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In this paper we propose two theoretical schemes for implementation of quantum phase gates by engineering the
phase-sensitive dark state of two atoms subjected to Rydberg-Rydberg interaction. Combining the conventional
adiabatic techniques and currently developed approaches of phase control, a feasible proposal for implementation
of a geometric phase gate is presented, where the conditional phase shift (Berry phase) is achieved by adiabatically
and cyclically changing the parameters of the driving fields. Here we find that the geometric phase acquired is
related to the way how the relative phase is modulated. In the second scheme, the system Hamiltonian is
adiabatically changed in a noncyclic manner, so that the acquired conditional phase is not a Berry phase. A
detailed analysis of the experimental feasibility and the effect of decoherence is also given. The proposed
schemes provide new perspectives for adiabatic manipulation of interacting Rydberg systems with tailored phase
modulation.
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I. INTRODUCTION

Neutral atoms in highly excited and long-lived Rydberg
states are considered the ideal architecture for quantum
information processing since it provides strongly interatomic
interaction on demand, while it keeps interacting with the en-
vironment weakly [1,2]. There have been numerous proposals
to use Rydberg-Rydberg interactions for implementation of
quantum logic gates [3–9], quantum error correction [10,11],
quantum algorithms [12–14], and quantum repeaters [15–18].
By following the pioneering works proposed by Jaksch
et al. [19] and Lukin et al. [20], promising schemes for
realizing two-qubit controlled-Z and controlled-NOT gates that
rely on dynamical control of dipolar coupling and intrinsic
Förster interaction have been widely studied in both the Ry-
dberg blockade [5,21–24] and antiblockade regimes [25,26].
Therein, the validity of the gate operations is predominantly
determined by the detailed laser parameters as well as the
Rydberg interaction strength. Experimental demonstrations
in producing quantum entanglement of few Rydberg atoms
[27,28] and two-qubit logic operations [24] have recently
made great progress by addressing the system’s evolutional
dynamics; however, the fidelity achieved to date is significantly
limited by the imprecise control of experimental parameters.

The requirement of precise control of coherent dynamics
can be avoided by using the adiabatic techniques, such as
stimulated Raman adiabatic passage (STIRAP) and adiabatic
rapid passage (ARP), where the sensitivity to imprecise Rabi
control and other experimental perturbations is strongly sup-
pressed [29]. The theoretical proposals based on the STIRAP
and the ARP have been proposed for coherent population
transfer [30–34], preparation of entangled states [14,35],
and implementation of quantum logic gates [7,8,36,37] with
Rydberg atoms, which exhibit robustness properties against
moderate fluctuations of experimental parameters. Further-
more, the adiabatic technique alternatively provides a chance
for geometric manipulation of Rydberg systems [35,37,38],
which is naturally robust against certain control errors [39,40]
and is a promising approach for implementation of a built-in
fault-tolerant two-qubit logic gate.

Here we put forward two schemes for implementing
quantum phase gates via adiabatic passage and phase control of
the driving fields. The first scheme is based on the geometric
manipulation of the system’s Hamiltonian in the parameter
space. In contrast to the previously similar approach [35], the
geometric phase acquired here is not due to the variance of
the phase difference of the control pulses, and is alternatively
accumulated by changing the phases of the driving fields in
step and keeping the phase difference null. Remarkably, we
find that the geometric phase acquired is strongly dependent
on the way the relative phase is modulated. In the second
scheme, the conditional phase shift is not of dynamical origin
as well since the qubit system evolves in the dark state space,
nor is it a Berry adiabatic phase as the system Hamiltonian
is not cyclically changed. The conditional phase arises from
the adiabatic manipulation of the dark state with staircase
phase control. The experimental feasibility, gate fidelity, and
docoherence effect for the proposed schemes are carefully
studied.

This paper is organized as follows. In Sec. II we propose
the level addressing scheme for two neutral atoms interacting
via the Rydberg-Rydberg interaction and examine the role of
the phases of driving fields in adiabatic control. In Sec. III
the schemes for implementing conditional phase gates based
on Berry phase and non-Berry adiabatic phase are presented.
In Sec. IV we provide a detailed discussion about the
experimental feasibility of the two schemes. In Sec. V the
effect of atomic spontaneous emission and interatomic force on
the gate fidelity is studied. The conclusion is given in Sec. VI.

