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Direct comparison of quantum and simulated annealing on a fully connected Ising ferromagnet
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We compare the performance of quantum annealing (QA, through Schrödinger dynamics) and simulated
annealing (SA, through a classical master equation) on the p-spin infinite range ferromagnetic Ising model, by
slowly driving the system across its equilibrium, quantum or classical, phase transition. When the phase transition
is second order (p = 2, the familiar two-spin Ising interaction) SA shows a remarkable exponential speed-up
over QA. For a first-order phase transition (p � 3, i.e., with multispin Ising interactions), in contrast, the classical
annealing dynamics appears to remain stuck in the disordered phase, while we have clear evidence that QA shows
a residual energy which decreases towards zero when the total annealing time τ increases, albeit in a rather slow
(logarithmic) fashion. This is one of the rare examples where a limited quantum speedup, a speedup by QA over
SA, has been shown to exist by direct solutions of the Schrödinger and master equations in combination with a
nonequilibrium Landau-Zener analysis. We also analyze the imaginary-time QA dynamics of the model, finding
a 1/τ 2 behavior for all finite values of p, as predicted by the adiabatic theorem of quantum mechanics. The
Grover-search limit p(odd) = ∞ is also discussed.
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I. INTRODUCTION

Many of the complex problems of interest, notably all
combinatorial optimization problems, can be generally cast
as the search for the global minimum energy state of a suitable
classical Ising Hamiltonian, depending on N binary (spin)
variables [1]. Quantum annealing (QA) [2–7]—intimately
related to adiabatic quantum computation [8]—was originally
thought of as an alternative route to classical annealing
[9], employing quantum fluctuations to effectively escape,
through quantum tunneling, from unfavorable local minima
in a complex energy landscape.

QA has lately become a very active field of research, due to
the availability of quantum annealing programmable machines
based on superconducting flux quantum bits [10,11]. One of
the open issues in the field is finding classes of problems where
clear evidence is seen for a limited quantum speedup in the
sense defined in Ref. [12], i.e., a QA based computation would
show a better scaling with the number of variables N than
a corresponding classical heuristics, for instance, simulated
annealing (SA) [9]. The original positive results on the
random Ising model [5,13], followed by equally encouraging
results on the traveling salesman problem [14], were soon
followed by a rather disappointing outcome on a random
satisfiability problem [15]. By now, the literature on this issue
has grown enormously. A partial list is Refs. [12,16–45] and
the references therein cited.

It is fair to say that the picture is far from complete. One
of the notable exceptions where a quantum speedup has been
clearly proven is Grover’s search problem [46,47]—searching
for a given item in an unsorted database of N = 2N items—
where a quadratic speedup, from the classical algorithm
scaling as ∼2N to a quantum algorithm scaling as 2N/2, is
known [46,47].

The Grover problem can be regarded as a particular
limit [48] of a fully connected Ising model with uniform

ferromagnetic couplings, whose classical Hamiltonian reads

HC = −JN

2

⎛⎝ 1

N

N∑
j=1

σ̂ z
j

⎞⎠p

, (1)

where p � 2 is an integer parameter, and we have expressed
the classical spin variables in terms of σ̂ z Pauli matrices. In
the limit in which one sets p(odd) = ∞ the model effectively
describes the Grover problem: a single isolated minimal
energy configuration, the fully magnetized state |↑,↑, . . . ,↑〉
has energy −JN/2, and is well separated from all other
configurations having zero energy.

Even for the problem defined by the Hamiltonian in
Eq. (1), a definite answer for generic p is still missing for
dynamics, although statistical-mechanical analyses lead to
a good amount of understanding of equilibrium properties
[48,50,51]. It is interesting to ask whether and when a quantum
speedup can be proven in this particular class of simple
problems. Studies on the QA of the fully connected Ising
ferromagnet have appeared in Refs. [48–50]. The common
setting is to supplement the classical “potential energy” HC
with a transverse field term −�(t)

∑
j σ̂ x

j , obtaining a time-
dependent quantum Hamiltonian of the form

ĤQ(t) = −JN

2

⎛⎝ 1

N

N∑
j=1

σ̂ z
j

⎞⎠p

− �(t)
N∑

i=1

σ̂ x
i , (2)

whose Schrödinger unitary evolution can be studied, exploiting
permutation symmetry, for rather large values of N ∼ 1000.
The efficiency of QA is remarkably related to the nature of the
transition point separating the large-� quantum paramagnetic
phase from the small-� ferromagnetic phase. It is known that
for p = 2 the transition is of second order, and the resulting QA
evolution improves its estimate of the ground-state energy as a
power law [49] of the annealing time τ . More precisely, one can
define a residual energy per spin, see Eq. (13) and Sec. II D for
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TABLE I. Summary of our findings for the behavior of the residual energy εres
N (τ ) at the end of a linear annealing over a time τ at finite N

and in the thermodynamic limit εres
N→∞(τ ). For a definition of the εres

N (τ ), see Eq. (13).

Annealing of the p-spin fully connected Ising model
QA (Schrödinger) dynamics: ĤQ(t) = − JN

2 ( 1
N

∑N

j=1 σ̂ z
j )

p − �(t)
∑N

i=1 σ̂ x
i �(t) = �i(1 − t

τ
) + �f

t

τ

SA (master eq.) dynamics: HC = − JN

2 ( 1
N

∑N

j=1 σj )
p

T (t) = Ti(1 − t

τ
) + Tf

t

τ

εres
N (τ ) εres

N→∞(τ )

p = 2 p � 3 p = 2 p � 3

Intermediate τ Asymptotic Intermediate τ Asymptotic Asymptotic Asymptotic

QA-RT Cp

N
e−τ/τ∗

N
�2

i

8

1

τ 2
a Cp

N
e

−τ/τ∗
N,p

�2
i

p3

1

τ 2
∼ 1

τ 3/2
b ∼ 1

log(γ τ )

(τ∗
N

∼N2/3) (τ∗
N,p

∼e2αpN )c [see Eq. (17)] [see Eq. (20)]

QA-IT
�2

i

8

1

τ 2

�2
i

p3

1

τ 2

�2
i

8

1

τ 2

�2
i

p3

1

τ 2

SA (Tf > 0) 1
2 e−τ/τ ′

f
C

τ
1
2 e

−τ/τ∗
N,p,f

C

τ

C

τ

1

2
(τ∗

N,p,f∼e
NAp,Tf )

SA (Tf = 0) ∼e−τ/τf 1
2 e

−τ/τ∗
N,p ∼e−τ/τf

1

2
(N-indep. τf ) (τ∗

N,p
∼N

p−2
2 ) (N-indep. τf )

aThese results follow from the adiabatic theorem of Ref. [7].
bPreviously found in Ref. [49].
cFollows also from the critical gap scaling found in Refs. [48,50].

details, and show [49] that in the thermodynamics limit N →
∞ one gets εres(τ ) ∼ τ−3/2. The situation changes drastically
for p � 3 because the transition turns first order [48], and
the QA dynamics becomes very slow [50]. Although methods
have been proposed to avoid first-order transitions for this
model using nonstoquastic Hamiltonians [51–54], we focus
our attention to the traditional case of a stoquastic Hamiltonian
with a transverse field.

