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We compute the entanglement between the electronic and vibrational motions in the simplest molecular system,
the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For
that purpose we compute an accurate total non-Born-Oppenheimer wave function in terms of a huge expansion
using nonorthogonal B-spline basis sets that expand separately the electronic and nuclear wave functions.
According to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information
theory, it is possible to find a much shorter but equivalent expansion in terms of the natural orbitals or Schmidt
bases for the electronic and nuclear half spaces. Here we extend the Schmidt decomposition theorem to the
case in which nonorthogonal bases are used to span the partitioned Hilbert spaces. This extension is first
illustrated with two simple coupled systems, the former without an exact solution and the latter exactly solvable.
In these model systems of distinguishable coupled particles it is shown that the entanglement content does not
increase monotonically with the excitation energy, but only within the manifold of states that belong to an existing
excitation mode, if any. In the hydrogen molecular ion the entanglement content for each non-Born-Oppenheimer
vibronic state is quantified through the von Neumann and linear entropies and we show that entanglement serves
as a witness to distinguish vibronic states related to different Born-Oppenheimer molecular energy curves or
electronic excitation modes.
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I. INTRODUCTION

Most quantum chemistry calculations are based on the
successful Born-Oppenheimer (BO) approximation for a
molecule, which can be thought of as a bipartite coupled sys-
tem composed of electrons and nuclei according to quantum-
information theory [1]. The BO wave function is expressed as
a direct product of an electronic wave function (which depends
parametrically on the nuclear geometry) times a nuclear wave
function. However, such a molecular BO wave function is not
a true eigenfunction of the molecular Hamiltonian, since the
so-called nonadiabatic coupling terms are missing and with
them, some of the intricate features of the correlation between
electrons and nuclei.

There has been a rising interest in the understanding of the
fundamental entanglement between the electronic and nuclear
motion in molecules [2–7]. A proper account of this correlation
contributes to the quantification of the electronic-nuclear
entanglement beyond the BO approximation. It has been
recently pointed out that the BO wave function has already
an offset entanglement [4,7] yet to be quantified in a realistic
molecular system. In this work we attempt to quantify the
full non-BO entanglement between the electronic and nuclear
subsystems in the simplest molecule (hydrogen molecular
ion H2

+) by using a variational molecular wave function
(pure state) which is a true eigenfunction of the molecular
Hamiltonian. This means that all nonadiabatic couplings are
intrinsically included in this approach.

Here we employ the Schmidt decomposition theorem
[1,8,9], which allows us to calculate the von Neumann and
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linear entropies as entanglement measures, as well as the
Schmidt bases for the electronic and nuclear motions in
H2

+. In order to calculate the non-BO eigenstates of the
molecular Hamiltonian of a nonrotating H2

+ molecular ion,
we use a variational configuration interaction (CI) method
in which we expand the state in terms of products of B-
splines [10,11] and Legendre polynomials for the radial and
angular part of the electronic motion, respectively, times
B-spline polynomials for the relative nuclear motion (see
[12] for details). Nonorthogonal bases are commonly used in
atomic and molecular electronic structure calculations (Slaters,
Gaussians, B-splines, etc.). However, the standard Schmidt
decomposition theorem is formulated in terms of orthonormal
bases that span both Hilbert half spaces of the bipartite system,
which precludes a direct algebraic use of the theorem with most
current atomic and molecular wave functions and basis sets.
Although a simple solution could be a pre-orthogonalization
of the basis, the computational effort is prohibitive when
huge basis sets are in use, as is the case for non-BO
wave functions in molecules. Here we propose a practical
algebraic extension of the Schmidt decomposition theorem
to nonorthogonal bases. Reference [13] is to our knowledge
the only reference with a particular use of the Schmidt
decomposition theorem and the natural orbitals for the ground
state in HD+, where reduced density matrices are obtained by
direct numerical integration. The goal in Ref. [13] was not to
evaluate any BO or non-BO entanglement but to assess the per-
formance of a multiconfigurational time-dependent Hartree-
Fock method for the combined electronic-nuclear dynamics in
diatoms.

To validate our nonorthogonal procedure we start by
studying a couple of two-dimensional (2D) model systems, for
which we also use a variational CI method. The first consists of
two coupled particles confined within a box, without known
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exact solution, and the second is a system of two coupled
harmonic oscillators, nonseparable and entangled in Cartesian
coordinates but with exact solution after a rotation to normal
mode coordinates. The latter is thus separable only in a given
coordinate system. It is worth noting that the entanglement
concept relies on the chosen way of the partitioning of
the system into selected subsystems. A particular set of
coordinates may bring the state to a separable form within
this particular partitioning, for which the state is unentangled,
but the same state remains entangled in the rest of the possible
partitions. These model systems (with distinguishable particles
and without spin) also allow us to analyze the behavior
of entanglement with the excitation energy. We show that
entanglement in complex multidimensional systems of distin-
guishable particles does not in general increase monotonically
with the excitation energy, as is commonly believed, although
if excited states are arranged into approximate excitation
modes, the entanglement increases monotonically within each
mode. A similar conclusion can be drawn for non-BO H2

+,
for which entanglement increases within each approximate BO
electronic excitation mode.

The paper is organized as follows: In Sec. II we describe
the basics related to the Schmidt decomposition theorem in its
canonical form using orthonormal basis sets in both half spaces
and its practical algebraic application when using variational
linear expansions in the form of a CI method. Here we
contribute with the extension of the Schmidt decomposition
theorem when using nonorthogonal basis set: by applying,
first, the well-known Löwdin orthogonalization method that
transforms the nonorthogonal expansion coefficients into
orthogonal ones and brings the procedure to the Schmidt
canonical form and, second, a proper nonorthogonal method
that eventually can be used more efficiently for huge variational
expansions. In Sec. III we illustrate our approaches with
simple toy models: we analyze the entanglement content in
two coupled particles within a 2D box and two coupled
harmonic oscillators in 2D, with Schmidt half spaces taken
in terms of Cartesian coordinates. Finally we present results
on the electronic-nuclear entanglement in H2

+ by starting with
the accurate computation of non-BO eigenstates in terms of
nonorthogonal basis sets. We finish with some conclusions and
perspectives in Sec. IV. Atomic units (a.u.) are used throughout
unless otherwise stated.

II. THEORY

A. Schmidt theorem with orthonormal basis

The Schmidt decomposition theorem (see for instance
[1,9]) applies to bipartite systems; i.e., the whole system can
be partitioned in two subsystems U and V . The theorem is
related to the singular value decomposition in matrix algebra.
In principle the specific choice for the half spaces can be
quite arbitrary. Suppose we take two sets of orthonormal
bases {|φ̃i〉}Mi=1 and {|χ̃j 〉}Nj=1 (throughout the paper we use
the tilde notation to indicate the orthogonal case) that span
the Hilbert subspaces HU and HV for the subsystems U and
V , respectively. Then the total Hilbert space is a direct sum
H = HU ⊕ HV and any state |�〉 ∈ H can be decomposed in

a so called configuration interaction (CI) form

|�〉 =
M,N∑
i,j

C̃ij |φ̃i ,χ̃j 〉, (1)

where C̃ij are the CI expansion coefficients and |φ̃i ,χ̃j 〉 ≡
|φ̃i〉 ⊗ |χ̃j 〉 is a configuration written as a direct product.
Accordingly the spectral decomposition of the full density
operator ρ̂ = |�〉〈�| is

ρ̂ =
M,N,M,N∑

i,j,k,�

ρij ;kl|φ̃i χ̃j 〉〈φ̃kχ̃�|, (2)

where the matrix elements are simply built from the expansion
coefficients, i.e., ρij ;k� = C̃ij C̃

∗
k� (given that the basis vectors

are orthogonal). The Schmidt decomposition theorem states
that any bipartite pure state admits a much simpler expansion

|�〉 =
min(M,N)∑

i=1

√
λi |ui,νi〉, (3)

where |ui〉 and |νi〉 are the (orthogonal) reduced Schmidt bases,
which are eigenstates of the reduced density matrices ρ̂u =
Trν ρ̂ and ρ̂ν = Truρ̂, respectively, and with the same set of
eigenvalues λi , e.g.,

