(2s1/2) = −2(Zα)5 m4
r

π
IFr,

IFr =
∫ ∞

0

dq

q4
([GE(q2)]2 − 1 − 2G′

E(0) q2), (17)

where GE and GM are electric and magnetic form factors and
the f functions are given in [6], following [41].

Let us consider the Friar term in more details. All the
contributions to the �Erec are the recoil contributions and they
are suppressed by m/M . Therefore, the Friar term in Eq. (17)
is the leading elastic TPE contribution. We can present it in
the form [32,33]

IFr = π

48

∫
d3r d3r ′ρ̂E(r)ρ̂E(r′)|r − r′|3 ≡ π

48
〈r3〉2, (18)

where the function ρ̂E(r) is the Fourier transform of the electric
charge form factor

ρ̂E(r) = 1

(2π )3

∫
d3q eirq GE(q2),

which somewhat differs from the charge density ρE(r) in the
sense of classical physics and nonrelativistic quantum me-
chanics. The difference comes from the fact that the nucleus at
rest after absorbing a photon with a nonzero momentum is the
subject of a kick. It is not at rest afterwards. If the momentum
is essentially smaller than Mc, then the velocity of the motion
after the kick is much smaller than c and therefore the recoil
effect is a relativistic correction which can be neglected. (The
nuclear-recoil consideration is the same as the consideration
of the nonrelativistic nucleus neglecting its velocity.) In the
TPE calculations for the light nuclei (which are somewhat
larger than the proton and some heavier) the nonrelativistic

consideration of the nucleus is more accurate than for the
proton. Neglecting the recoil, we can substitute ρ̂E(r) for the
“real” charge density ρE(r), which can be described by the
nuclear wave function in a straightforward way.

The same can be done for the inelastic contributions.
Neglecting the recoil effects, i.e., expanding in the ratio of
a characteristic momentum to Mc, one can describe the TPE
contributions, both elastic and inelastic, with the help of the
quantum mechanics. The consideration of the recoil correction
is one of the questions for the validation of the accuracy of the
polarizability calculations.

Another approximation used in the calculations is in
limiting the consideration with the pointlike nucleons. That
is one more problem for the estimation of the accuracy. Once
these two approximations have been done, we should discuss
two kinds of problems. The first type is due to the validity of
the pointlike nonrecoil picture in general with the given model.
That can be checked by comparing actual pointlike results
with the results of the calculations. Indeed, we do not have
any measurements for the pointlike nuclei, however, assuming
that the internal nucleon structure is not much affected by
the binding effects, one can easily express, e.g., the result for
the rms charge radius for the pointlike nuclei in the terms of
the actual experimental values of R2

N and the rms charge radii
of the proton and neutron.

The other source of the problems is due to approximations
accepted for a calculation of a particular variable, such as TPE
contributions. In comparison with the rms charge radius, it
resulted from additional approximations.

First we present results recently found by different authors
for the polarizability contribution to the Lamb shift in muonic
atoms with A = 3 and afterwards we examine their accuracy.
We start with the results of [48] for the nuclear-structure TPE
contribution,

�Ens:TPE(2p1/2 − 2s1/2) =
{

0.768(25) meV, for μT,

15.40(39) meV, for μ3He,

(19)

which are the only recent results on the issue. Previously the
same authors obtained the results on the nuclear polarizability
contribution in the muonic deuterium [49] and muonic helium-
4 [50], and later the same method was applied to the A = 3
muonic atoms. (It is not that important that the results
[48–50] are obtained by the same authors with the same
methods but that they are based on the same experimental
data and the same approximations.) They did two independent
evaluations [48–50], based on an effective two-nucleon poten-
tial plus three-nucleon forces, taken for one of two calculations
from the phenomenological description [51,52] and the other
from the effective chiral perturbation theory [53,54]. Both
potentials deal with nonrelativistic pointlike nucleons.

The nucleons inside a nucleus have their own structure
contributions. The chiral perturbative theory is not a good
way to describe the nucleon polarizability. The latter can be
described either by using another effective field theory (cf.
[43,47]) or by using a combination of theory and experimental
data (cf. [34,40–42,46]).
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B. Accuracy of the nuclear-structure TPE contribution

Let us outline in detail the “road map” of the evaluation of
the nuclear polarizability and elastic TPE contributions related
to the result [48].