II. DARK STATE OF TWO INTERACTING
RYDBERG ATOMS

We first introduce the schematic description of the system.
Consider a pair of identical three-level atoms with a ground
state |1〉, an intermediate state |2〉, and a highly excited
Rydberg state |3〉 [see Fig. 1(a)] which are trapped in optical
tweezers or optical lattices. Two excitation lasers of optical
frequencies resonantly drive the atomic transitions |1〉 ↔ |2〉
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FIG. 1. (a) Schematic level configuration. The Rydberg state |3〉
is excited from the ground state |1〉 via an intermediate state |2〉 with
two lasers of optical frequencies. Double excitation of the Rydberg
state |3〉 will be shifted by V33 due to the interatomic interaction.
�p and �μ are Rabi frequencies for the transitions |1〉 ↔ |2〉
and |2〉 ↔ |3〉, respectively. (b) STIRAP pulse sequence applied to
the interacting Rydberg atoms with τ being the overlapping time.
(c) Addressing scheme with multiple Rydberg levels. The ground state
|1〉 is resonantly coupled to the Rydberg state |2〉 via single-photon
transition with Rabi frequency �p , and the atomic transition between
Rydberg states |2〉 and |3〉 is driven by a microwave field with Rabi
frequency �μ. The ground state |0〉 is the auxiliary qubit state. V22,
V23, and V33 are energy shifts induced by the Rydberg-Rydberg
interaction.

and |2〉 ↔ |3〉 with the Rabi frequencies �p ≡ |�p|eiφp and
�μ ≡ |�μ|e−iφμ (taken as a complex number), respectively.
The atoms experience an energy shift V33 when both atoms are
excited to the Rydberg state |3〉. The total Hamiltonian of the
system in the rotating wave approximation is

HR =H1 ⊗ I2 + I1 ⊗ H2 + V33|3〉1|3〉22〈3|1〈3|, (1)

with (from now on, we put h̄ = 1)

Hi = �p|2〉ii〈1| + �μ|3〉ii〈2| + H.c., i = 1,2. (2)

In terms of the symmetric two-atomic basis states spanned by
{|φj 〉}, j = 1, . . . ,6, with

|φ1〉 = |1〉1|1〉2,

|φ2〉 = 1√
2

(|1〉1|2〉2 + |2〉1|1〉2),

|φ3〉 = 1√
2

(|1〉1|3〉2 + |3〉1|1〉2),

|φ4〉 = |2〉1|2〉2,

|φ5〉 = 1√
2

(|2〉1|3〉2 + |3〉1|2〉2),

|φ6〉 = |3〉1|3〉2,

HR can be rewritten as

HR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
√

2�∗
p 0 0 0 0√

2�p 0 �∗
μ

√
2�∗

p 0 0

0 �μ 0 0 �∗
p 0

0
√

2�p 0 0
√

2�∗
μ 0

0 0 �p

√
2�μ 0

√
2�∗

μ

0 0 0 0
√

2�μ V33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

There exists a nondegenerate eigenspace and a unique dark
state for the Hamiltonian HR , which is given by

|d2(t)〉 ∝ (|�μ|2 − |�p|2)|φ1〉 + �2
p|φ4〉 −

√
2�μ�p|φ3〉.

(4)

Expressing the relative strength of the two Rabi frequencies
�p, �μ as tanθ = |�p|/|�μ| and keeping their phases
nonvanishing, Eq. (4) after normalization is rewritten as

|d2(t)〉 = N−1[(cos2θ − sin2θ )|φ1〉 + sin2θei2φp |φ4〉
−

√
2sinθcosθe−i(φμ−φp)|φ3〉], (5)

where

cosθ = |�μ|√|�μ|2 + |�p|2 ,

sinθ = |�p|√|�μ|2 + |�p|2 ,

and

N =
√

cos4θ + 2sin4θ.