The goal of the present paper is to precisely quantify how
much QA is slowed down through an accurate determination
of the thermodynamic-limit behavior of the residual energy for
p � 3. Our conclusion, based on a finite-size analysis supple-
mented by the construction of the geometric envelope of the
finite-N Landau-Zener data, is that the thermodynamic limit
of the residual energy is logarithmic, εres(τ ) ∼ 1/ log (γ τ ),
for any finite p. Interestingly, we show that an imaginary-time
Schrödinger annealing dynamics displays, instead, a power-
law behavior εres(τ ) ∼ 1/τ 2 for all finite values of p, as
predicted by the adiabatic theorem of quantum mechanics [7].

On the classical side, no study, to our knowledge, has
tackled the single-spin-flip classical dynamics of the ferro-
magnetic fully connected p-spin model. This is the second
important goal we set for our study. We solved this problem
by studying the deterministic evolution of a classical master
equation where the temperature T is allowed to change in
time, in the spirit of Refs. [55,56] where the same approach is
applied to the Ising model in one dimension. We find that
the final asymptotic residual energy depends significantly
on the final temperature Tf we set for the annealing. For
p = 2, the classical master equation annealing ends up being
exponentially fast, εres(τ ) ∼ e−τ/τ ∗

, hence winning over QA.
For p � 3, however, the result is opposite: we have evidence
that a classical annealing dynamics remains stuck, for N → ∞,

in the wrong (paramagnetic) sector, never attaining, even
for arbitrarily long annealing times τ , the correct minimal
energy ferromagnetic state. Table I contains a summary of our
results, together with some previously known facts about this
problem.

This paper is organized as follows. In Sec. II we present the
model we want to study and the different annealing approaches
we employed. Section III contains a detailed account of
our results concerning the battle between Schrödinger QA
and classical simulated annealing. Section IV deals with
the imaginary-time Schrödinger QA. Section V contains a
discussion and our conclusions. The Appendixes contains a
few technical details.

II. ANNEALING PROTOCOLS

Before embarking on the discussion of the results, we
briefly introduce below the different types of annealing we
will consider: a Schrödinger evolution quantum annealing,
Sec. II A, a thermal annealing of the classical Glauber-like
master equation, Sec. II B, and an imaginary-time Schrödinger
quantum annealing, Sec. II C. Section II D details how the
annealing parameters are changed, and how the residual energy
is defined in the different cases.

A. Quantum annealing (QA-RT)

To perform a QA dynamics on the fully connected ferro-
magnetic p-spin model, we supplement the classical energy
HC in Eq. (1) with the standard transverse field term as in
Eq. (2) which we repeat here for the reader’s convenience:

ĤQ(t) = −JN

2

⎛⎝ 1

N

N∑
j=1

σ̂ z
j

⎞⎠p

− �(t)
N∑

i=1

σ̂ x
i . (3)
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Here �(t) is the time-dependent transverse field which we
take to decrease towards �f = 0 starting from some large
value �i . Details on the annealing schedule will be given in
Sec. II D; see Eq. (12). For very large �i , the initial ground state
|ψ0〉 is magnetized along the x̂ spin direction and thus very
disordered along the ẑ direction. The equilibrium properties of
this model are well established; see, for instance, Refs. [48,50].
For what concerns the present work, it is important to recall
that the model has a second-order phase transition for p = 2
at �

(p=2)
c = J , characterized by a critical-point gap scaling

as 	
(p=2)
N ∼ N−1/3, and a first-order phase transition for

p � 3 with a gap which now scales exponentially with N , as
	

(p)
N ∼ e−αpN . For increasing values of p the critical transverse

field �
(p)
c approaches the Grover limit �

(p→∞)
c = J/2. The

nature of the transitions, as a function of the temperature
T , is identical in the classical case, as an elementary exact
calculation shows: second order for p = 2, which turns into
first order for p � 3.

One quickly realizes that since the Hamiltonian commutes
with the total spin Ŝ2 the study of the QA dynamics can be
reduced to the Hilbert space subsector with the largest spin
S = N/2, which is (N + 1)-dimensional; see Refs. [49,50].
Denoting the usual angular momentum states |S = N

2 ,M〉,
where M = −N

2 ,−N
2 + 1, . . . ,N

2 , with the shorthand |m =
2M
N

〉, the amplitudes ψ(m,t) = 〈m|ψ(t)〉 of the time-evolving
state vector |ψ(t)〉 obey a simple Schrödinger equation of the
form (here and henceforth we set h̄ = 1)

i
∂

∂t
ψ(m,t) = −N

2
Jmpψ(m,t)

−N

2
�(t)

∑
α=±1

K (α)
m ψ

(
m − 2α

N
,t

)
. (4)

Here the first term originates from the classical (potential)
energy HC, while the second (kinetic) term involves K (±)

m =√
1 − m2 + 2(1 ∓ m)/N , the square-root originating from

the well-known angular momentum relationship Ŝ±|S,M〉 =√
S(S + 1) − M(M ± 1)|S,M ± 1〉 after rescaling by 2/N .

B. Simulated annealing (SA)

To tackle the single-spin-flip classical dynamics of the
ferromagnetic fully connected p-spin model in Eq. (1), one
needs to write down a classical master equation (ME), in
the spirit of the celebrated Glauber approach to the one-
dimensional Ising model [57], for the probability P (σ,t) that
the system is in configuration σ at time t . In continuous time,
such a ME would have the following linear form [58]:

∂P (σ,t)

∂t
=

∑
σ ′

Wσ,σ ′P (σ ′,t) −
∑
σ ′

Wσ ′,σ P (σ,t). (5)

Here Wσ,σ ′ is the “rate” matrix describing the transition from
a configuration σ ′ to σ , and the second term describes that
inverse process σ → σ ′. The configurations σ ′ which are
connected to σ by Wσ,σ ′ can be regarded as neighbors of σ :
we will consider only single spin-flip moves, denoting with
σ ′ = σ j = (σ1, . . . , − σj , . . . ,σN ) the configuration which
differs from σ by a flip of the variable σj . Even restricting
in this way the “neighbors” σ ′, there is still a large freedom in

the choice of Wσ,σ ′ . Typically, one imposes that the choice
is such that the ME converges, when the temperature is
kept fixed, towards the equilibrium Boltzmann probability
distribution P eq(σ ). An effective way to impose this approach
to equilibrium is to require that the detailed balance condition
(DB) is satisfied:

Wσ,σ ′P eq(σ ′) = Wσ ′,σ P eq(σ ). (6)

Even imposing the DB condition leaves a considerable
freedom in the choice of Wσ,σ ′ . One possible choice is the usual
Metropolis rule, very common in Monte Carlo studies, which
we will not consider here because it is not analytically very
convenient. A second widely used form of Wσ,σ ′ satisfying
DB, which we will adopt in the following, is the heat bath
choice:

Wσ,σ ′ = α0
e−βHC(σ )

e−βHC(σ ) + e−βHC(σ ′)

= α0
e− β

2 	Eσ,σ ′

e− β

2 	Eσ,σ ′ + e
β

2 	Eσ,σ ′
, (7)

where 	Eσ,σ ′ = HC(σ ) − HC(σ ′) is the classical energy dif-
ference in changing the configuration from σ ′ to σ , and α0 is
an overall rate constant which we easily reabsorb in our units
of time.