(1) To start one has to choose the appropriate level of
approximation (which is N3LO χPT for the calculation in
muonic deuterium [49], tritium and helium-3 [48], and helium-
4 [50])3 and to write the χPT Lagrangian. In a renormalizable
theory the Lagrangian does not depend on the level of
approximation. In an effective nonrelativistic theory, a number
of new contact terms of different shapes should be generated
and this very number depends on the level of approximation.
See Refs. [55,56] for details on N3LO χPT.

The use of an effective field theory, which exploits the
chiral perturbation theory, suggested in [57], provides us with
a possibility to consider a broad range of phenomena and,
in contrast to the phenomenological fits, use the information
from many other channels. Neither the LO approximation nor
the NLO and NNLO ones were good for the description of the
nucleon-nucleon scattering. The N3LO approximation appears
to be the first approximation consistent with the NN data (see,
e.g., [53,55]).

(2) The Lagrangian contains a number of parameters which
should be determined from experiment. Therefore, one has
to calculate a certain number of observable variables and to
compare theory to experiment to find the numerical values
of the parameters. That has been done in [53,55]; however,
the accuracy of the determination of the parameters is unclear
as well as the correlation of their uncertainties. Therefore,
its outcome for the accuracy of the subsequent stages is also
uncertain.

(3) Once the Lagrangian and its parameters are defined,
one could in principle calculate any low-energy property of
the nucleons and light nuclei. The first stage is to calculate an
effective nucleon-nucleon (NN) potential. The later is found
in [53], where a comparison with p − n and p − p scattering
is also given (see also [56]). It is also necessary to find three-
nucleon forces, which was done in [54].

(4) The NN potential (together with three-nucleon forces)
allows us to describe a few-nucleon nucleus by solving
the related nonrelativistic quantum-mechanics problem. The
problem was solved for the NN potential induced by N3LO χPT

for the deuteron [49], triton and helion [48], and α particle [50].
(5) With the wave functions (and other details of the

spectrum) in hand, one can calculate various nuclear and
atomic variables. The variables of the interest are the nuclear
polarizability contribution and the elastic term, determined
through the nuclear charge distribution. There are also a
number of benchmark quantities, such as the rms nuclear
charge radius, which are good to calculate as a test. The
results for the light muonic atoms were found in [48–50]. Note
that the calculation of various nuclear and atomic variables
may involve certain approximations which are specific for
a variable. In the case of the polarizability, there is a kind of

3LO is for the “leading order,” N for the “next,” e.g., NNLO is the
next to the next to the leading order approximation, etc., and χPT

stands for the chiral perturbation theory.

partial wave expansion suggested in [58] and widely used (see,
e.g., [49,59–61]). Particular variables also may involve specific
corrections. Their accuracy and their comparison with the
experimental values or theoretical results, obtained by different
methods, may be in such a case rather specific than generic.
Indeed, a better agreement for a test variable means a somewhat
better description; however, it is not clear quantitatively, how
to interpret the [dis]agreement with the test variables into the
uncertainty of the calculation of the variable of interest.

(6) A part of the evaluation has been done with a certain
regulator function, which was introduced additionally to the
Lagrangian. While the Lagrangian is theoretically motivated,
the regulator function is not. To consider the approach as a
model-independent one, one has to check that the result does
not really depend on the details of the regularization, which in
practice can be done only with certain reservations (see, e.g.,
[49]).

(7) All this development has been done for nonrelativistic
pointlike nucleons. The related corrections have to be found.
However, they are required on all the stages, not only on the
final one as it is done in [48–50].

(8) To verify the accuracy one may check the results on the
test quantities (see, e.g., [49,59–61] for deuteron, [48] for triton
and helion, and [50] for an α particle). However, some of them
are known not very accurately, and they may be affected by
the nucleon-finite-size and relativistic corrections in a different
way than the TPE contributions.