Equation (5) has a similar form to the dark state firstly studied
by Møller et al. [35], where a time-dependent relative phase
φr (t) ≡ φμ − φp is found to be relevant for acquisition of
geometric phases, except that Eq. (5) contains an additional
exponential factor ei2φp for |φ4〉. It implies that by setting
φp = 0 or φp = π/2, the two-atom system will transfer
to the antisymmetric superposition state |EPR〉as = (|φ1〉 −
|φ4〉)/

√
2 or the symmetric superposition state |EPR〉s =

(|φ1〉 + |φ4〉)/
√

2 by adiabatically following the dark state
with θ changing from 0 to π/2 (see later discussion for
detail). This is numerically confirmed by examining the
probability for detecting the two-atomic states |EPR〉s,as after
the applied STIRAP pulse sequence [see Fig. 1(b)], which is
a sinusoidal function of φp exhibiting wavelike interference
fringes, as shown in Fig. 2. The coexistence of the phase
factors 1, e−iφr and ei2φp in the superposition coefficients for
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FIG. 2. (a) φp-dependent wavelike interference fringes in the
probabilities of |EPR〉s (solid blue) and |EPR〉as (dashed red).
(b, c) Numerically calculated time dependencies of the phases
(divided by π ) of the states |φ1〉 (solid blue) and |φ4〉 (dashed
red) for φp = 0 and φp = π/2, respectively. The two-atom system
is initially in the state |φ1〉 and adiabatically evolves along |d2(t)〉.
The Rabi frequencies are modeled by sine-function pulses �p(t) =
�sin( π

2τ
t)eiφp , �μ(t) = �|cos( π

2τ
t)| with 0 � t � τ . We fix units of

� = 1, and set �τ/2π = 6, V23/� = 1.1, and V33/� = 0.9.
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the three components |φ1〉, |φ3〉, and |φ4〉, respectively, can
significantly modify the geometric phases acquired during
adiabatic evolution assisted by phase control and can find
special use for construction of quantum logic gates.

The level configuration [as in Fig. 1(a)] including a single
Rydberg state suffers froman irreversible spontaneous decay
since the optically excited intermediate state |2〉 has a short
lifetime, therefore adiabatic manipulation of the (unstable)
dark state becomes not experimentally feasible (see Sec. V
for further discussion). To avoid the defect, we then consider
atoms with two ground hyperfine states |0〉 and |1〉 and two
Rydberg state |2〉 and |3〉; see Fig. 1(c). The atomic transition
|1〉 ↔ |2〉 is resonantly excited by a single-photon field �p,
and the transition |2〉 ↔ |3〉 is driven by a microwave field �μ.
The auxiliary level |0〉 is introduced as a qubit information for
the later discussed gate protocols. While both atoms are excited
to the Rydberg states, two relevant interparticle interactions are
involved, i.e., the van der Waals (vdW) interaction V22 (V33)
between the states |2〉 (|3〉) and the exchange dipole-dipole
interaction (DDI) V23 between an atom in |2〉 and another
in |3〉. When including the Rydberg-Rydberg interaction, the
two-atom Hamiltonian governing the temporal evolution of
the compound system takes the form

H′
R = H1 ⊗ I2 + I1 ⊗ H2 + V33|3〉1|3〉22〈3|1〈3|

+V22|2〉1|2〉22〈2|1〈2| + V23(|2〉1|3〉22〈3|1〈2|
+ |3〉1|2〉22〈2|1〈3|). (6)

If the two atoms only weakly interact with each other while
they are in the state |2〉 (e.g., due to a dispersive Förster process)
such that the vdW shift V22 becomes negligible comparing
with other Rydberg interaction energies V33, V23, i.e., V22 �
V23,V33, then the Hamiltonian H′

R with V22 → 0 has one dark
state, which is exactly given by Eq. (5). The interatomic DDI
V23 does not shift the zero eigenenergy and change the form
of the dark state. Therefore, the single-Rydberg-level effects
with respect to |d2〉 hold true for the multiple-Rydberg-level
model as long as the adiabatic condition is well guaranteed,
and adiabatic control of the dark state becomes more feasible
for long radiative lifetime of the Rydberg levels.