ρ̂u|ui〉 = λi |ui〉, ρ̂ν |νi〉 = λi |νi〉, (4)

where these eigenvalues satisfy 0 � λi � 1 and∑min(M,N)
i=1 λi = 1. The eigenvalues λi with min(M,N ) < i �

max(M,N ) are zero.
In practice, with CI expansions for the total wave function

(1) based on orthogonal basis sets, the construction of the
matrix representation of the reduced density operators is
straightforward, i.e.,

ρu
ik =

M∑
j=1

C̃ij C̃
∗
kj , ρν

j� =
N∑

i=1

C̃ij C̃
∗
i�. (5)

These two matrices ρu (with size M × M) and ρν (with size
N × N ) can be diagonalized as typical algebraic eigenvalue
problems

ρuc̃u = 	c̃u, ρν c̃ν = 	c̃ν, (6)

and the orthonormal Schmidt basis are their eigenvectors
expressed in terms of the original orthonormal basis sets, i.e.,

|ui〉 =
M∑

m=1

c̃u
im|φ̃m〉, |νj 〉 =

N∑
n=1

c̃ν
jn|χ̃n〉. (7)

B. Schmidt theorem with nonorthogonal basis sets

1. Löwdin orthogonalization

Let us assume that the CI vector |�〉 in (1) is expanded
in a nonorthogonal basis set. To our knowledge there is no
extension of the Schmidt theorem when using nonorthogonal
basis sets. We can remedy this situation by simply orthogo-
nalizing the basis set. A well-known procedure is the Löwdin
symmetric orthogonalization method [14,15]. In this method
one looks for a transformation that brings the overlap matrix
S for the basis set to the identity matrix, i.e., X†SX = 1,
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and a simple choice is X = S−1/2. Note that the full overlap
matrix S is built as a Kronecker product of two separated
overlap matrices, i.e., Sij ;k� = (Su ⊗ Sν)ij ;k� = Su

ikS
ν
j�. Then

the nonorthogonal basis sets {|φi〉} and {|χi〉} corresponding
to the Hilbert spaces HU and HV , respectively, can be
orthonormalized separately to obtain the new sets {|φ̃i〉} and
{|χ̃j 〉} as follows:

|φ̃i〉 =
M∑

m=1

(Su)−1/2
mi |φm〉, |χ̃j 〉 =

N∑
n=1

(Sν)−1/2
nj |χn〉. (8)

Accordingly, the CI expansion coefficients Cij (now in
terms of nonorthogonal basis sets) can be straightforwardly
transformed into orthogonal expansion coefficients for the new
orthogonal basis (8) with a simple matrix-vector multiplication

C̃ij =
∑
mn

(S1/2)ij ;mnCmn, C̃∗
k� =

∑
mn

C∗
mn(S1/2)mn;k�. (9)

Once the orthogonalized CI expansion coefficients C̃ are
obtained, one may proceed normally with the standard Schmidt
decomposition expressed in orthonormal basis sets, i.e., from
Eq. (5) onwards. Although this method works well, it is
impractical when using huge CI expansions (in the present
work for H2

+ with up to 140 000 basis components). To
compute the matrix S1/2 a previous diagonalization of the full
overlap matrix S and its whole eigenvalue spectrum is required,
and this represents a bottleneck in the present implementation
of the Löwdin orthogonalization.

2. General method for the nonorthogonal Schmidt decomposition

Any Hermitian operator Ô can be represented in terms of
orthogonal {|φ̃i ,χ̃j 〉} and nonorthogonal basis sets {|φi,χj 〉},
in the form

Ô =
∑
ij,k�

|φ̃i χ̃j 〉Õij ;k�〈φ̃kχ̃�| =
∑
ij,k�

|φiχj 〉Oij ;k�〈φkχ�|,

(10)
where for the orthogonal case Õij ;k� corresponds to the matrix
elements 〈φ̃i χ̃j |Ô|φ̃kχ̃�〉. However, in the nonorthogonal case,
since the completeness condition is expressed using the overlap
matrix S as 1̂ = ∑

ij,k� |φiχj 〉S−1
ij ;k�〈φkχ�|, the object Oij ;k� in

(10) corresponds to an array built from the matrix elements as
follows:

Oij ;k� =
∑
k′�′

∑
i ′j ′

S−1
ij ;k′�′ 〈φk′χ�′ |Ô|φi ′χj ′ 〉S−1

i ′j ′;k�. (11)

The trace of the operator Ô can be computed with any
dummy orthonormal complete basis set {|ψ̃mϕ̃n〉}, such that
Tr[Ô] = ∑

mn〈ψ̃mϕ̃n|Ô|ψ̃mϕ̃n〉. By inserting Ô given by
Eq. (10) one obtains

Tr[Ô] =
∑
ij,k�

Õij ;k�〈φ̃kχ̃�|φ̃i χ̃j 〉 =
∑
ij,k�

Oij ;k�〈φkχ�|φiχj 〉.

(12)
If Ô is the density operator corresponding to the

pure state |�〉 in Eq. (1) spanned in an orthonor-
mal basis, then ρ̂ = |�〉〈�|, ρ̃ij ;k� = C̃ij C̃

∗
k�, and Tr[ρ̂] =∑

k� |C̃k�|2 = (CC†)diag = 1, the latter due to normalization.
In the nonorthogonal case, the state expansion reads |�〉 =∑

ij Cij |φiχj 〉, and, after some algebra, ρij ;k� = CijC
∗
k� with

Tr[ρ̂] = (CSC†)diag = 1. In conclusion, the decomposition of
operators and their traces have formulas which are invariant
regardless the use of orthogonal or nonorthogonal basis sets.

Now, to compute the reduced density operators ρ̂u and ρ̂ν ,
one may use dummy orthogonal complete basis sets, {|ψ̃m〉} ∈
HU and {|ϕ̃n〉} ∈ HV , so that

ρ̂u = Trν[ρ̂] =
∑

n

〈ϕ̃n|
∑
ij ;k�

CijC
∗
k�|φiχj 〉〈φkχ�|ϕ̃n〉,

ρ̂ν = Tru[ρ̂] =
∑
m

〈ψ̃m|
∑
ij ;k�

CijC
∗
k�|φiχj 〉〈φkχ�|ψ̃m〉.

After simple algebra, the matrix elements of the reduced
density matrices are

ρu
ik =

N∑
j�

CijS
ν
j�C

∗
k� = (CSνC†)ik,

(13)

ρν
j� =

M∑
ik

C∗
k�S

u
kiCij = (C†SuC)j�,

expressions indicating that the computation of the reduced den-
sity matrices only requires simple multiplications involving
the CI expansion coefficients matrix and the reduced overlap
matrices (simplifying by far the computational cost). Once
the reduced density matrices are calculated, one proceeds by
solving the generalized eigenvalue problems

ρuSucu = 	cu, with cu†Sucu = 1,
(14)

ρνSνcν = 	cν, with cν†Sνcν = 1,

from which the two sets of orthonormal Schmidt bases (that
share the same eigenvalues λ) can be built as

|ui〉 =
M∑

m=1

cu
im|φm〉, |νj 〉 =

N∑
n=1

cν
jn|χn〉. (15)

3. Entanglement measures

Once the eigenvalues of the reduced density matrices {λ} are
obtained by any means, they serve to quantify the entanglement
content of the state by using the von Neumann SvN and linear
SL entropies, defined as

SvN [ρ̂] = −Tr[ρ̂ log2 ρ̂], SL[ρ̂] = 1 − Tr[ρ̂2], (16)

where the expressions apply to the reduced density operators.
The entanglement of the pure state |�〉 precludes the idem-
potency of the density operators for the reduced subsystems,
thus indicating mixedness with Tr[ρ̂2] < 1. The linear entropy
is no more that an approximation to the von Neumann
entropy, by expanding the log2 term, so that entanglement is
quantified directly from the purity Tr[ρ̂2]. Within our algebraic
method, these quantities can be readily calculated with the
eigenspectrum of the reduced density matrices

SvN = −
min(M,N)∑

i=1

λi log2 λi, SL = 1 −
min(M,N)∑

i=1

λ2
i . (17)

It is understood that pure states whose entropies approach
zero are quasiseparable and slightly entangled and the larger
the departure from zero the greater the entanglement. Then,
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states with a leading Schmidt occupation number λ1 = 1 are
not entangled at all. When Schmidt occupations are evenly
distributed among the different λ’s one expects a maximum
entanglement content.