Following the approach of Ref. [55], as recently applied
on the random Ising chain problem in Ref. [56], we might
transform a classical master equation into an equivalent
imaginary-time Schrödinger problem with an appropriate
effective Hamiltonian Hσ,σ ′ which effectively “symmetrizes”
the rate matrix Wσ,σ ′ using DB; from there, one would
then proceed to study such an equivalent imaginary-time
Schrödinger problem using the same “total spin technique”
employed above for the quantum case. One might do that, but
we will not do it here, for a reason that we briefly explain in
Appendix B.

Now, we will directly exploit the “permutation symmetry”
of the classical problem to do something that is completely
equivalent to working in the “maximum spin sector.” Indeed, a
common feature of the many possible choices of Wσ,σ ′ based
on DB is that Wσ,σ ′ depends on the configurations σ and σ ′ only
through their classical energies HC(σ ) and HC(σ ′). These, in
turn, for the model we are considering, depend only on the total
magnetization m = 1

N

∑
j σj : HC(σ ) = −JNmp/2 ≡ E(m),

where we introduce the shorthand E(m) to denote the classical
energy of a configuration with magnetization (per spin) m.
Hence we can regard Wσ,σ ′ = Wm,m′ and make the Ansatz
that P (σ,t) itself will depend on σ only through m, provided
we account for the appropriate combinatorial factors. This
transforms the classical ME into a workable problem of
the same difficulty as the Schrödinger equation in Eq. (4).
If N+ is the number of ↑ spins in the configuration σ ,
and N− that of ↓ spins, we can express the magnetization
m as m = (2N+ − N )/N ∈ [−1,1]. For finite N , m can
assume only N + 1 values which differ by 2/N , i.e., m =
−1 + 2k

N
with k = 0, . . . ,N . The number of energetically and

dynamically equivalent configurations σ corresponding to a
magnetization m being given by ( N

N+), we can define the
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probability distribution for the magnetization m as

P(m,t) =
(

N

N+

)
P (σ,t). (8)

Rewriting the classical ME Eq. (5) in terms of P(m,t), with
due account of all the binomial factors, we eventually arrive at
the following “permutation symmetric” version of it:

− ∂P(m,t)

∂t
= −N

2

∑
α=±

W (α)
m P

(
m − 2α

N
,t

)

+ N

2
Vm P(m,t). (9)

Again, 2
N

is the change in magnetization upon flipping a single
spin, but the effective kinetic and potential term coefficients
are now given by

W (α)
m =

(
1 + αm + 2

N

)
Wm,m+ 2α

N
,

Vm =
∑
α=±

(1 + αm)Wm−α 2
N

,m. (10)

Notice that the transition rates Wm,m′ depend on the energy
difference E(m) − E(m′) and also on the inverse temperature
β = 1/(kBT ). To do a SA dynamics we have to “anneal down”
the temperature T (t) entering in the heat-bath transition rates,
thus making all the relevant ingredients entering Eq. (9) time
dependent: Wm,m′ (T (t)), Wα

m(T (t)), and Vm(T (t)). Equation
(9), with the prescribed time-dependent coefficients ensuing
from the time dependence of T (t), is the linear system of N + 1
coupled differential equations that we will need to solve to do
SA dynamics for the fully connected spin ferromagnet, in the
spirit of a Glauber-type classical master equation.

C. Schrödinger quantum annealing in imaginary time (QA-IT)

The analogy of the classical ME in Eq. (5) with an
imaginary-time Schrödinger problem is well known[58]: it can
be made precise by a suitable symmetrization of the transition
rate matrix Wσ,σ ′ to transform it into a proper Hermitian
quantum kinetic energy. Such an analogy is inspiring, as it
correctly suggests, for instance, that the thermal annealing
dynamics proceeds by “filtering out” the higher excited eigen-
states from the time-evolving P (σ,t). It should, however, not
be confused with the actual imaginary-time (IT) Schrödinger
dynamics obtained by a Wick’s rotation t → −it of Eq. (4),
which amounts to studying

− ∂

∂t
ψ(m,t) = −N

2
Jmpψ(m,t)

− N

2
�(t)

∑
α=±1

K (α)
m ψ

(
m − 2α

N
,t

)
. (11)

Although physically not relevant for the actual hardware of
possible QA machines, this route is interesting from the
algorithmic point of view, as many quantum Monte Carlo
approaches are indeed based on an IT framework. Moreover,
the filtering effect towards the ground state of the IT dynamics
is beneficial within an optimization context. Indeed, recent
results for an Ising chain [56] suggest that the residual energies
obtained using QA in IT are definitely below those of a
standard QA in real time (RT).

D. Annealing schedule and the residual energy

To fully specify the annealing, we have to stipulate the
annealing schedule we will use for the relevant parameters:
the transverse field �(t) for QA, and the temperature T (t)
for SA. Although a schedule optimization is known to be
highly important [7,45]—for instance, it provides the quadratic
quantum speedup in a QA version of the Grover’s search
problem [47]—for the purpose of a simpler setting we will
adopt here a linear schedule for both QA and SA, writing

�(t) = �i

(
1 − t

τ

)
+ �f

t

τ
, QA,

T (t) = Ti

(
1 − t

τ

)
+ Tf

t

τ
, SA. (12)

On equal footing with QA, where the initial state is the ground
state of a suitably large �i > �c, the SA evolution will start
from the equilibrium configuration at a sufficiently large Ti �
Tc, where Tc is the equilibrium critical temperature. Notice that
we will allow ourselves a bit more freedom in the SA case, by
choosing Tf to be the final temperature, which we could take
to be either much less than Tc, or simply set to Tf = 0. We
will see the role of this choice in discussing the SA results. In
the QA case the value of �f is much less relevant, as long as
�f � �c, and we simply set �f = 0.

To characterize the annealing efficiency we study, as often
done, the residual energy (per spin) at the end of annealing,
defined as the difference between the total energy in the
final state, minus the corresponding minimal energy. In the
quantum case, the definition involves the average of the final
Hamiltonian ĤQ(τ ) = HC over the time-evolved final state
|ψ(τ )〉. In the classical case the corresponding quantity to
calculate is the average of the classical HC over the final
probability distribution P (σ,τ ). In both cases we write

εres
N (τ ) =

{
1
N

[ 〈ψ(τ )|ĤQ(τ )|ψ(τ )〉
〈ψ(τ )|ψ(τ )〉 − E0

]
, QA,

1
N

( ∑
m E(m)P(m,τ ) − 〈E〉eq

)
, SA,

(13)

where E0 is the final minimal energy value, E0 = −NJ/2 in
the present case, while 〈E〉eq denotes the average energy over
the equilibrium distribution at the final temperature Tf . εres

N (τ )
is in general a function of τ and of the number of sites N . Its
dependence on p is implicit, but, as we shall see, the value of
p plays a crucial role in the following.