(9) One may also check for the scatter of the results.
The most accurate competitive results for muonic deuterium
[49,61] follow from a phenomenological AV18 potential
[51,52] (see also a result from the zero-range-potential method
[59]). As for the other muonic atoms, the AV18 results are
presented in [48,50] together with the N3LO χPT ones.

This phenomenological potential is an alternative to
N3LO χPT calculations. The AV18 potential is a result of
fitting the NN scattering and the deuteron data [51]. Notably,
the N3LO χPT results for the NN scattering have a certain
systematic deviation from the AV18 fit (see [53]). Actually, one
has to consider this departure area by area and to determine the
uncertainty. After that, using such an area-by-area uncertainty,
one should look for their impact on a particular calculation
of the TPE effects. The overall integral departure in the
comparison of two approaches may be not sufficient to estimate
the uncertainty.

The use of a theoretically motivated description is a
breakthrough. It enables us to use the data from different
channels and it sets some constraints, which would be unclear
from phenomenological fits. While the NLO and NNLO results
were not adequate to the description of the NN scattering,
the N3LO approximation has managed to produce results
which are consistent with the data rather well. Indeed, one
may wonder, what should be the outcome of N4LO χPT,
which is rather too difficult to achieve. A further progress in
the evaluation of nucleon-nucleon potential and few-nucleon
forces is possible and actually it has been achieved (see [62–64]
and references therein), but it has not yet been applied for the
subsequent study of the polarizability contribution. The use
of higher-order terms of the perturbation theory should allow
reduction of errors in many variables. Working with functions
and many variables, one should be able to take advantage of
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such a general progress. In the meantime, in the case of light
muonic atoms we are rather interested in one figure per atom,
i.e., in the related TPE contribution to the Lamb shift, which
is the sum of the polarizability and elastic term. A general
improvement of the accuracy is not sufficient to be sure that
this is the only value of interest that also improved. Besides,
increasing the number of the fitting parameters should make
their correlations more complicated.

The comparison of the experimental result [2]4 and the
theoretical prediction for muonic deuterium [66], where the
polarizability is taken as a certain average of the results from
[49,59,61], demonstrates an approximately 2.5-σ deviation.
To understand whether that is a real contradiction we have to
have a controlled uncertainty. The control of the uncertainty is
a crucial issue.

The uncertainty presented in (19) is that of the original
paper [48] of the Hebrew-TRIUMF group (as well as the results
on other muonic atoms [49,50]). As we explain above there
are a number of stages which could produce the uncertainty.
That may be done only by a big collaboration, which would
include all the contributors at the intermediate stage. The
Hebrew-TRIUMF group can control only a part of the stages,
namely, the solution of the nonrelativistic problem for the
nucleus consisting of the pointlike nucleons and the calcu-
lation of the nuclear polarizability within the nonrelativistic
pointlike approximation, as well as partially investigating the
contributions to the polarizability beyond this approximation.
Such [partial] estimations have been performed [48].

As we mentioned, the same group has performed also
a calculation for muonic deuterium [49]. Their part of the
uncertainty in the cases of A = 2 and A = 3 has somewhat
different but comparable values. The former one is 1.2%
for muonic deuterium, while the latter is 3% for muonic
tritium and 2.5% for muonic helium-3. The muonic-deuterium
theoretical prediction, based on [49], disagrees with the
experiment [2] and the discrepancy is as large as approximately
4.5% of the polarizability contribution.

The estimations in [48–50] do not control the uncertainty
due to the uncertainty of the parameters, due to corrections
to the nucleon-nucleon potential, etc. However, we can expect
that they are comparable for muonic deuterium and muonic
atoms with A = 3. We estimate this part of the uncertainty as
5%, which expands the total uncertainty in (19).