III. RESULTS

A. Illustrative results on model systems

1. Coupled particles within a two-dimensional box

Our first model system consist of two particles with masses
m1 and m2 confined within a 2D box of lengths L1 and L2,
with a coupling represented by the Hamiltonian

Ĥ = p̂2
1

2m1
+ p̂2

2

2m2
+ κ

[
1

2
(x1 + x2)2 + (

x2
1x2 − x1x

2
2

)]
(18)

with coordinates defined in the domains x1 ∈ [0,L1] and x2 ∈
[0,L2]. The coupling is neither even nor odd against changes
x1 → x2 or xi → −xi (i = 1,2), so that we avoid the presence
of any geometrical symmetry in this system.

First, we have at our disposal complete orthonormal basis
sets for the Hilbert subspaces HX1 and HX2 , namely,

φn1 (x1) =
√

2

L1
sin

n1πx1

L1
, n1 = 1,dim[HX1 ], (19)

φn2 (x2) =
√

2

L2
sin

n2πx2

L2
, n1 = 1,dim[HX2 ]. (20)

Accordingly, the total CI wave function can be variationally
expanded as [after Eq. (1)]

�(x1,x2) =
dim[X1]∑

n1

dim[X2]∑
n2

Cn1,n2φn1 (x1) ⊗ φn2 (x2). (21)

We choose a system with m1 = 4, m2 = 1, coupling
strength κ = 2, and different length boxes L1 = 2 and L2 = 4.
Dimensions for the basis sets in (19) and (20) are set to
dim[HX1 ] = 9 and dim[HX2 ] = 10 (the basis is small to keep
the simplicity of the illustration). After diagonalization of the
total Hamiltonian matrix, 90 variational CI states are obtained,
with energy eigenvalues for the lowest states quoted in Table I.
In spite of the simplicity of the coupling potential, there is no
exact solution for this system and particular quantum labels
cannot be assigned to these eigenstates. Even the number of 1D
nodal lines in the (x1,x2) plane hardly establish the energy or-
dering. As illustration, we plot the wave functions correspond-
ing to the fourth and ninth eigenstates in Fig. 1 (that correspond
to those with the highest entanglement content in Table I).

We choose to analyze the ninth lowest variational state
(lower panel in Fig. 1). The 3D plots of wave functions for this
and any other state obtained using (i) the full CI wave function
in Eq. (21) with 90 terms and (ii) the Schmidt reconstruction
using Eq. (3) with 9 terms are indistinguishable. The first
Schmidt nonzero occupation numbers for this state (they must
be nine) are λ1 = 0.64696, λ2 = 0.31986, λ3 = 0.024567,
λ4 = 0.0083872, λ5 = 0.00021985 (with the rest smaller by at
least 2 orders of magnitude). The reduced Schmidt bases for the
half spaces X1 (the five most contributing) and X2 (also five)
are plotted in Fig. 2. It is worth noting that the Schmidt bases do
not satisfy any particular property associated with eigenstates

TABLE I. Energy values and entanglement measures for the
lowest ten eigenstates of two coupled particles within a 2D quantum
box subject to the coupling potential quoted in Eq. (18). The energy
eigenvalues are obtained using our variational CI method with
both sine-type orthonormal (CI ort) and nonorthogonal (CI non-ort)
B-polynomial basis sets. The von Neumann and linear entropies
included in the table are those obtained using the CI nonorthogonal
method.

Energy (a.u.) Entropies

State CI ort CI nonort SvN SL

1 3.76176 3.76175 0.01537 0.00272
2 5.31181 5.31179 0.39113 0.13383
3 6.09695 6.09690 0.63680 0.24343
4 6.28873 6.28867 1.09801 0.48616
5 7.52299 7.52290 0.85700 0.34975
6 8.01306 8.01292 0.75063 0.27259
7 8.46759 8.46758 0.29608 0.08900
8 8.89911 8.89904 1.05092 0.47165
9 9.77130 9.77117 1.12442 0.47846
10 10.2020 10.2018 1.07954 0.39474

FIG. 1. Plot of the wave functions corresponding to the 4th and
9th eigenstates of two coupled particles within a 2D box with
dimensions L1 = 2 and L2 = 4 a.u. for a Hamiltonian given by
Eq. (18) and built as Schmidt decompositions using nonorthogonal
B-polynomial basis sets (see text).
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λ1 = 0.6470 λ1 = 0.6470

λ2 = 0.3199λ2 = 0.3199

λ3 = 0.02455 λ3 = 0.02455

λ4 = 0.008406 λ4 = 0.008406

λ5 = 0.0002182 λ5 = 0.0002182

FIG. 2. Schmidt (orthogonal) basis as eigenvectors of the reduced
density matrices, for two coupled particles confined in a 2D box
with lengths L1 = 2 a.u. and L2 = 4 a.u. with coupling potential
given in Eq. (18). Left panel: The first five Schmidt basis for half
space X1 using an orthonormal basis (solid line) and nonorthogonal
B-polynomial basis (red circles), with their corresponding occupation
number λi . Right panel: The same as in the left panel but for the first
five Schmidt bases for half space X2.

of one-dimensional Sturm-Liouville differential equations,
like those related to the oscillation theorem and nondegeneracy
[16]. The reduced density operators are Hermitian so that
the Schmidt bases must be orthonormal, but orthogonality
is not guaranteed by increasing numbers of nodes with the
usual interpolating character. Also, in particular cases with
high symmetry we found quasidegeneracies in the Schmidt
eigenvalues. In the present case, the first Schmidt basis in half
space X1 (see Fig. 2) has two nodes, the second has no nodes
at all, and the third basis has one node. Curiously, the Schmidt
bases in half space X2 seem to be the exception to the rule, with
2, 3, and 4 nodes for the first three functions, respectively, and
interpolating to each other. But the rule is that no oscillation
theorem generally applies.

We now select a suitable and simple nonorthogonal basis
set, consisting of n − 1 B-polynomials [17] defined within a
box in the interval [a,b] as follows (removing the first k = 0
and the last k = n elements to satisfy the boundary conditions
of the quantum box):

Bk,n(x) =
(

n

k

)
(x − a)k(b − x)n−k

(b − a)n
, 1 � k � n − 1. (22)

Matrix elements for the 1D problem in this basis are analytical
and easy to obtain. The overlap matrix has elements

Sij = n!2(i + j )!(2n − i − j )!

i!j !(n − i)!(n − j )!(2n + 1)!
L, L = b − a, (23)

and the kinetic energy matrix elements are

Tij = − 1

2L

n!2

i!j !(n − i)!(n − j )!

(2n− i − j − 2)!(i + j − 2)!

(2n− 3)!

× (i2 + j 2)n − (i + j )n + 2ij (1 − n)

2(2n − 1
. (24)

The matrix elements for the potential can be calculated with

(xp)ij = n!2(i + j + p)!(2n − i − j )!

i!j !(n − i)!((n − j )!(2n + p + 1)!
Lp+1. (25)

B-polynomial basis sets have intrinsic disadvantages, namely,
the calculation of large factorial numbers and that these bases
rapidly display linear dependencies. Since our intention here
is to provide a simple illustration with a small nonorthogonal
basis set, B-polynomials fulfill well our requirements.