III. RESULTS: QA-RT VERSUS SA

We present here the results of our analysis of both QA-RT
and SA for the fully connected p-spin Ising ferromagnet. We
distinguish the p = 2 case, where the transition (both classical
and quantum) is second order, from p � 3 where the classical
and quantum transitions are first order. (We will mostly present
results for p = 3, but the higher p we have explored present a
similar phenomenology.) We will in the end discuss separately
the Grover limit p(odd) = ∞. In our numerical analysis we
simulated the QA-RT and SA dynamics by annealing down the
driving parameter with a constant rate in a total annealing time
τ ; see Eq. (12). To characterize the behavior of the residual
energy density Eq. (13), we solved the Schrödinger equation
(4), and the classical ME Eq. (9), for several values of the
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FIG. 1. (a) Log-log plot of the residual energy density vs annealing time for QA-RT for p = 2. The QA-RT raw data show the four different
regimes discussed in the text. Here �i = 2. (b) The envelope construction illustrated: notice the large coherent oscillations of the finite-size LZ
data, discussed in the text. The green thick line represents the geometrical envelope of our QA-RT finite-N curves, obtained from LZ fit (black
solid lines). (c) The spectrum for N = 64. (d) The minimum gap 	N (lines) and the more relevant dynamical gap (lines with symbols) vs the
transverse field �. The inset shows the scaling with N of the minimum gap 	N at the critical point.

total annealing time τ and increasing the number of sites
N up to 1024 spins. A comparison between real-time and
imaginary-time Schrödinger QA is deferred to Sec. IV. We set
the coupling J = 1 in what follows.

The QA-RT dynamics of the present model was previously
studied in Ref. [49] for p = 2, finding εres

N→∞(τ ) ∼ τ−3/2 in
the thermodynamic limit, and in Ref. [50] for general p, with
an exhaustive analysis which however did not go all the way to
predicting the final asymptotic large-τ behavior of εres

N→∞(τ ).

A. p = 2

We start by presenting the results obtained for p = 2.
This case was already discussed in Ref. [49]. The analysis
performed in the present work will prove crucial in dealing
with p � 3. Figure 1 shows our QA results for p = 2 for
Schrödinger annealing in real time (RT). As first reported by
Caneva et al. [49], the QA-RT data for εres

N (τ ) as a function of
the annealing time τ show four regimes as follows.

(1a) An initial very short-τ behavior, where the system is
essentially unable to follow the drive, and remains trapped in
the paramagnetic phase.

(1b) A subsequent power-law scaling which “feels” the
critical point of the system, because the driving is too fast
for the system to realize that, at finite N , the gap 	N is
nonvanishing, 	N > 0: here εres(τ ) ∼ τ−3/2. From Fig. 1(c)

and Fig. 3(c), we see that the ground state for large � is driven,
upon decreasing �, through a series of avoided level crossings.

(2) An intermediate Landau-Zener regime where the driving
is slow enough that the system “sees” that 	N > 0, but not
so slow to be completely adiabatic. Here the evolution is
dominated by single Landau-Zener (LZ) events for an effective
two-level system describing the avoided crossing, with a
gap 	N > 0, between the two lowest-lying instantaneous
eigenvalues. Notice that for even values of p the relevant
gap is between the ground state and the second excited state,
because ĤQ preserves parity. The dynamical gap is therefore
finite for � < �c: it shares the same critical properties of
the first equilibrium energy gap, as shown in Fig. 1(d). The
LZ formula predicts that the probability of being excited
across such an avoided level crossing transition goes like
PLZ = e− π

4 	2
Nτ , which suggests that the residual energy per

spin in this intermediate regime should behave as

εLZ
N (τ ) = C

N
e−τ/τ ∗

N , (14)

where τ ∗
N ∝ 	−2

N is a characteristic time for the LZ transition.
(3) A final asymptotic regime for τ � 	−2

N —hence only
observed for finite N—which satisfies the adiabatic theorem
prediction [7,59] of εres(τ ) ∝ 1/τ 2. In the present case we find,
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for the general value of p,

εres
(
τ � 	−2

N

) ≈ �2
i

p3

1

τ 2
. (15)

Although the final asymptotic behavior of εres for N → ∞
turns out to be, in the end, given by the power-law scaling
τ−3/2 discussed in (1b), the most interesting, and in some
sense revealing, regime is the intermediate-τ LZ region (2).
This LZ regime will be present also for p � 3 and shows a
behavior of the residual energy which can be cast in the form

εLZ
N (τ ) =

{
C2
N

e−γ2τ N−2z

for p = 2,

Cp

N
e−γpτ e−2αpN

for p � 3.
(16)

Here Cp is, as we have verified, very close to the first energy
gap at the end of the annealing, i.e., Cp ≈ pJ + O(1/N ).
The difference between p = 2 and p � 3 resides in the way
the transition gap 	N closes with increasing N : as a power
law [49] 	N ∼ N−z (with z = 1/3) for p = 2 (second-order
transition), or exponentially [48,50] 	N ∼ e−αpN for p � 3
(first-order transition). To obtain the thermodynamic limit
asymptotic behavior of εres

N→∞(τ ) we resort to a strategy that
will prove extremely useful when p � 3—less so for p = 2,
where the asymptotic is already announced by the intermediate
power-law regime τ−3/2—but we choose to illustrate here.

The strategy is based on the geometrical construction of the
envelope of all the finite-N LZ curves, and is briefly described
in Appendix A where we illustrated it with the example of
the transverse-field Ising chain. Briefly, if fu(x) is a family of
functions which smoothly depends on some parameter u, its
envelope e(x) is a function which is tangent in each point to a
member of the family, a condition that is enforced by solving
∂ufu(x) = 0 to find u(x) and then setting e(x) = fu(x)(x). In
our case, we identify x �→ τ , u �→ N (which we assume to
be real, rather than integer), and fu(x) �→ εLZ

N (τ ). To construct
the envelope εenv(τ ) = εLZ

N(τ )(τ ) we need to solve for N (τ ) the
implicit equation ∂NεLZ

N (τ ) = 0. For p = 2 the solution is very
simple:

N (τ ) = (2zγ2τ )
1
2z , (17)

εenv(τ ) = C2

N (τ )
e−2z =

(
3

2 eγ2

) 3
2 C2

τ
3
2

, (18)

where we have used the fact that z = 1/3. As shown
in Fig. 1(b), the method works well, although here—at
variance with the transverse-field Ising chain illustrated in
Appendix A—the LZ regime is “decorated” by extra coherent
oscillations which make the analysis of small-N data a bit
more difficult: notice that these oscillations become less and
less pronounced when N increases. The construction allows
us to predict quite precisely both the scaling exponent 3/2 and
even the numerical coefficient in front of the power law from
the sole analysis of the LZ regime.