VII. CONCLUSIONS

Finally, combining the QED theory from Table X, the
original results [48] for the nuclear-structure TPE contribution
in (19), and the additional uncertainty of 5% to them as
explained above, for the Lamb shift for the muonic atoms
of interest we arrive at

�E(2p1/2 − 2s1/2) = [
237.626(46) − 6.446(8) r2

t

+ 0.000 3
(
r2
t

)2]
meV (20)

4The full comparison includes the results on the R2
p − R2

d from
the isotopic shift in hydrogen and deuterium [4,65], on R2

p from the
Lamb shift in muonic hydrogen [1], and on R2

d from the Lamb shift
in muonic deuterium [2].

for muonic tritium and

�E(2p1/2 − 2s1/2) = [
1659.58(86) − 103.47(8) r2

h

+ 0.02
(
r2
h

)2]
meV (21)

for the muonic helium-3 ion. The accuracy of the theoretical
prediction is determined by the accuracy of the calculation of
the nuclear-structure effects. It is not completely under control,
and here it is extended in comparison to the original estimation
[48]. After our paper was finished we became aware of two
more calculations of the nuclear-structure effects. One [67] is
an update of the result [48] used in this paper. The other [68]
presents alternative calculations. They are consistent with the
result [48].

The theoretical prediction above is not for the transitions
which are measured directly (cf. Fig. 1). Let us suggest that in
the muonic tritium and helium-3 the same transitions will be
measured, namely,

�Et ≡ �E(2p3/2(F = 2) − 2s1/2(F = 1)) (22)

and

�Es ≡ �E(2p3/2(F = 1) − 2s1/2(F = 0)). (23)

Their values may be rearranged as

1
4�Es + 3

4�Et = �E(2p1/2 − 2s1/2) + �E(2p3/2 − 2p1/2)

+ 1
8�EHFS(2p3/2),

�Es − �Et = �E(2s1/2(F = 1) − 2s1/2(F = 0))

−�EHFS(2p3/2). (24)

To compare them with the theoretical predictions (20) and
(21), we find

�E(2p1/2 − 2s1/2) = [
1
4�Es + 3

4�Et

] + �1, (25)

�EHFS(2s) ≡ �E(2s1/2(F = 1) − 2s1/2(F = 0))

= [�Es − �Et ] + �2, (26)

where for muonic tritium

�1 = −[
9.778 95(6) + 0.000 06 r2

t

]
meV,

�2 = 3.958 26(1) meV,

and for the muonic helium-3 ion

�1 = −[
141.958(5) + 0.004 r2

h

]
meV,

�2 = −24.292 5(7) meV.

The value of �E(2p1/2 − 2s1/2), the Lamb shift, is consid-
ered in this paper, while the 2s hyperfine interval �EHFS(2s)
needs a separate consideration (see, e.g., [35,69]).
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TABLE XI. Theory of the 2p fine-structure interval �E(2p3/2 − 2p1/2) in muonic tritium and the muonic helium-3 ion. The radiative
correction (item 7) is for the fine structure completely determined by the muon anomalous magnetic moment. The uncertainty in the total
values is due to the estimation of the higher-order contributions.

No. Designation Order Refs. �E(μH) [meV] �E(μT) [meV] �E(μ3He) [meV]

Unperturbed quantum mechanics
0.1 Rel (Zα)4+m 8.415 64 9.023 881 144.3955
0.2 Rel-Rec∗ (Zα)6m2/M 5.1 × 10−6 2.1 × 10−6 0.000 13
0.3 BG∗ (Zα)4(m/M)2m [14] −0.086 21 −0.011 859 −0.1898
0.4 BP (tot)∗ (Zα)4(m/M)2m Table XIV 0.162 63(2) 0.245 83(2) 0.1947(2)

Specific QED
1 eVP1 Rel∗ α(Zα)4m 0.005 02 0.006 03 0.2697

Rescaled QED
7 (g − 2)μ α(Zα)4m 0.017 64 0.020 28 0.3245

Nuclear finite size
11 FNS (Rel) (Zα)6m −0.000 05 r2

p −0.000 06 r2
t −0.004 r2

h

Total 8.514 72(6) 9.284 17(6) 144.995(5)
−0.000 05 r2

p −0.000 06 r2
t −0.004 r2

h

APPENDIX: THE 2 p FINE AND HYPERFINE STRUCTURE

Once we use the effective Dirac equation (see Secs. II and III A), the leading contribution to the energy is expressed in the
terms of the solution of the Dirac equation with the reduced mass. In such a case, there are no additional (Zα)4m2/M corrections
to the Dirac equation contribution for the fine structure. The correction in order (Zα)6m2/M (see Table XI) comes from the
second term in (4), while the BG and BP terms produce corrections in the order (Zα)4m3/M2 (see Sec. II).