The variational wave function for the 2D problem can be
expanded directly in terms of this basis set, i.e., �(x1,x2) =∑m−1,n−1

i,j=1 Ci,jBm,i(x1) ⊗ Bn.j (x2), with x1 ∈ [0,L1] and x2 ∈
[0,L2]. The full 2D overlap matrix is a Kronecker tensor prod-
uct of 1D overlap matrices, Sij,k� = S

x1
i,k ⊗ S

x2
j,�, and the full 2D

Hamiltonian is built similarly, Hij,k� = H
x1
i,k ⊗ S

x2
j,� + S

x1
i,k ⊗

H
x2
j,�. Then the general eigenvalue problem HC = ESC is

routinely solved. We have used the same parameters for the
masses, box lengths, and coupling strength κ , and dim[X1] =
11 and dim[X2] = 12. Energy eigenvalues quoted in Table I
compare very well with those obtained with the orthogonal
case. The first five Schmidt nonzero occupation numbers for
the ninth state (they must be eleven) are λ1 = 0.64696, λ2 =
0.31986, λ3 = 0.024553, λ4 = 0.0084060, λ5 = 0.00021821,
and they also compare very well with those obtained with
the orthogonal basis, and the corresponding eigenfunctions
(Schmidt bases) of the reduced density matrices are indistin-
guishable from those previously obtained (see Fig. 2). In addi-
tion, the results obtained using the Löwdin orthogonalization
method applied to the B-polynomial basis (not included here)
exactly coincide with those using our proposed nonorthogonal
method, as expected.

The entanglement entropies for the lowest ten states are
tabulated in Table I. We can appreciate that the behavior of
entanglement is quite irregular. The ground state is barely
entangled (which is a general rule due to a single dominant
configuration) but entanglement does not always increase
monotonically with the excitation energy. The present systems
under study in this work contain distinguishable particles (or
motions) and spin is not considered. This means that wave
functions do not require any antisymmetrization procedure.
Otherwise, the behavior could be quite different. For instance,
in our previous study of entanglement in the He atom [18],
the antisymmetry of the total wave function (with spin and
spatial parts) along with the strong Coulomb coupling 1/r12

brings effects that make entanglement decrease monotonically
against excitation within each mode given by a particular spec-
troscopic symmetry 2S+1Lπ . If entanglement measures for all
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modes in He (namely, 3Se, 1,3P o, and 1,3De) are put altogether,
the behavior could be also quite irregular. Our conjecture is that
entanglement always increases monotonically for interacting
but distinguishable particles within a particular mode (also
with an increasing number of nodes), provided one can identify
exact or approximate modes. In the present illustrative case the
system is simple but the coupling potential is complex enough
to prevent a clear identification of modes. The entanglement
content thus depends upon how complex is the topology
of a given pure state regardless its excitation energy. In
conclusion, for coupled but distinguishable particles, a higher
entanglement is not univocally related to a higher excitation.
To put these results in perspective and to clarify our conjecture
we now analyze the entanglement content for a coupled but
exactly solvable 2D system with a series of modes.

2. Coupled oscillators in a two-dimensional space

Now let us assume a model Hamiltonian in 2D with an
exact solution and with an inversion symmetry, that consists
of two coupled harmonic oscillators with masses m1 and m2

and corresponding Hooke constants k1 = m1ω
2
1, k2 = m2ω

2
2,

and κ , the latter for the coupling term, as follows:

Ĥ = p̂2
1

2m1
+ p̂2

2

2m2
+ 1

2
m1ω

2
1x̂

2
1 + 1

2
m2ω

2
2x̂

2
2 + 1

2
κ(x̂1 − x̂2)2,

(26)
with the coordinates x1,x2 ∈ (−∞,+∞). This choice now
implies that the potential is invariant against an inversion
symmetry operation (xi → −xi , i = 1 and 2) and conse-
quently the eigenstates must be gerade or ungerade with
respect to inversion. This must have consequences in the
building process of the Schmidt basis in HX1 and HX2 : the
reduced density matrices must be in block diagonal form, with
two separated blocks (even and odd), and their eigenvectors
must be even or odd against (x1 → −x1) or (x2 → −x2)
operations.

Now, introducing the scaling X̂1 = (m1/m2)1/4x̂1 and X̂2 =
(m2/m1)1/4x̂2 for the coordinates and P̂1 = (m2/m1)1/4p̂1 and
P̂2 = (m1/m2)1/4p̂2 for the momenta, the Hamiltonian reads

Ĥ = P̂2
1

2μ
+ P̂2

2

2μ
+ 1

2
μω2

1X̂
2
1 + 1

2
μω2

2X̂
2
2

+ 1

2
κ[(m2/m1)1/4x̂1 − (m1/m2)1/4x̂2]2, (27)

where μ = (m1m2)1/2. An orthogonal transformation (rotation
matrix with angle given by θ = 1

2 arctan [ 2κ/μ

ω2
2−ω2

1+κ(m1−m2)/μ2 ]
for coordinates and momenta can bring the Hamiltonian to its
diagonal uncoupled form in terms of normal modes:

Ĥ = p̂2
+

2μ
+ p̂2

−
2μ

+ 1

2
μω2

+x̂2
+ + 1

2
μω2

−x̂2
−, (28)

where the frequency modes are given by

ω+ =
{
ω2

1 cos2 θ + ω2
2 sin2 θ

+ κ

μ
[(m1/m2)1/4 sin θ − (m2/m1)1/4 cos θ ]2

}1/2

,

ω− =
{
ω2

1 sin2 θ + ω2
2 cos2 θ

+ κ

μ
[(m1/m2)1/4 cos θ + (m2/m1)1/4 sin θ ]2

}1/2

,

(29)

that yields exact energies En+,n− = ω+(n+ + 1/2) + ω−(n− +
1/2), and exact eigenstates in the coordinate system for
normal modes as a direct product �n+,n− (x+,x−) = ϕn+ (x+) ⊗
ϕn− (x−), where

ϕn± (x±) =
(

α±√
π2n±n±!

)1/2

(−1)n±e−α2
±x2

±/2Hn± (α±x±)

(30)
are the well-known solutions for the harmonic oscillator, with
α± = (μω±)1/2 and the Hermite polynomials Hn(x).

Here it is important to remark that the entanglement content
of a bipartite system depends on the choice for the splitting of
half spaces. If subspaces are taken to be those corresponding
to normal modes x+,x− any pure state of the system is
clearly separable and not entangled, but if subspaces are taken
according to the original coordinates {x1,x2} any eigenstate is
coupled and entangled. This is quite subtle and it precludes
associating an absolute entanglement value to a composite
state: the entanglement depends on the chosen half spaces.

For this particular system, we now choose to solve our sys-
tem of coupled oscillators in Hilbert half spaces HX1 and HX2

with an expansion in terms of an even tempered Gaussian basis
set with the form ϕni

(xi) = Nni ,αni
xni e−(αni

xi )2
(for i = 1,2

and 0 � ni � Nmax
i ), with the normalization factor Nni ,αni

=√
2ni

(2ni−1)!! (
(2α2

ni
)2ni+1

π
)
1/4

and a geometrical sequence for the

exponents αni
= α0,i/γ

ni , with α0,i = 1√
2
[mi(ki + κ)]1/4 and

γ = 1.2 (chosen to avoid linear dependencies within the basis
set). All required single-particle matrix elements (overlap,
kinetic energy, and potential) can be calculated analytically
with the integral∫ ∞

−∞
x

ni+n′
i+k

i e
−(α2

ni
+α2

n′
i

)x2
i
dxi

= 1

2
[1 + (−1)ni+n′

i+k]
1(

α2
ni

+ α2
n′

i

)(ni+n′
i+k+1)/2

× (ni + n′
i + k − 1)!!

√
π

2(ni+n′
i+k)/2

(31)

for i = 1,2 and the construction of the full 2D Hamiltonian
and overlap matrices follows the same guidelines as described
for B-polynomials.

Let us take for this model the values m1 = 1, m2 = 3,
k1 = 2, k2 = 5, and κ = 7. In this case, the normal mode
frequencies are ω+ = 3.3544 and ω− = 1.3221, from which
exact energies are obtained. We make use of 15 Gaussian
basis sets for HX1 and 16 Gaussians for HX2 to expand a
variational CI wave function. CI energies with 240 two-particle
configurations are tabulated in Table II. Energies compare
reasonably well with the exact ones, although the size of the
variational basis set is clearly insufficient for highly excited
states. This is of secondary importance. The correspondence
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TABLE II. Energy values and entanglement measures for the
lowest eigenstates of two coupled harmonic oscillators in a 2D space.
Energy values are obtained from our variational CI method and they
are compared with energies (not the same energy ordering) of the
exact eigenstates, whose quantum numbers correspond to excitations
(n+,n−) of normal modes (see text).