Let us now illustrate our results for the SA dynamics.
First of all, the residual energy depends crucially on the final
annealing temperature Tf , leading to very different results
depending on whether Tf > 0 or Tf = 0. Results for Tf = 0
and Tf > 0 are reported in Figs. 2(a) and 2(b), respectively.
Notice that the data bear no memory of the properties of the
critical point, as the dynamical spectral gap between the lowest

eigenstate and the first accessible excited state opens up again
after the critical point crossing; see spectrum and spectral gaps
in Figs. 2(c) and 2(d). The “filtering” effect is therefore very
effective and we observe a size-independent decrease of εres

with τ , which is compatible with an exponential decay for
large annealing times τ . Notice also the striking absence of any
asymptotic adiabatic regime, as opposed to the 1/τ 2 behavior
of QA. Indeed, had we stopped our SA at a final Tf > 0 we
would have observed an adiabatic power-law tail of the form

εres(t = τ ) � 〈φ0|HC|φex〉 cex(τ )

cex(τ ) = 2Ti

τ

〈φex|∂βH|φ0〉
∣∣
T =Tf

	2
ex

, (19)

where cex(τ ) is the projection of the probability P(m,t =
τ ) over the first relevant lowest-lying left eigenstate of
the transition matrix Wσ,σ ′ (see Appendix C for details).
Differently from the usual result of the adiabatic theorem [7],
the power-law prefactor 〈φex|∂βH|φ0〉 decreases exponentially
fast as Tf → 0; see Eqs. (C19),(C20). As it turns out, the
ultimate behavior of SA for Tf = 0 is exponential. What makes
SA so different from QA is the dependence of the Hamiltonian
from the annealing parameter: in QA ĤQ depends linearly
on the transverse field �, while in SA the dependence of
the transition rates Wm,m′ from the temperature T is highly
nonlinear, through the Boltzmann weights.

B. p � 3

In this case the corresponding equilibrium model undergoes
a first-order phase transition, as compared to the case p = 2
where the transition is of second order. This difference has an
enormous impact on the efficiency of the annealing protocols.
Let us now focus on the most interesting situation p � 3,
where the transition is first order and the optimization process
becomes hard [48,50]. Here we observe three distinct regimes
for the QA-RT evolution; see Fig. 3(a). The first (short τ ) and
the third (asymptotic adiabatic behavior) are strict analogs of
regimes (1a) and (3) observed for p = 2. The intermediate
LZ regime (2) is now very clear, but only visible in a limited
range of N ∼ 24–64: for larger N it would occur in a region
of annealing times τ prohibitively hard to simulate, since the
critical gap 	N , and therefore the characteristic time τ ∗

N ∼
	−2

N , now scale exponentially[48,50] with N ; see Eq. (16). The
absence of coherent oscillations observed in Sec. III A is due to
the sharp closing of the gaps between successive eigenvalues
of the spectrum—Figs. 3(c) and 3(d)—which rapidly decou-
ples the two states involved in the LZ approximation. The ana-
lytical construction of the envelope is now a bit more involved,
since the equation defining N (τ )—the implicit solution of
∂NεLZ

N (τ ) = 0—cannot be solved explicitly. Nevertheless, one
can show that

e2αpN(τ )

2αpN (τ )
= γpτ,

εenv(τ ) ≈ 2αpCp

log(γpτ ) + log(log(γpτ ))
e
− 1

log(γpτ ) , (20)

where, see Eq. (16), αp enters in the exponential closing of
the critical gap 	N ∼ e−αpN and γp is the overall rate constant
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FIG. 2. (a) εres
N (τ ) vs annealing time τ for SA at p = 2, with vanishing final temperature Tf = 0. The data show almost no size dependence

and follow asymptotically an exponential relaxation. (b) εres
N (τ ) for N = 32 in log-log scale, for different values of the final temperature Tf . In (a)

and (b) the initial temperature is Ti = 2. For Tf > 0 the asymptotic adiabatic regime τ−1 suggested by Eq. (19) is visible. (c) The instantaneous
spectrum of the classical master equation for N = 128. (d) The minimum gap relevant for the classical master equation dynamics (lines with
symbols) and for equilibrium properties (lines).

entering the LZ expression (16). [Cp � pJ is again very close
to the lowest gap 	(� = 0) at the end of the annealing process.]

One should pause here to appreciate the power of the
envelope construction. If we look at the raw data in Fig. 3(a),
it would be hopeless to try to fit the slight (but evident) decline
of the N = 512 annealing data with some inverse power of a
logarithm of τ plus (unknown) corrections. But if you extract
(by a simple fitting) the relevant ingredients from the LZ
regime of the annealing data for moderate N = 24–64, see
Fig. 3(b), this will unambiguously signal, if you assume that an
envelope exists, the asymptotic result in Eq. (20). The envelope
construction is, in a way, a powerful “telescope” for data that
you would never be able to observe directly. Summarizing,
consistently with Refs. [48,50], first-order transitions lead to
exponentially small gaps and to a problem that is hard for QA,
but we can precisely quantify this hardness by stating that, for
N → ∞, the residual error decreases as εres(τ ) ∼ 1/ log(γpτ )
as the annealing time τ grows. Such a statement applies to
all finite values of p. The Grover limit should be considered
separately.

Let us now turn to the crucial question: is SA better or
worse than QA-RT for p � 3, where a first-order transition
is present? The residual energy data when Tf = 0, shown
in Fig. 4(a), display now a considerable size dependence, at

variance with the p = 2 case, and are well described by an
exponential relaxation of the form

εres
N (τ ) � 1

2e−τ/τ ∗
N , (21)

where the characteristic time scale τ ∗
N increases now as a power

law of N , for instance, τ ∗
N ∼ √

N for p = 3; see Fig. 4(b).
Notice that the prefactor in front of the exponential is very
close to 1/2, with a negligible size dependence, at variance
with the Cp/N prefactor appearing in the LZ regime of QA-
RT. To explain these features, one applies Kramer’s theory to
describe the escape of the probability from the paramagnetic
free-energy minimum at T � Tc. The equilibrium free-energy
density f (m,T ) of the classical p-spin model is simply given
by f (m,T ) = −(J/2)mp − T s(m), where the entropy density
s(m) originates from the binomial coefficients and is given by

s(m) = log 2 − (1−m)
2 log(1 − m) − (1+m)

2 log(1 + m).