In another parameter regime where the interaction between
the Rydberg states |3〉 is sufficiently weak comparing with the
vdW shift V22 and the DDI strength V23, i.e., V33 � V22,V23,

by setting V33 = 0 we again find a dark state for H′
R , but with

a different form,

|d ′
2(t)〉 = cos2θei2φr |φ1〉 + sin2θ |φ6〉

−
√

2sinθcosθeiφr |φ3〉, (7)

which can be exactly expressed as the direct product of the
dark states for the single-atom Hamiltonian Hi (i = 1,2), i.e.,
|d ′

2(t)〉 = |d1(t)〉1 ⊗ |d1(t)〉2, with

|d1(t)〉i = cosθeiφr |1〉i − sinθ |3〉i . (8)

In this case, the relative phase φr is the only degree of freedom
for phase modulation during the system’s adiabatic evolution
along |d ′

2(t)〉.
If we further assume that V22 = V33 = 0 but with V23 = 0,

the zero-energy eigenstate for the two-atom Hamiltonian H′
R

can then be written as the superposition of the degenerated

dark states |d2(t)〉 and |d ′
2(t)〉. A finite Rydberg interaction

strength V22 or V33 between the states |2〉 or |3〉 results in the
removal of the degeneracy, which cannot occur with only the
DDI due to the missing component |φ5〉.

Suppose that the Hamiltonian H′
R(t) is time dependent

through the set of parameters R(t) = (θ (t),φp(t),φr (t)) and
the interacting two-atom system is initially in the ground
eigenstate |g[R(0)]〉 of the instantaneous H′

R(t = 0). If R(t) =
(θ (t),φp(t),φr (t)) is modulated under the condition

|〈e(t)|dH
′
R

dt
|g(t)〉| � |Ee − Eg|2

such that the Hamiltonian is adiabatically changed along a
closed curve C in the parameter space [i.e., R(T ) = R(0)],
where |e〉 is any one of the instantaneous excited state, then
the system will keep in the ground state and acquire a purely
geometric phase ϕg in additional to the usual dynamical
phase ϕd :

|g[R(T )]〉 = exp{i[ϕg(T ) + ϕd (T )]}|g[R(0)]〉, (9)

where

ϕg = i

∮
C

dR · 〈g[R(t)]|∇R|g[R(t)]〉 (10)

and

ϕd (T ) = −
∫ T

0
Ed [R(t)] dt, (11)

which vanishes for a dark state |g(t)〉 = |d[R(t)]〉 with zero
eigenenergy Eg = 0.

III. SCHEMES FOR IMPLEMENTING CONTROLLED-Z
GATES VIA ADIABATIC PASSAGE

We encode qubit information on the ground state |1〉 and the
auxiliary level |0〉 that is uncoupled from any pulse sequences
of the control field. Thus, the computational basis states are
given by {|0〉1|0〉2,|0〉1|1〉2,|1〉1|0〉2,|1〉1|1〉2}. The controlled-
Z gate is implemented by applying a counterintuitive pulse
sequence and by modulating the phases of the control fields.

A. Scheme 1

Here we have a geometric phase gate with the phases
of the Rabi frequencies varying in step (i.e., φr = const).
It has been realized that the dark states (5) and (8) under
adiabatic evolution can acquire the geometric phases ϕ2 =
2
∫

sin2θcos2θ (cos4θ + 2sin4θ )−1 dφr and ϕ1 = ∫
sin2θ dφr ,

respectively, for a nonvanishing and time-dependent relative
phase φr (t) [35]. In contrast, we find that the two-atom dark
state (5) can acquire a Berry phase even though the relative
phase is kept invariant.