Energy (a.u.) Modes Entropies

State CI Exact (n+,n−) SvN SL

1 2.3391 2.3382 (0,0) 0.24502 0.074229
2 3.6680 3.6602 (0,1) 0.90648 0.41682
3 5.0247 4.9823 (0,2) 1.3023 0.55517
4 5.7020 5.6927 (1,0) 0.90282 0.41524
5 6.4559 6.3044 (0,3) 1.5985 0.63781
6 7.0971 7.0147 (1,1) 1.5554 0.62251
7 7.9961 7.6264 (0,4) 1.8260 0.68651
8 8.6461 8.3368 (1,2) 1.8432 0.69444
9 9.1623 9.0471 (2,0) 1.2751 0.53968
10 9.6580 8.9485 (0,5) 1.9574 0.70762
11 10.431 9.6588 (1,3) 2.0063 0.71562
12 10.798 10.369 (2,1) 1.8981 0.70265
13 11.457 10.271 (0,6) 2.0014 0.71102
14 12.458 10.981 (1,4) 2.0997 0.74527
15 12.864 11.691 (2,2) 2.0169 0.73178
16 13.035 12.402 (3,0) 1.4265 0.57336
17 13.413 11.593 (0,7) 2.0017 0.71221
18 14.695 12.302 (1,5) 2.2487 0.75317

between the CI wave functions and the exact ones is made
not only by comparing the energies but mainly through their
topology and nodal lines in the plane (x1,x2). In Fig. 3 we plot
the wave functions for the sixth (gerade) and eighth (ungerade)
states, as reconstructed using the Schmidt decomposition with
15 terms in the expansion. The two plots are identical to those
obtained with the full variational CI expansion and also with
the Löwdin orthogonalization procedure, and they only present
tiny differences when compared to the exact ones �1,1(x1,x2)
and �1,2(x1,x2), respectively.

At this point, a remark is mandatory. The computational
solution of any eigensystem brings an arbitrary phase for each
eigenstate. The total CI wave functions and also the Schmidt
bases for HX1 and HX2 are obtained from different separate
diagonalizations. This is not a particular problem for the CI
state, because it consists of a global phase, easily amended. The
Schmidt reconstruction is made with a sum of direct products
of Schmidt bases. One could fix the phase for each individual
Schmidt function, for instance, to be defined as a positive
function on the far left of a given coordinate axis. But there
is no clue about how to determine the correct phase of each
term within the sum in the Schmidt decomposition. The only
procedure we devise is to project each Schmidt configuration
with the total CI wave function; i.e., the term 〈uiνi |�〉/√λi

must yield +1 or −1 and, therefore, the choice of a phase for
each individual Schmidt basis is indeed irrelevant. Then, in
practice, the Schmidt decomposition must be replaced by

|�〉 =
min(M,N)∑

i=1

sgn(i)
√

λi |ui,νi〉. (32)

FIG. 3. Plot of the wave functions corresponding to the 6th
(gerade) and 8th ( ungerade) eigenstates of two coupled oscillators
in 2D built as a Schmidt decomposition. These plots are identical
to those obtained from the variational CI wave function and almost
indistinguishable from the exact wave functions with excitations in
normal modes (n+,n−) = (1,1) and (1,2), respectively.

Schmidt bases for both half spaces HX1 and HX2 corre-
sponding to the sixth lowest eigenstate (top panel in Fig. 3) are
included in Fig. 4 with the corresponding Schmidt occupation
numbers λ’s. The Gaussian basis set contains even and odd
powers for xn

1 and xn
2 , and the reduced matrices for the

subspaces have two separated blocks corresponding to even
and odd eigenstates. To reproduce a gerade state (sixth state
in Fig. 3) with Eq. (32), two Schmidt bases with the same λ

and parity are combined (see Fig. 4). For any ungerade state
(see bottom panel in Fig. 3) two Schmidt basis with the same
λ but opposite parity must be combined. Additionally, the
results obtained through a Löwdin orthogonalization method
are identical to those obtained with our nonorthogonal method
(see also results in Fig. 4).

The utility of this toy model is that we have an exact
solution at our disposal in terms of normal modes (n+,n−) with
coordinates (x+,x−). This help us to approximately classify
our CI eigenstates solved with coordinates (x1,x2). From the
occupation numbers λi obtained from the reduced density
matrices in HX1 and HX2 we calculate the von Neumann and
linear entropies and the values are tabulated in Table II and also
plotted in Fig. 5, where we have associated with each point
computed in (HX1,HX2 ) the corresponding labels (n+,n−)
for normal modes in (HX+ ,HX− ). The general behavior of
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FIG. 4. Schmidt (orthogonal) basis as eigenvectors of the reduced
density matrices extracted from the sixth eigenstate (gerade) of two
coupled harmonic oscillators with Hamiltonian given in Eq. (26).
Left panel: The first five Schmidt bases for half space X1 with their
corresponding occupation number λi using nonorthogonal Gaussian
bases (solid line) and orthogonalized Gaussians a la Löwdin (red
squares). Right panel: The same as in the left panel but for the first
five Schmidt bases for half space X2.

entanglement seems to be increasing against excitation, again
with irregularities. However, once the entanglement values
are assigned to a given normal mode, the trend is much
more clear. First, the entanglement content depends on the
type of excitation manifold. For instance, the excitation series
(0,n−) (higher entanglement) is clearly distinguished from the
series (n+,0) (lower entanglement). Additional series can be
guessed in Fig. 5 such as (1,n−) for n− � 1 or (n+,1) for
n+ � 1. The arrangement of entanglement values in terms
of excitation modes sheds light on our previous results for
two coupled particles confined in a box. A general rule can
now be established for quantum systems of distinguishable
particles: the entanglement content increases monotonically
against excitation within each excitation mode.

The entanglement value seems to saturate for high excita-
tion energies, although in principle there is no rule for such
an entanglement upper bound in this case (for the opposite
behavior with fermions, that show a limiting value, the reader
is referred to Ref. [18]). In principle, this monotonic increase
within an excitation mode is due to the increasing participation
of Schmidt bases with smaller occupation numbers, since the
latter bases are responsible for reproducing the increasing
number of oscillations and nodes in the reconstruction of the

FIG. 5. Von Neumann (red circles) and linear entropies (blue
squares) for the lowest eighteen eigenstates of two coupled harmonic
oscillators in 2D with parameters m1 = 1, m2 = 3, k1 = 2, k2 = 5,
and κ = 7 using a variational CI expansion in terms of (nonorthogo-
nal) Gaussian basis sets. The entropies are calculated using Eq. (17)
using the Schmidt occupation numbers {λi}15

i=1. The labels (n+,n−)
corresponding to excitations of normal modes for the exact eigenstates
are used here to approximately identify the variational CI states
(see text). The dashed lines are used to guide the eye and connect
the consecutive values. It is observed that different excitation series
(0,n−), (n+,0), (1,n−), (n+,1), etc., can be distinguished with notably
different entanglement content.

total wave function. For example, for the fifth state, labeled
as (0,3), the first relevant Schmidt occupation numbers are
λ1 = 0.4275, λ2 = 0.3924, λ3 = 0.1579, λ4 = 0.0218, and
λ5 = 0.002424, that yields SvN = 1.5989. For the thirteenth
state, within the same excitation mode, (0,6), the first relevant
occupation numbers are λ1 = 0.3807, λ2 = 0.3292, λ3 =
0.1634, λ4 = 0.0899, λ5 = 0.02906, and λ6 = 0.007573 that
gives SvN = 2.0014. In the second case, the oscillations
present in the total wave function due to six nodal lines are
better reproduced by incorporating Schmidt basis with a higher
oscillatory structure, thus reducing the occupation of the first
Schmidt basis in comparison to those of the state (0,3), whose
more simple nodal structure can be reproduced fairly well by
using only the first three Schmidt basis pairs.