The theory in order α5m is summarized in Tables XI (for the 2p fine structure), XII (for the 2p3/2 HFS interval), and XIII (for
the 2p1/2 HFS interval), where we follow the notation of [6].

All the contributions there except of the Brodsky-Parsons term [10,11] have been already discussed in detail for the Lamb
shift and they are very similar for the fine and hyperfine structure. The leading BP contribution is of the form [10] (cf. [11])

�EBP:lead(2p1/2(F = 1)) = −〈2p1/2(F = 1)|HHFS|2p3/2(F = 1)〉〈2p3/2(F = 1)|HHFS|2p1/2(F = 1)〉
E(2p3/2) − E(2p1/2)

(A1)

and

�EBP:lead(2p3/2(F = 1)) = −�EBP:lead(2p1/2(F = 1)). (A2)

One can consider it as an enhanced second-order contribution with the Dirac equation as the unperturbed theory. In the
Dirac theory the 2p1/2 and 2p3/2 states are not degenerate, but their energy splitting is much smaller than (Zα)2m, which is the
characteristic value for the gross-structure intervals. In the meantime the hyperfine interaction, considered as the perturbation, has
a nonvanishing off-diagonal matrix element between the closely lying 2p1/2(F = 1) and 2p3/2(F = 1). Under such conditions,
the second-order contribution of the perturbation theory with the hyperfine interaction has an enhanced term (see Fig. 10). [It
may be also obtained from the theory based on the Coulomb-Schrödinger equation as a result of the rediagonalization of the

TABLE XII. Theory of the 2p3/2 hyperfine interval �E(2p3/2(F = 2) − 2p3/2(F = 1)) in muonic tritium and the muonic helium-3 ion.
Here, the leading term includes the relativistic corrections. The uncertainty in the total values is due to the estimation of the higher-order
contributions.

Designation Order Refs. �E(μH) [meV] �E(μT) [meV] �E(μ3He) [meV]

Unperturbed quantum mechanics
Leading (Zα)4+m2/M 3.040 79 3.998 72 −22.8484
Rel-Rec∗ (Zα)4(m/M)2m 0.351 39 0.177 47 −1.2432
BP (tot)∗ (Zα)4(m/M)2m Table XIV −0.144 56(2) −0.218 52(2) −0.1730

Specific QED
eVP1∗ α(Zα)4m2/M 0.001 28 0.001 74 −0.0346

Rescaled QED
(g − 2)∗μ α(Zα)4m2/M − 0.000 89 − 0.001 17 0.0067

Total 3.248 01(1) 3.958 26(1) −24.2925(7)
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TABLE XIII. Theory of the 2p1/2 hyperfine interval �E(2p1/2(F = 1) − 2p1/2(F = 0)) in muonic tritium and the muonic helium-3 ion.
Here, the leading term includes the relativistic corrections. The uncertainty in the total values is due to the estimation of the higher-order
contributions.

Designation Order Refs. �E(μH) [meV] �E(μT) [meV] �E(μ3He) [meV]

Unperturbed quantum mechanics
Leading (Zα)4+m2/M 7.602 90 9.997 80 −57.1436
Rel-Rec∗ (Zα)4(m/M)2m 0.351 39 0.177 47 −1.243 15
BP (tot)∗ (Zα)4(m/M)2m Table XIV −0.144 56(2) −0.218 52(2) −0.1730

Specific QED
eVP1∗ α(Zα)4m2/M 0.005 67 0.008 11 −0.1220

Re-scaled QED
(g − 2)∗μ α(Zα)4m2/M 0.004 43 0.005 83 −0.0333
Total 7.819 83(1) 9.970 69(1) −58.7150(7)

2p1/2(F = 1) and 2p3/2(F = 1) states, which are degenerate in that theory (cf. [10,11]).] One can resummate all the perturbation
theory (in the Dirac approach) with the hyperfine interaction as the perturbation and the 2p1/2(F = 1) and 2p3/2(F = 1) as the
intermediate states. The result is

�E(2p1/2(F = 1)) = −�BP

= −
√(

E(2p3/2(F = 1)) − E(2p1/2(F = 1))
2

)2

+ (〈2p1/2(F = 1)|HHFS|2p3/2(F = 1)〉)2

+ E(2p3/2(F = 1)) − E(2p1/2(F = 1))
2

, (A3)

�EBP(2p3/2(F = 1)) = −�EBP([2p1/2(F = 1)). (A4)

(In the nonrelativistic theory this identity appears immediately through the rediagonalization.)