Suppose the two-atom system is initially in |d2(0)〉 =
|1〉1|1〉2 (i.e., cosθ = 1) and the phases of the driving fields
are φp(0) = 0, φμ(0) = 0 without loss of generality. The
time-dependent amplitudes of the Rabi frequencies are chosen
as (0 � t � 2τ )

|�p(t)| = �sin

(
π

2τ
t

)
, |�μ(t)| = �

∣∣∣∣cos

(
π

2τ
t

)∣∣∣∣, (12)
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FIG. 3. (a) The amplitudes |�p(t)|, |�μ(t)| and phases φp , φμ of
Rabi frequencies as a function of rescaled time. (b) Time-dependent
population of the states |0〉1|1〉2 (|1〉1|0〉2) (black), |0〉1|3〉2 (|3〉1|0〉2)
(blue), and |0〉1|2〉2 (|2〉|0〉2) (green), and the phase of state |0〉1|1〉2

(|1〉1|0〉2) (magenta) for the system initially in |d1(0)〉. (c) Time-
dependent population of the states |1〉1|1〉2 (solid black), |φ2〉 (dash
black), |φ3〉 (solid blue), |φ4〉 (solid green), |φ5〉 (dash green), and
|φ6〉 (dash blue), and the phase of state |1〉1|1〉2 (magenta) for the
system initially in |d2(0)〉. We fix units of � = 1, and set �τ/2π = 6,
V23/� = 1.1, and V33/� = 0.9.

which corresponds to θ (t) varying from 0 to π/2 and
the corresponding reverse process. The phases φp,μ(t) are
synchronized with each other in real time and have a simply
linear time dependence φp,μ(t) = πt/τ . Therefore, the system
makes a cyclic evolution with starting point and ending point
θ = 0; see the temporal evolution of the probability amplitudes
and the phases of the relevant states as shown in Fig. 3. The
geometric phase ϕ′

2 (i.e., the Berry phase) accumulated during
the adiabatic process can be calculated by using the standard
formula (10). Since φr remains zero at any time, the relevant
parameter space reduces to R(t) = (θ (t),φp(t)). Thus, we have

ϕ′
2 = −

∮
C

2sin4θ

cos4θ + 2sin4θ
dφp

= −
∮

C

4sin4θ

cos4θ + 2sin4θ
dθ (13)

for dφp(t)/dθ (t) = 2 taken in our example. Apart from that,
while the system is initially in the state |0〉1|0〉2, |0〉1|1〉2

or |1〉1|0〉2, no geometric phases can be acquired during the
cyclic evolution. The sudden increase of the phases of |0〉1|1〉2

(|1〉1|0〉2) around t = τ is due to imperfect state transfer and
is automatically eliminated at the end of the pulse sequence.
Thus, we have successfully implemented a controlled phase

G
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FIG. 4. The acquired geometric phases ϕ2, ϕ′
2, and ϕ′′

2 versus
θ . The system in the initial state |d2(0)〉 = |1〉1|1〉2 is adiabatically
taken to the superposition state with a given θ followed by sweeping
the phase of the controlled fields: φp , φμ: 0 → π (red), φp = 0,
φμ: 0 → π (blue) and φp: 0 → π , φμ = 0 (green), respectively. The
amplitudes of the applied pulse sequence and other parameters are as
in Fig. 3.

gate based on the conditionally geometric phase shift:

|0〉1|0〉2 → |0〉1|0〉2, |0〉1|1〉2 → |0〉1|1〉2,

|1〉1|0〉2 → |1〉1|0〉2, |1〉1|1〉2 → eiϕ′
2 |1〉1|1〉2. (14)

Since we have guaranteed φr = const during the adiabatic
evolution, the required solid angle for obtaining the geometric
phase ϕ′

2 is induced by the concurrency control of φp and φμ,
where an additional reference oscillator should be included.
While for the system initially being in the two-atom dark
state |d ′

2(t)〉 under the condition V33 � V22,V23, no geometric
phases can be acquired since φr is invariant.