In addition, if we compare the entanglement of the pairs
(0,n−) and (n+,0) for n+ = n−, i.e., (0,1)-(1,0) (2nd and 5th
states, respectively), (0,2)-(2,0) (3rd and 9th), and (0,3)-(3,0)
(5th and 16th), it is to note that although excitations with the
smaller frequency mode ω− have more entanglement content
than excitations with larger frequency mode ω+, the difference
is relatively small, thus indicating that the number of nodal
surfaces is closely linked to the entanglement. Finally, linear
entropies SL in Table II and Fig. 5 run parallel to the von
Neumann entropy and it does not provide more information
since it is a linearization of the von Neumann entropy.

B. Electronic-nuclear entanglement in hydrogen molecular ion

In this section we make use of the Schmidt-decomposition
theorem using the nonorthogonal basis set formalism, to
evaluate the entanglement between the electronic and nuclear
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motions in the most simple one-electron molecule, H2
+, for

the 2�+
g symmetry. In addition, Schmidt natural orbitals for the

electronic and nuclear motions are computed from the Schmidt
decomposition of a non-BO total wave function.

To keep the problem more simple, we do not consider the
nuclear rotation. Thus, the bipartite system in the one-electron
molecular problem with three particles (nuclei with charges Za

and Zb and one electron) consist of separating the vibration
and the electronic motion in two half spaces HR and Hr. Then
we solve the total Schrödinger equation (H − E)�n(r,R) = 0,
with the nonrelativistic Hamiltonian

Ĥ = − 1

2μnu

d2

dR2
+ ZaZb

R
− 1

2μel
∇2

r − Za

ra

− Zb

rb

, (33)

where μnu = mp/2 and μel = mp/(mp + 1) (mp is the proton
mass) indicate the reduced nuclear and electronic masses,
respectively.

Our variational solution uses a one-center partial wave
expansion for the electron with origin at the midpoint of the
internuclear axis [19,20], and another expansion for the nuclear
vibration. We use a basis set of B-splines for the relative motion
of nuclei and the radial part of the electronic motion in the form
[12]

�n(r,θ,R) =
Nnu∑
α=1

Nel∑
i=1

�max∑
�=0

Cn
αi�Bα(R)

Bi(r)

r
ξ�(θ ) (34)

with the angular part of the electronic motion represented by

ξ�(θ ) =
√

2� + 1

2
P�(cos θ ), (35)

where P�(x) are the Legendre polynomials. Since we consider
here the gerade symmetry for 2�+

g states, only even partial
waves contribute in the sum over �. We solve the eigenvalue
problem (H − ES)C = 0 where the matrix elements for the
Hamiltonian,

Hαi�,α′i ′�′ =
∫∫∫

BαBiξ�ĤBα′Bi ′ξ�′ sin θdθdRdr, (36)

and for the overlap matrix,

Sαi�,α′i ′�′ = δ��′

∫
BαBα′dR

∫
BiBi ′dr = δ��′Snu

α,α′S
el
i,i ′ ,

(37)

are efficiently computed when using B-splines [11]. From the
full density matrix for the state �n, ρn

αi�,α′i ′�′ = Cn
αi�C

n∗
α′i ′�′ , we

readily obtain the reduced density matrices for the electron
and nuclear motions, i.e.,

ρ
n,el
i�,i ′�′ =

∑
α

ραi�,αi ′�′, (38)

ρ
n,nu
α,α′ =

∑
i�

ραi�,α′i�, (39)

and from them the subsequent Schmidt eigensystem

(ρn,elSel − λn,el)Vn,el = 0, (40)

(ρn,nuSnu − λn,nu)Vn,nu = 0 (41)

is solved, where λn,el = λn,nu = λn. The Schmidt natural
orbitals are built from these eigenvectors V and the chosen
nonorthogonal basis; for the nuclear motion

χn
k (R) =

∑
α

V
n,nu
k,α Bα(R), (42)

and for the electronic motion

ϕn
k (r,θ ) =

∑
i�

V
n,el
k,i�

Bi(r)

r
ξ�(θ ). (43)

The total molecular wave function �n(r,R) can be now
expanded in terms of the Schmidt bases

ψn(r,θ,R) =
Nmax∑

i

sgn(i)
√

λn
i ϕ

n
i (r,θ )χn

i (R), (44)

where Nmax = min[Nnu,Nel × ( �max
2 + 1)].

It is worth noting that the nuclear and electronic probability
densities can be straightforwardly calculated by using only
their corresponding Schmidt bases and occupations, i.e.,

ρnu
n (R) =

∫
|�n(r,θ,R)|2r2 sin θdrdθ =

Nmax∑
k

λn
k |χn

k (R)|2

(45)
and

ρel
n (r,θ ) =

∫
|�n(r,θ,R)|2dR =

Nmax∑
k

λn
k |ϕn

k (r,θ )|2. (46)

To compute the total non-BO wave function using the ansatz
(34) we employ a basis of 100 B-spline polynomials for the
electron radial coordinate r and also 100 B-spline bases for the
nuclear coordinate R, using a box with length 14 a.u. in both
cases and the partial wave expansion contains 14 Legendre
polynomials, from � = 0 to �max = 26, accounting only for
even values of � since we are here concerned with 2�+

g states.
The proton/electron mass ratio used in this work is mp/me =
1836.152673.

Our non-BO energies are obtained after diagonalization
of a 140 000 × 140 000 eigenproblem using multiprocessor
PETSc [21] and SLEPc [22] libraries and it takes around 12
hours of computer time to calculate 130 eigenstates using 100
processors in the HLRN (Germany) supercomputing facility.
The lowest seventeen eigenvalues that could be compared
with the bound vibrational states supported by the BO 1sσg

electronic state, up to the dissociation limit H(1s) + H+ at
E = −0.5 a.u., are included in Table III. Also, the eigenvalues
that range from the 91st to the 100th, to be compared with the
vibrational states of the BO 3dσg electronic state, are also
quoted in Table III. Our goal was not to obtain benchmark
energy results for the lowest roots (for example, our computed
ground state energy is −0.5970726 a.u. to be compared with
the highly accurate value −0.5971391 a.u. in [23]), but to
accommodate a large spectrum of eigenvalues.

The nuclear probability density for all variational non-BO
vibronic states below E = −0.1 a.u. (the rest above are not
plotted) obtained after diagonalization are represented in
Fig. 6. In spite of our huge expansion the representation has
clear limitations for the dissociative states due to the chosen
nuclear box of 14 a.u. Also, because of the box representation,
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TABLE III. Non-BO energies (in a.u.) and linear SL and von
Neumann SvN entropies for the lowest seventeen 2�+

g states, located
below the first dissociation limit H(1s) + H+ (E = −0.5 a.u.).
These states compare well with the vibrational levels of the H2

+

molecular ion bound by the 1sσg potential energy curve within the
BO approximation; similarly for the ten lowest non-BO states (from
the 91st to the 100th eigenstate) that could be associated with the
vibrational states bound by the higher 3dσg potential energy curve.

n Energy (a.u.) SL SvN

1sσg

1 −0.5970726 0.0104556 0.0479102
2 −0.5870808 0.0309338 0.1183180
3 −0.5776665 0.0508738 0.1781296
4 −0.5688101 0.0704016 0.2324166
5 −0.5604945 0.0896266 0.2832269
6 −0.5527066 0.1086473 0.3317358
7 −0.5454358 0.1274887 0.3785935
8 −0.5386708 0.1461490 0.4242275
9 −0.5324040 0.1647812 0.4693102
10 −0.5266354 0.1835216 0.5144123
11 −0.5213654 0.2021833 0.5594135
12 −0.5165920 0.2205226 0.6041233
13 −0.5123154 0.2385122 0.6488478
14 −0.5085394 0.2560744 0.6938581
15 −0.5052646 0.2728426 0.7389355
16 −0.5024833 0.2884677 0.7839340
17 −0.5001705 0.3032127 0.8297232