The related equations for the main terms [for both Eqs. (A1)
and (A3)] are given in [10] and [11] for hydrogen and muonic
hydrogen, respectively. To adjust the results for the other nuclei
with spin 1/2, we have to find their g factors in the terms of
particle physics [see Eq. (1) in Sec. I].

While the expression for the leading term of the hyperfine
intervals requires a value of the magnetic moment of the
nucleus as a whole, various corrections may involve the Dirac
part and the anomalous part of the magnetic moment and,
therefore, of the g factor separately. The calculation of �Eκ in
(9) is one such example. The other example is the calculation

2p1/2

2p3/2
2p1/2

hfs hfs

FIG. 10. The diagram for the leading Brodsky-Parsons term (A1)
for the E(2p1/2(F = 1) in the theory based on the Dirac equation,
with an enhanced term in the second-order perturbation series for the
2p1/2(F = 1) with the HFS interaction as the perturbation.

of the off-diagonal matrix element of the HFS interaction over
2p1/2(F = 1) and 2p3/2(F = 1), which also requires such
a separation. The calculation of various corrections to the
leading BP term is very similar to that in muonic hydrogen
[6]. The results are summarized in Table XIV.

Our results for the α5m contributions for muonic helium-3
ion are consistent with [70] and with the subsequent review
[35]. We exclude here the results on α2(Zα)4m from [70] for
the fine and hyperfine structure, since they present only a part
of the corrections of this type, ignoring terms of the third order
in perturbation theory (cf. [23]).

In the literature, two different definitions of the composition
of the energy levels may be used. We here consider a three-term
composition, namely, the Lamb shift (the 2p − 2s splitting),
and the fine and hyperfine structure, the definitions of which
are summarized in Eq. (3). The contributions of the Brodsky-
Parsons term (aka the 2p mixing term) are included into those
three types of terms. Such a composition is consistent with
most “by default” phenomenological definitions.

The other possible composition, introduced in [10,11], is
often used specifically in hydrogen and muonic hydrogen. It
requires four terms. The BP term, denoted as �, is treated as
a kind of separate effect.

To convert our three-term scheme to a four-term one, one
has to simply exclude the BP terms from the Lamb-shift, and
fine and hyperfine intervals presented here. The related results
are given for the fine and hyperfine intervals directly in the
summary tables (see term 0.4 in Tables XI, XII, and XIII). For
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TABLE XIV. Contributions to the Brodsky-Parsons term (�BP) in muonic tritium and the muonic helium-3 ion. Here we use the name of
the BP term for the complete account of the enhanced contributions (as explained in the text). The main term, marked with �, contains the fine
structure as follows from Eq. (4) with the BG correction (6) added and the appropriate HFS interval which includes the “NR” and “Rel-Rec”
terms from Tables XIII and XII. The uncertainty in the total values is due to the estimation of the higher-order contributions.

No. Designation Order �E(μH) [meV] �E(μT) [meV] �E(μ3He) [meV]

0.4.1 BP�∗ (Zα)4m3/M2 0.145 19 0.219 63 0.173 10
0.4.2 BP[(g − 2)μ]∗ α(Zα)4m3/M2 −0.000 82 −0.001 45 −0.000 70
0.4.3 BP[eVP1] α(Zα)4m3/M2 0.00 019 0.000 33 0.000 61
0.4 BP (tot) 0.144 56(2) 0.218 52(2) 0.173 02(2)

the Lamb shift it is a part of term 0 in the summary table (see
Table X), which is given explicitly in a subordinate table (see
term 0.4 in Table II). The value �, needed for the four-term

presentation, is given by us in Table XIV. The BP contributions
are given in the tables mentioned with bold italic to facilitate
their exclusion if desired.
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