However, if φr becomes time variant, note that the phases
of the Rabi frequencies may be modulated in two fashions,
leading to differently geometric phase shift for the state |d2〉.
First, φp = const and φr (t) = φμ(t) − φp is time dependent
via φμ(t). In this case, the geometric phase acquired is exactly
given by ϕ2. While for the other case where φμ = const
and φr (t) = φμ − φp(t) is determined by φp(t), the geometric
phase acquired is then alternatively given by

ϕ′′
2 = −

∮
C

2sin2θ

cos4θ + 2sin4θ
dφp

= −
∮

C

4sin2θ

cos4θ + 2sin4θ
dθ. (15)

Thus, we find three different ways of phase control for
geometrically manipulating the interacting two-atom system.
A comparison of the acquired geometric phases for the three
cases is shown in Fig. 4, from which one can easily read ϕ2,
ϕ′

2, and ϕ′′
2 by 4θmf (θ ), with θm and f (θ ) being the given θ

with respect to the preset dark state d2(θm,φp,φμ) and the θ

average of the curves on the plots (indicated by dash lines for
scheme 1), respectively.
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B. Scheme 2

Here we have a gate based on the non-Berry adiabatic phase
arising from staircase phase control. The operation procedure
is generally divided into two steps during the time interval
0 � t � 2τ , in which the time-dependent amplitudes of the
Rabi frequencies again vary according to Eq. (12), and the
phases of the driving fields follow

φp(t) = const, φr (t) = π

2
�(t − τ ), (16)

with �(x) being the unit step function. Note that the relative
phase is changed only at the end of the first half of the
pulse sequence (t = τ ) without the limit of adiabaticity,
and the system Hamiltonian is not changed along a closed
curve in the parameter space R(t) = (θ (t),φr (t)). Therefore,
it is fundamentally different from the geometric operation
(leading to the Berry phase) proposed by Møller et al. [35],
where the relative phase should be adiabatically modulated
when the applied pulses overlap, and the initial and the final
Hamiltonian of the evolutional system should remain the same
[i.e., R(2τ ) = R(0)]. The idea of realizing a phase gate through
adiabatic manipulation of the dark state with staircase phase
control was studied in ion traps [41].

In the first step (0 � t � τ ), the phase factors φp, φμ are set
to be equal so that φr = 0, e.g., φp = φμ = 0 for simplicity.
θ is adiabatically increased from 0 to π/2 by adjusting the
relative intensity of the coupling fields as in Eq. (12). For
V22 � V23,V33, the temporal evolution of the basis states
will follow the dark states [Eqs. (5) and (8)] throughout the
procedure, leading to the transformations

|0〉1|0〉2 → |0〉1|0〉2, |0〉1|1〉2 → −|0〉1|3〉2,

|1〉1|0〉2 → −|3〉1|0〉2, |1〉1|1〉2 → 1√
2

(−|φ1〉 + |φ4〉).

(17)

In the second step (τ � t � 2τ ), θ is tuned adiabatically
from π/2 back to 0 but with φp = 0 and φμ = π/2 (i.e., φr =
π/2), which gives rise to

|0〉1|0〉2 → |0〉1|0〉2, − |0〉1|3〉2 → eiπ/2|0〉1|1〉2,

−|3〉1|0〉2 → eiπ/2|1〉1|0〉2,
1√
2

(−|φ1〉+ |φ4〉) → |1〉1|1〉2.

(18)

Since the two processes are highly adiabatic, the population
of the basis states return to the initial state after the coun-
terintuitive pulse sequence. It is interesting to see that the
basis states |0〉1|1〉2 and |1〉1|0〉2 finally acquire an additional
phase factor eiϕng with ϕng = π /2, which does not exist for
|0〉1|0〉2 and |1〉1|1〉2 (see Fig. 5). Because the dark states are
the eigenstates of Hi (i = 1,2) with zero eigenvalues, ϕng has
no dynamic origin. On the other hand, here the Hamiltonian is
not required to make a cyclic evolution in the parameter space
as for the accumulation of the adiabatic Berry phase.

Finally, by applying single-qubit operations |1〉1,2 →
eiπ/2|1〉1,2 to both atoms, we recover the familiar controlled-Z
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FIG. 5. (a) The amplitudes |�p(t)|, |�μ(t)| and phases φp , φμ

of Rabi frequencies as a function of rescaled time. Without loss of
generality, we set φp,μ(0) = 0. (b) Time dependence of the population
of states |0〉1|1〉2 (|1〉1|0〉2) (black), |0〉1|3〉2 (|3〉1|0〉2) (blue), and
|0〉1|2〉2 (|2〉|0〉2) (green), and the phase of state |0〉1|1〉2 (|1〉1|0〉2)
(magenta) for the system initially in |d1(0)〉. (c) Time dependence of
the population of states |1〉1|1〉2 (solid black), |φ2〉 (dash black), |φ3〉
(solid blue), |φ4〉 (solid green), |φ5〉 (dash green), and |φ6〉 (dash blue),
and the phase of state |1〉1|1〉2 (magenta) for the system initially in
|d2(0)〉. Other parameters as same in Fig. 3.