Figure 4(c) shows f (m,T ) for p = 3 at different temperatures
above and below Tc. The presence of a free-energy barrier,
separating the ferromagnetic and paramegnetic phases when
0 < T < Tc, is visible also in the spectrum of the transition
matrix. Indeed the two lowest eigenvalues are very close
(exponentially) even for temperatures well below the transition
point, while the first excited state is almost identical to the
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FIG. 3. (a) Log-log plot of the residual energy density vs annealing time for QA-RT for p = 3. For first-order phase transition the
characteristic annealing times τ ∗

N increase exponentially with N ; hence only for moderate N the LZ regime is clearly visible. Here the initial
transverse field is set to �i = 2. (b) Detail of the exponential fit on the regions in which the LZ approximation holds, used for the envelope
construction. The envelope 1/ log(γ τ ) (thick solid line) gives an estimate of the large-τ behavior of the residual energy in the thermodynamic
limit N → ∞. (c) The instantaneous spectrum vs the transverse field �, close to the transition, for N = 64. One can clearly see the
series of avoided level crossings encountered by the paramagnetic phase coming from the right. (d) The minimum gap close to the critical
point.

high temperature equilibrium state, as shown in Fig. 4(d). This
suggests that the dynamics is effectively described by a two-
level approximation in which one considers the distribution
as peaked in either one of the two minima of f (m,T ). Let us
call P0(t) the probability thatP(m,t) is inside the paramagnetic
valley around m = 0 at time t (formally, we should sum over all
the m values inside the paramagnetic valley, say below a given
value mB marking the barrier point), and P1(t) the probability
that the system is close to the ferromagnetic minimum at or
near m = 1. Before the transition temperature Tc is reached,
P1(t) is zero (or even undefined, if the minimum is not formed),
while for T < Tc, P1(t) starts growing, but the transition rate to
return back to the (wrong) paramagnetic minimum becomes
increasingly small. All in all, we are justified in writing a
master equation for P0(t) alone in the Kramer’s escape form:

d

dt
P0(t) � −Ae

− N	f (t)
kB T (t) P0(t), (22)

where N	f (t) is the free-energy barrier separating the
paramagnetic and the ferromagnetic minima for T (t) < Tc,
while the rate A can be taken to be a constant (to within leading
exponentials). Given f (m,T ) we can calculate the free-energy

barrier 	f (t). When T is small, more precisely for T → 0,
the position of the barrier maximum mB is close to m = 0,
and, by expanding the entropy s(m), one can easily show that

mB ∼
(

2T

Jp

) 1
(p−2)

.

Hence the barrier height 	f (t) = f (mB,T (t)) − f (0,T (t))
can be approximated, in the same regime, as

	f (t) = J (p − 1)

2

(
2kBT (t)

Jp

) p

p−2

. (23)

We need to solve Eq. (22) with the initial conditions T (0) = Tc,
P0(0) = 1 and the usual linear schedule for the temperature
annealing; see Eq. (12). [The initial evolution for T (t) > Tc can
be neglected, since the system is already in the stable minimum
and it remains always close to the equilibrium distribution.]
To do that, it is useful to use directly the temperature as
an independent variable, with the substitution d

dt
→ − Tc

τ
d

dT
,

which allows us to rewrite Eq. (22) as

d

dT
log(P0) = Aτ

Tc

e
−N( p−1

p
)( 2T

Jp
)

2
p−2

. (24)
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FIG. 4. (a) εres
N (τ ) for SA with Ti = 2, Tf = 0 when p = 3. Differently from the case p = 2, the relaxation rate 1/τ ∗

N depends on N and
vanishes with a power law in the thermodynamic limit. (b) Scaling of τ ∗

N with N for vanishing final temperature Tf , compared with the
power laws obtained analytically. (c) The classical equilibrium free-energy density f (m,T ) for the p = 3 fully connected p-spin model vs
the magnetization m = (

∑
j σj )/N for different temperatures. (d) The instantaneous spectrum of the classical master equation for p = 3 and

N = 128. Notice the two quasidegenerate eigenvalues (exponentially close for T > 0 and separated by a power-law gap for T = 0), which
effectively freeze the imaginary-time filtering capability of the master equation. In the thermodynamic limit the system remains “stuck” in the
paramagnetic minimum around m = 0.

Integrating between Tc and Tf = 0 we get

log(P0(T = 0)) = − Aτ

Tc N
p−2

2

∫ TcN
p−2

2

0
dy e

−( p−1
p

)( 2y

Jp
)

2
p−2

,

where we made the substitution N T
2

p−2 = y
2

p−2 in order to
eliminate the dependence on N from the integrand. Notice
that for any p � 3 the integrand is a function that drops
exponentially fast to zero, so that we can send the upper
integration limit to infinity, making a negligible error of the
order O(e−N ):

log(P0(τ )) � − Aτ

Tc N
p−2

2

∫ ∞

0
dy e

−( p−1
p

)( 2y

Jp
)

2
p−2

. (25)

Therefore, we predict that the final excitation probability
behaves as

P0(τ ) � e−τ/τ ∗
N , (26)

with a characteristic time τ ∗
N increasing polynomially with the

system size N as

τ ∗
N = Tc

Ã
N

p−2
2 , (27)

where Ã contains both the factor A and the contribution
from the integral in Eq. (25). This prediction is in very good
agreement with our numerical data; see Fig. 4(b). The final
outcome of this calculation suggests that in the thermodynamic
limit N → ∞ the system is trapped in the paramagnetic
minimum, i.e., P0(τ ) ∼ 1; hence the residual energy per spin
remains stuck at the value �1/2:

εres
N→∞(τ ) � 1

2 . (28)

C. p = ∞: Grover limit

Some final remarks are necessary to explain the connection
with the Grover problem, i.e., p(odd) = ∞. If we apply our
analysis to this situation, we find that both QA-RT—without
an optimized schedule—and SA are characterized by a time
scale that diverges as 2N , in analogy with what is known in
the literature [46,50]. Therefore, for N → ∞ none of the
two processes is able to attain the correct minimal energy
configuration. While this is clear from our SA analysis—
indeed, our arguments suggest that SA is stuck even for
finite p � 3; the conclusion it is slightly more subtle for
QA-RT. Here it is important to notice that the logarithmically
decreasing envelope in Eq. (20) originates essentially from the
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fact that the LZ form εLZ
N (τ ) = Cp

N
e−τ/τ ∗

N has a characteristic
1/N prefactor, since the constant Cp � 	(� = 0) ≈ Jp is
essentially the (finite) excitation energy that the system reaches
when the important LZ transition is precisely that occurring at
the critical point. The fact that Cp is not extensive with N is
crucial. This condition, however, is valid only for finite p. For
p(odd) = ∞, indeed, the system has only three eigenvalues
when � = 0: 0, which is massively degenerate, 2N−1-fold, and
±N/2. Hence 	(� = 0) ∝ N and the envelope will no longer
be a logarithmically decreasing function of τ . In conclusion,
even QA is “stuck” and guaranteed to fail for N → ∞ if
we first send p → ∞: the possible battle against a classical
algorithm is on the time scale needed to reach the solution for
finite N . And here a QA schedule optimization [47] can lead
to the celebrated Grover quadratic speedup [46].