3dσg

91 −0.1736249 0.0188649 0.0790464
92 −0.1716710 0.0534788 0.1856425
93 −0.1697621 0.0844051 0.2689602
94 −0.1678974 0.1122812 0.3391536
95 −0.1660758 0.1375620 0.4002939
96 −0.1642963 0.1605975 0.4546355
97 −0.1625577 0.1816465 0.5035563
98 −0.1608575 0.2007819 0.5476373
99 −0.1591843 0.2177013 0.5863670
100 −0.1575013 0.2318837 0.6187359

the energy gap between E ∼ −0.25 and E ∼ −0.175 a.u.

is an artifact, and only the lowest lying bound vibronic
states associated with the 3dσg are well represented. Anyway
it suffices for our purposes in this work. In Fig. 6 one
can appreciate that oscillations of the bound vibronic states
end up at the turning points of the BO curves 1sσg and
3dσg and that, as expected here, they satisfy the oscillation
theorem. Consequently, since oscillations increase, the number
of participating Schmidt bases increases as well. We can
say indeed that non-BO vibronic states in H2

+ enter into
different hidden electronic modes (BO 1sσg , 3dσg , 2sσg ,
etc.). The entanglement content for the vibronic ground state
within the two lowest electronic modes is similarly small
(SvN = 0.0479102 for the first state and SvN = 0.0790464
for the 91st state), and from them, the entanglement entropy
increases monotonically with excitation within each mode, as
shown in Table III. Also, entanglement increases twice faster
in the 3dσg mode than in the 1sσg one, mostly due to the higher
spatial confinement or compactness of the nuclear density in
the 1sσg manifold, as illustrated in Fig. 7 [in this figure the
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FIG. 6. Nuclear probability density for all non-BO vibronic states
of H2

+. Each nuclear probability density is calculated as ρnu
n (R′) =

〈�n|δ(R − R′)|�n〉 using Eq. (45) and it is shifted to its corresponding
variational energy in the figure. The exact BO potential energy curves
for states 2�+

g 1sσg , 2sσg , and 3dσg are also included in the figure to
guide the eye.

nuclear probability density is computed by the two alternative
forms in Eq. (45), with excellent agreement].

To validate our calculations we have compared our results
with those of Ref. [13] for HD+. This reference only
gives the first Schmidt occupation numbers (λ) obtained
from the analysis of the ground state with non-BO energy
E = −0.597 897 9686 a.u., i.e., λ1 = 0.99629, λ2 = 3.68 ×
10−3, λ3 = 2.48 × 10−5, λ4 = 2.42 × 10−7, λ5 = 2.6 × 10−9,
λ6 = 3.1 × 10−11, that results in an entanglement SnBO

vN =
0.0354840. Also, in Ref. [13], the authors provide occupation
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FIG. 7. The nuclear probability density for the non-BO vibronic
states n = 1–5 associated with the BO potential 1sσg (left panel)
and for the non-BO vibronic states n = 91–95, associated with
the BO potential 3dσg . Each probability density is referred to its
corresponding vibronic energy quoted in Table III. Lines: Values
calculated using the integral form in Eq. (45). Dots: Values calculated
using the Schmidt sum in Eq. (45). The potential energy curves of
BO states 1sσg and 2pσu are also included to guide the eye.
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numbers for the natural orbitals computed within the BO
approximation. Differences with the non-BO case are small
and the resulting BO entanglement is SBO

vN = 0.0351404.
Importantly then, it is shown that the BO approximation
already entails an electronic-nuclear entanglement and non-
BO entanglement is quantified on top of this offset entangle-
ment. Computations for HD+ within our one-center method
are even more involved than for H2

+, due to the missing
gerade/ungerade symmetry that makes necessary the use of
both even and odd partial waves in the expansion (34). Also,
we use a crude expansion in B-spline bases instead of in
terms of optimized orbitals [13]. Then for the ground state we
obtain the non-BO energy E = −0.5978886 a.u. and our first
values for the Schmidt occupations are λ1 = 0.99515, λ2 =
4.76 × 10−3, λ3 = 7.89 × 10−5, λ4 = 5.12 × 10−6, for SvN =
0.04492, which compares reasonably well. Eventually, this
means that although our absolute values for the entanglement
entropy in H2

+ may have some systematic error, our relative
differences are quantitatively sound.

Schmidt bases for H2
+ can be computed for each non-

BO vibronic state using the method outlined in Sec. II B
for nonorthogonal bases. Its development is required since
the Löwdin orthogonalization method is impractical for
variational cases with such huge expansions. The latter
method requires computing the matrices S±1/2, which can be
accomplished by first calculating the diagonal form of the
overlap matrix S. For instance, in our present case for H2

+, the
diagonalization of the matrix S with a size 140 000 × 140 000
and the manipulation of matrices S±1/2 to compute the Schmidt
basis is very demanding computationally. Instead, the present
nonorthogonal method does not require the diagonalization
of the overlap matrices and, furthermore, the computation
of Schmidt bases becomes computationally cheaper through
the involvement of overlap matrices of the reduced spaces
in Eq. (13) with sizes 100 × 100 and 1400 × 1400. As an
illustration we include in Fig. 8 the first series (and most
contributing) of the electronic and nuclear Schmidt bases for
the second (n = 2 in Table III) non-BO vibronic state. The
participation of the first electronic-nuclear pair (top panel in
Fig. 8) already dominates with λ1 = 0.984 which indicates
its small entanglement content. Also, the total wave function
can be almost expressed as a direct product �n=2(r,R) ∼
ϕn=2

1 (r,θ ) × χn=2
1 (R). This form reminds us of the BO sepa-

ration ansatz �
1sσg

v=1 (r,R) = ϕ1sσg
(r,θ ; R) × χ

1sσg

v=1 (R), but with
a notable difference: the electronic Schmidt basis does not
depend parametrically on the internuclear distance R. The
vibrational Schmidt basis χn=2

1 (R) (top panel in Fig. 8) is

similar to the vibrational state χ
1sσg

v=1 (R) and the electronic
density of the chief Schmidt basis (without nodes) accumu-
lates in the neighborhood of the two protons at a non-BO
internuclear equilibrium distance. This is quite subtle; the
BO electronic wave function ϕ1sσg

(r,θ ; R) must be calculated
at every single internuclear distance R ∈ [0,+∞) then just
to be multiplied by the nuclear function χ

1sσg

v=1 (R), which is
only relevant in the interval R ∈ [1,4] a.u.. The latter nuclear
wave function acts as a weighting or damping factor for the
electronic BO wave functions. The result is that whereas none
of the BO functions at any R ∈ [1,4] distance can be univocally
compared to the unique Schmidt electronic basis ϕn=2

1 (r,θ ),
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FIG. 8. Electronic (left panels) and nuclear (right panels) Schmidt
natural orbitals corresponding to the non-BO vibronic state n = 2,
associated with the second vibrational state of the BO potential energy
curve 1sσg . Nodal lines in the electronic Schmidt bases, where the
density is zero, are indicated with green lines. In this case, they
correspond to radial nodes.

both electronic-nuclear products yield a similar result for the
total wave function of the second vibronic state, where the
BO approximation works fine. In fact, the BO approximation
works very well for all bound states in H2

+ quoted in Table III.
However, the entanglement entropy increases with excitation
which means that, in principle, the entanglement content could
be disconnected from the plausibility in the application of the
BO approximation (see also [7]).

Similarly, we also include in Fig. 9 the corresponding
Schmidt electronic and nuclear basis for the non-BO vibronic
state n = 93 in Table III, that could be associated with
the third vibrational state supported by the 3dσg state.
The lowest Schmidt pair has λ1 = 0.9559 and therefore it
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FIG. 9. Electronic (left panels) and nuclear (right panels) Schmidt
natural orbitals corresponding to the non-BO vibronic state n = 93
in Table III, associated with the third vibrational state of the BO
potential energy curve 3dσg . Nodal lines in the electronic Schmidt
bases, where the density is zero, are indicated with green lines. In
this case, they correspond to both radial and angular nodes. The two
angular nodes are invariant and present in all Schmidt bases, but the
number of radial nodes increases.

almost reproduces the electronic and nuclear densities at the
equilibrium distance of the 3dσg potential energy surface.
The BO 3dσg state is known to have two angular nodes in
the confocal elliptic coordinate η = (r1 − r2)/2, which is
reproduced in all Schmidt electronic bases (left panels in
Fig. 9). The dominant nuclear Schmidt basis (also in the
top panel in Fig. 9) approximately reproduces the χ

3dσg

v=2 (R)
centered at R = 9 a.u. with two radial nodes.