IV. RESULTS: QA IN REAL TIME VERSUS
IMAGINARY TIME

Let us now consider the case of the imaginary-time QA
Schrödinger dynamics, to contrast it to the physical real-time
QA. The behavior of the two dynamics turns out to be very
different, as already found in the Ising chain case [56]. In
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FIG. 5. (a) Residual energy density εres
N (τ ) vs annealing time

for QA-RT for p = 2, compared to the results obtained through
an imaginary-time Schrödinger dynamics (QA-IT). Here �i = 2.
(b) Same as in (a), but for p = 3.

particular, the closing of the gap at the transition point is highly
irrelevant to the QA-IT dynamics: as the gap reopens and
stays finite in the whole ferromagnetic phase with � < �c,
the dynamics will filter very effectively the instantaneous
ground state; the scaling of the residual energy can be easily
explained through the adiabatic theorem for imaginary-time
processes [7,60], which predicts an asymptotic 1/τ 2 behavior.
Indeed, as predicted in Ref. [7], and clearly visible from the
numerical results in Fig. 5, the two QA dynamics share the
same asymptotic regime: the only caveat is that while QA-IT
obeys it without restrictions, QA-RT does it only for τ � 	−2

N ,
hence only for finite N . For QA-IT, the predictions of the
adiabatic theorem [7,60] imply that for essentially all values
of τ

εres(τ ) � �2
i

p3

1

τ 2
, (29)

with negligible size corrections.

V. DISCUSSION AND CONCLUSIONS

In this work we compared classical thermal annealing (SA)
and quantum annealing (QA)—both in real time and imaginary
time—on a fully connected p-spin Ising ferromagnet. Thanks
to the mean-field character of the model, and a permutation
symmetry, we were able to solve exactly the dynamical
equations for quite large systems, N ∼ 103 spins. It was then
possible to perform a careful finite-size-scaling analysis to
extract the relevant behavior for large annealing times and
in the thermodynamic limit N → ∞. Our results show a
remarkable difference in the performance of the different
annealing strategies, depending on the order of the transition:
second (p = 2) or first (p � 3) order. In particular, we found
an exponential speedup in SA with respect to QA when the
system crosses a second-order phase transition. For first-order
phase transition instead, SA becomes less and less efficient for
increasing system size, until it remains stuck in the disordered
phase when the thermodynamic limit is approached. To find
the large annealing time behavior when N → ∞ in QA-RT
dynamics, we developed an approach based on the analysis
of the geometric envelope of finite-size data in a range of
annealing time where the system evolution can be effectively
described by the interference of the two lowest energy levels
(Landau-Zener regime). For p � 3, this analysis predicts a
slow decay of the residual energy with the annealing time τ ,
with an inverse-logarithmic behavior 1/ log(τ ), which means
a limited quantum speedup as defined in Ref. [12]. We would
emphasize that the present conclusion has been drawn by
direct solutions of the Schrödinger and master equations in
combination with a nonequilibrium analysis based on the
Landau-Zener formula, whereas most studies so far have been
based on numerical simulations, a notable exception being the
one-dimensional case discussed in Ref. [56]. The envelope
method is hence particularly useful to study the asymptotic
regime of systems that cross a first-order phase transition,
where usually one can solve the dynamics only for small values
N and τ .

A possible line of investigation, which we leave to future
work, concerns the study of the open-system quantum dynam-
ics of the same model, to elucidate the competition between
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thermal effects due to the environment, and genuine quantum
tunneling effects as discussed recently in Ref. [44].
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APPENDIX A: ENVELOPE CONSTRUCTION
TO FINITE-N ANNEALING DATA

The strategy is based on the geometrical construction of
the envelope of all the finite-N LZ curves. Briefly, if fu(x)
is a family of functions which smoothly depends on some
parameter u, its envelope e(x) is a function which is tangent
at each point to a member of the family, a condition that is
enforced by solving ∂ufu(x) = 0 to find u(x) and then setting

e(x) = fu(x)(x). (A1)

If we now identify u �→ N (which we assume to be real, rather
than integer), x �→ τ , and fu(x) �→ εLZ

N (τ ), we can construct
the geometrical envelope of these finite-N Landau-Zener
annealing data. We illustrate in Fig. 6 how this procedure
works in the transverse-field Ising chain, where the well-
known Kibble-Zurek form of the asymptotic residual energy
is εres(τ ) ∼ 1/

√
τ .

APPENDIX B: MAPPING OF A CLASSICAL
MASTER EQUATION INTO AN IMAGINARY

TIME QUANTUM PROBLEM

Let us comment here briefly on the reason why we did not
adopt the symmetrization strategy of Ref. [55] to transform
our SA master equation into an effective imaginary-time
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FIG. 6. Envelope construction illustrated for the transverse-field
Ising chain.

Schrödinger problem. The reason is that, as pointed out in
Ref. [55], to properly perform the symmetrization when the
temperature depends on time one would need to account, in
the effective quantum Hamiltonian, for an extra potential term
of the form

V neq
σ = − 1

2 β̇(HC(σ ) − 〈HC〉eq), (B1)

which originates from the time derivative of the equilibrium
Boltzmann distribution. As it turns out, we have verified that
this term cannot be neglected in the present annealing setup:
the price for that would be an unphysical violation of the
total probability conservation. In the end, the mapping to
an effective quantum problem, if properly pursued with due
account of this extra term, does not add any real advantage
to the more conventional strategy of working directly with a
master equation for P(m,t) (indeed, we found that the ensuing
equations are numerically less stable).

Nevertheless, the analogy of the classical master equa-
tion with an imaginary-time Schrödinger problem is quite
inspiring, and can be made precise, as already mentioned,
by a suitable symmetrization of the transition rate matrix
Wσ,σ ′ . This correctly suggests, for instance, that the dynamics
proceeds by “filtering out” the higher excited eigenstates from
the time evolving P (σ,t).

APPENDIX C: ADIABATIC APPROXIMATION
FOR A CLASSICAL MASTER EQUATION

Here we present a modified version of the adiabatic
expansion, which is suited to describe the solution of a classical
master equation; essentially, we are interested in the evolution
in time of a probability distribution instead of a quantum wave
function.

We write the master equation in the following form:

− ∂

∂t
P (σ,t) =

∑
σ ′

Kσ,σ ′P (σ ′,t), (C1)

where σ = (σ 1, . . . ,σN ) is a configuration of N Ising variables
and Kσ,σ ′ a stochastic matrix [58],

∑
σ Kσ,σ ′ = 0, which

ensures probability conservation. Since we want to use
Eq. (C1) to describe a thermal process, we impose that the
thermal distribution P eq(σ ) = e−βHC(σ )/Z is the equilibrium
state, i.e.,

∑
σ ′ Kσ,σ ′P eq(σ ′) = 0. P eq(σ ′) is therefore a right

eigenvector of Kσ,σ ′ with null eigenvalue E0 = 0. The left
eigenstate P̃0(σ ) corresponding to E0 = 0 is the row vector
with all elements equal to 1.