To conclude, we include some analysis of the total non-BO
wave functions of H2

+. In principle, a non-BO solution
cannot rely on the existence of potential energy curves but its
scrutiny can be performed by computing some properties or
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FIG. 10. From top to bottom: Expectation values of the kinetic
energy operator of the nuclear Tn and electronic Te motion, expec-
tation value of the radial component of the position vector of the
electron r , and von Neumann entropy SvN . The dashed vertical lines
at −0.5 and −0.125 a.u. indicate the dissociation thresholds of the
1sσg and 3dσg BO states of H2

+. Vertical arrows indicate the upper
limit until which the non-BO vibronic states are well represented
within a nuclear box of 14 a.u.

expectation values. For instance, we compute the expectation
values for the electron kinetic energy operator T̂el = − 1

2μel
∇2

r

and the nuclear kinetic energy T̂nu = − 1
2μn

∂2

∂R2 in Eq. (33).
Also, the expectation value of the radial component r of
the position vector r for the electron with origin located
at the midpoint of the internuclear distance is evaluated.
All these quantities are included in Fig. 10. For instance,
the expectation value 〈T̂nu〉 shows a typical behavior for an
anharmonic potential: the nuclear kinetic energy increases for
the lowest states, which approximately follow the harmonic
oscillator expectation value, reaches a maximum, and then
its value decreases for vibrational Rydberg states. In the
dissociation limit at E = −0.5 a.u. it connects with the nuclear
continuum with zero kinetic energy. From this point, the
kinetic energy of the fragments increases monotonically, as
expected. At energy E ∼ −0.17 a.u., 〈T̂nu〉 takes again a
very small value, which indicates that the system reaches a
new oscillatory motion within another electronic excitation
mode (the BO 3dσg). Unfortunately, due to limitations of our
computation concerning a nuclear box of limited size, high-
energy non-BO vibronic states associated with the BO 3dσg

mode are not well represented around the second dissociation
threshold at E = −0.125 a.u. (see Fig. 6) and, consequently,
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the expectation value does not drop to zero as expected, but
instead increases monotonically. The expectation value for
the electronic kinetic operator decreases with excitation (to
compensate the increasing value of the potential average) up to
the well-known limit of 〈Te〉 = 0.5 a.u. for the hydrogen atom
at E = −0.5 a.u. (according to the quantum virial theorem).
Analogously to 〈T̂nu〉, the expectation values 〈T̂e〉 and 〈r〉
show clear discontinuities also at E ∼ −0.17 a.u. indicating
a transition to a new electronic mode of motion. The more
striking issue corresponds to the entanglement measure, that
also follows an analogous pattern. The entanglement increases
monotonically within the lowest electronic mode 1sσg to
reach the nuclear dissociation limit after which entanglement
remains approximately constant (the constant value and the
structures in the nuclear continuum are due to limitations in
the correct representation of the density of states) to suddenly
drop to a minimum value at E ∼ −0.17 a.u. (3dσg mode),
from where again the entanglement increases monotonically
within the second electronic mode of motion. In conclusion,
this means that entanglement may also act as a witness to
approximately elucidate to which electronic state or mode
a full non-BO vibronic state belongs within blind non-BO
molecular calculations.

IV. CONCLUSIONS AND PERSPECTIVES

A theoretical framework based on the Schmidt decompo-
sition theorem suitable for nonorthogonal basis sets has been
devised and applied to fully correlated non-BO eigenfunctions
of the Hamiltonian representing a nonrotating H2

+ molecule.
This molecule can be established as a realistic prototype
of a bipartite system to study entanglement between two
distinguishable subsystems or motions, electronic motion plus
nuclear vibration. This entanglement in the H2

+ molecule has
been quantified by calculating the von Neumann and linear
entropies arising from the eigenvalues of the reduced density
matrices. We find that the entanglement entropy associated
with a non-BO wave function along with the expectation values
for nuclear and electronic kinetic energies may serve as a
criterion to associate the non-BO vibronic states with a given
electronic BO potential energy curve or electronic excitation
mode. It is also observed that, for the analyzed lowest non-BO
vibronic states associated with 2�+

g 1sσg and 3dσg BO states,
the dominant electronic and nuclear Schmidt bases display
the main features of the BO electronic (at the equilibrium
distance) and nuclear wave functions, respectively. This is
more than reasonable since the BO approximation is fully
justified in the cases reported in this work for H2

+. This method
will find more insightful applications in molecular systems
that show avoided crossings or conical intersections between
their BO curves, where the electronic-nuclear entanglement is
expected to dominate. Nevertheless, it must be pointed out that
the Schmidt decomposition theorem only applies to bipartite
systems (such as two atomic electrons, two spins, electron
plus vibration, or two coupled vibrational normal modes).
That being so, the Schmidt separation in molecules can be
established at most between global electronic (all electrons)
and nuclear motions (including both rotation and vibration).
At this point, an extension to the H2 molecule (2 electrons +
vibration) is feasible by considering spin-adapted two-electron

configurations in terms of one-center B-spline expansions
for the electronic motion, although this is very demanding
computationally.

One must recognize that the use of the Schmidt decom-
position theorem is very helpful to replace the total wave
function in terms of a large CI expansion with a much
shorter one, but in order to obtain the latter, the former is
required for the reduction. It would be desirable to produce the
bipartite Schmidt bases (even approximate) using a shortcut,
yet unknown. Furthermore, the practical use of the Schmidt
decomposition requires the knowledge of the relative signs
in the superposition of Schmidt basis products, which is an
important issue for highly entangled states where Schmidt
occupations are evenly distributed. These phases, being put
aside a trial and error procedure, are also obtained from the
knowledge of the total CI wave function. Nevertheless, once
the Schmidt bases are obtained for any particular vibronic
state, and since they are formally complete, they can be
used as universal basis sets to expand any molecular orbital
or any vibrational state, with better convergence properties
as is well known for natural orbitals in quantum chemistry
[15].

There are different forms to write or expand the to-
tal molecular wave function �(r,R), namely, the Born-
Huang ansatz �(r,R) = ∑

i F
nu
i (R)ϕel

i (r; R) in terms of
eigenstates ϕel

i of the electronic Hamiltonian [24], the
marginal and conditional exact factorization form �(r,R) =
f (R)P (r|R) by Hunter [25,26] (that yields hard-to-solve cou-
pled integro-differential equations) and the present Schmidt
form �(r,R) = ∑

i

√
λiφi(r)χi(R). The Born-Huang ansatz

introduces the well-known nonadiabatic couplings among
electronic states due to the kinetic operator, namely, matrix
elements 〈ϕel

i |∇R|ϕel
j 〉 and 〈ϕel

i |∇2
R|ϕel

j 〉, since the electronic
functions still depend parametrically on the nuclear geometry.
At variance, these nonadiabatic couplings are missing when
using the Schmidt form. However, other electrostatic couplings
〈φi |Ĥelφj 〉 appear instead since the Schmidt electronic bases
are not eigenfunctions of the electronic Hamiltonian. In this
respect, they can be eventually proposed as diabatic basis to
be used in molecular dynamics. However, its practical imple-
mentation must be taken with caution since both electronic and
nuclear Schmidt bases obtained from a selected vibronic state
(even with large expansions) span only a limited spatial region
in the electronic and nuclear coordinates (for instance, some
nuclear Schmidt bases span the interval R ∈ [1,4] a.u. in Fig. 8
and others the interval R ∈ [6,13] in Fig. 9). Ultimately, this
implies that these wave functions could eventually be used in
a piecewise form, by successively joining Schmidt bases that
provide finite support in different intervals of the electronic
and nuclear coordinates.
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