In general, Kσ,σ ′ has a basis of right eigenvectors Pn(σ ) and
left eigenvectors P̃n(σ ) which satisfy the following equations:∑

σ ′
Kσ,σ ′Pn(σ ′) = EnPn(σ ), (C2)

∑
σ

P̃n(σ )Kσ,σ ′ = EnP̃n(σ ′), (C3)

∑
σ

P̃m(σ )Pn(σ ) = δm,n. (C4)

To study the spectrum of the operator Kσ,σ ′ it is useful to apply
a standard symmetrization procedure [58] to map the transition
rate matrix Kσ,σ ′ into a symmetric operator Hσ,σ ′ . The new
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eigenstates are related to the right and left eigenvectors of
Kσ,σ ′ by ∑

σ ′
Hσ,σ ′φn(σ ′) = En φn(σ ),

Pn(σ ) =
√

P eq(σ ) φn(σ ),

P̃n(σ ) = 1√
P eq(σ )

φn(σ ). (C5)

Now let us focus on Eq. (C1), when it describes a process with
a time dependent temperature T (t). It is possible to expand the
probability P (σ,t) on the right eigenvector basis of Kσ,σ ′

P (σ,t) =
∑

n

cn(t) P T (t)
n (σ )e

∫ τ

t
En(t ′)dt ′ , (C6)

where the dependence of the vectors Pn and the eigenvalues
En on time comes from T (t). Henceforth, we will not write it
explicitly. Equation (C1) thus becomes

− ∂

∂t
P (σ,t) = −

∑
n

e
∫ τ

t
En[ċnPn(σ ) + cn∂tPn(σ )

−EnPn(σ )],

=
∑

n

cn(t) En Pn(σ )e
∫ τ

t
Endt ′ . (C7)

The exponential term is written so that the “trivial” diagonal
evolution cancels, leaving an equation for the coefficients
cn(t). After some steps identical to those exploited in the usual
quantum adiabatic theorem [7], we obtain

ċm(t) +
∑

n

cn(t)(P̃m|∂tPn)e
∫ τ

t
(En−Em)dt ′ = 0, (C8)

where (|) is the scalar product in the space of configurations
σ . Now assume that the system at t = 0 is in the thermal
equilibrium state, so that we can neglect all other contributions
in the sum in Eq. (C8). This is accomplished by setting cn =
δn,0. Therefore, we write

−ċm(t) � (P̃m(t)|∂tP
eq(t))e− ∫ τ

t
	m0dt ′ , (C9)

exploiting the fact that P0(σ,t) = P eq(σ,t) and defining 	m0 =
Em − E0 = Em. The next step is to change the variable in the
integral over the gap, in order to extract the adiabatic parameter
Ṫ . If the temperature is a linear decreasing function of time,
its derivative can be written as −Ti/τ , where τ is the total time
of the process and 1/τ will be used as the “small” parameter
for the power series expansion

e− ∫ τ

t
	m0dt ′ = e

− τ
Ti

∫ T

Tf
	m0dT ′

. (C10)

Equation (C9) can be solved by an integration by part to obtain
the leading order in powers of 1/τ

cm(τ ) � −Ti

τ
[B(Tf) − B(Ti)e

− τ
Ti

∫ Ti
Tf

	m0dT ′
] + O

(
1

τ 2

)
,

(C11)

where the temperature coefficients B(T ) are defined through

B(T ) = (P̃m|∂βP eq)
	m0

, evaluated at temperature T . Since the
exponential term in Eq. (C11) adds a vanishing contribution for

large values of τ , the solution can be further approximated as

cm(τ ) � −Ti

τ

(P̃m(T )|∂βP eq(T ))T =Tf

	m0
. (C12)

The difficulty in applying the adiabatic expansion to
a master equation lies in the evaluation of the term
(P̃m(T )|∂βP eq(T )). This is more easily accomplished by
means of the symmetrized eigenstates. We start by noticing
that

∂βP eq(σ ) = −P eq(σ )(HC(σ ) − 〈HC〉eq). (C13)

The term with the average energy is hence neglected because
it is proportional to the identity matrix and therefore it gives
no contribution inside the scalar product. Using the relation
between the left eigenvector of Kσ,σ ′ and the eigenstate of H,
we can write

(P̃m|∂βP eq) = −
∑

σ

φm(σ )√
P eq(σ )

P eq(σ )HC(σ )

= −〈φm|HC|φ0〉. (C14)

On the other hand, if we substitute directly the eigenvectors
φm instead of Pm and P̃m, we obtain

∂βP eq(σ ) = ∂β(
√

P eq(σ )φ0(σ ))

= − 1
2 (HC − 〈HC〉eq)φ0(σ ) +

√
P eq∂βφ0(σ ).

So the scalar product (P̃m|∂βP eq) can be written as

(P̃m|∂βP eq) = − 1
2 〈φm|HC|φ0〉 + 〈φm|∂βφ0〉. (C15)

Comparing Eqs. (C14) and (C15), one immediately notices
that the term −〈φm|HC|φ0〉 appears in both, which implies
that

− 1
2 〈φm|HC|φ0〉 = 〈φm|∂βφ0〉, (C16)

so that our final expression becomes

(P̃m|∂βP eq) = 2〈φm|∂βφ0〉 = −2
〈φm|∂βH|φ0〉

	m0
. (C17)

Therefore, it finally is possible to write the asymptotic solution
for the coefficients cm(τ ) using the effective Hamiltonian H,
at a generic final temperature Tf

cm(τ ) � 2Ti

τ

〈φm|∂βH|φ0〉T =Tf

	2
m0

. (C18)

The adiabatic expansion for the solution of a classical master
equation leads to a final expression analogous to what is
obtained for quantum IT dynamics [7].

Although we found it numerically more convenient to
solve directly the master equation, the symmetrized form
of the transition matrix Wσ,σ ′ , i.e., the effective “quantum”
Hamiltonian H, is useful to study the behavior of the adiabatic
solution. After the permutation symmetry is exploited to
describe the system in terms of its magnetization m, the
effective Hamiltonian reads

Hm,m′ =

⎧⎪⎨⎪⎩
N
2

∑
α=±

(1−αm)

1+e
β
2 	Eα

, m′ = m,

−N
2

√
1−m2+ 2

N

2 cosh
(

β

2 	E+
) , m′ = m + 1.

(C19)
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In the adiabatic expansion Hm,m′ appears through its inverse-temperature derivative, which is

∂βHm,m′ =

⎧⎪⎪⎨⎪⎪⎩
−N

4

∑
α=±

(1−αm)	Eαe
β
2 	Eα(

1+e
β
2 	Eα

)2 , m′ = m,

N
4

√
1−m2+ 2

N
	E+ tanh

(
β

2 	E+
)

2 cosh
(

β

2 	E+
) , m′ = m + 1.

(C20)

It is easy to see that if one takes the limit β → ∞ (T → 0) all the matrix elements Hm,m′ vanish exponentially, whence the
absence of an adiabatic expansion in powers of 1

τ
when Tf = 0 in an annealing process.
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