gate

|0〉1|0〉2 → |0〉1|0〉2, |0〉1|1〉2 → |0〉1|1〉2,

|1〉1|0〉2 → |1〉1|0〉2, |1〉1|1〉2 → −|1〉1|1〉2, (19)

which can be easily transformed to a controlled-NOT gate
by using two additional π/2 pulses rotating the target qubit
around the y axis in the opposite directions. Note that for
V33 � V22,V23, repeating the operation procedure above will
lead to the transformation for the basis states: |0〉1|1〉2 →
eiπ/2|0〉1|1〉2, |1〉1|0〉2 → eiπ/2|1〉1|0〉2 and eiπ |1〉1|1〉2, which
is impossible to become a universal binary gate under any local
operations.

From a comparison between the two schemes we can see
that the non-Berry phase gate via the staircase phase control
is built on a completely different mechanism in contrast to
the normal dynamical and geometric phase gates: the qubit
system does not undergo any dynamical phase shift since it
works in the zero-energy eigenspace; the Hamiltonian is not
changed along a closed curve in the parameter space; precise
adiabatic modulation of the phases of the driving fields and
adiabatic control of the population transfer at the same time
is unnecessary, and thus, the errors in obtaining the required

022321-5



WU, HUANG, HU, YANG, AND ZHENG PHYSICAL REVIEW A 96, 022321 (2017)

geometric solid angle are avoided and the operation procedure
is simplified.

IV. PHYSICAL REALIZATION: ASYMMETRIC
RYDBERG COUPLING

In the context of Rydberg experiments, the strongly
asymmetric coupling condition V22 � V23,V33 can be found,
for example, by mapping the Rydberg states to |2 = 40p3/2,

m = 1/2〉 and |3 = 41s1/2,m = 1/2〉 of rubidium atoms sep-
arated at an interatomic distance R of several micrometers.
In this case, the blockade interaction between the states |2〉
and |3〉 is an exchange process of resonant dipole nature
(∼n4/R3 with n being the principal quantum number), where
the zero-interaction angle can be avoided either by using a
spatial light modulator to create the preset trap pattern or
by applying a weak external magnetic field (B = 10−7 T)
to couple the atomic Zeeman states of different magnetic
quantum numbers. The anisotropic interaction between states
|2〉 and isotropic interaction between states |3〉 are both induced
by the Förster process, where the two-atomic interaction
potential can transit from the dipole-dipole to the van der
Waals limit (∼n11/R6), depending on the interatomic distance
[42]. It is therefore possible to restrict our consideration to the
asymmetric coupling regime, which represents the dominant
interaction mechanism at the atomic separation of interest.
For R = 3 μm, the interaction strengths V23 and V22 can,
respectively, vary from 5 to 20 MHz, and from 0.02 to 0.1 MHz
by adjusting the angle between the dipoles, and the interaction
strength V33 approximates 2π × 3.7 MHz [43].

On the other hand, the excitation of Rydberg p-states
from ground s-states in a single-photon transition has recently
become feasible due to the availability of ultraviolet laser
sources, which results in much larger Rabi frequency �

(scaling as � ∼ n−3/2) compared to a three-photon excitation
process [44]. In addition, the optical excitation of a Rydberg
state followed by a microwave-driven coupling between
two neighboring Rydberg levels has been experimentally
demonstrated as well, where the Rabi frequency of the
Rydberg-Rydberg transition can reach several tens of MHz
by increasing the intensity of the microwave field [45]. Thus,
it becomes very promising to implement the proposed schemes
with asymmetric Rydberg-Rydberg interaction by integrating
the current experimental techniques [46].

To evaluate the performance of the controlled-Z gate,
we use the fidelity F = [Tr

√√
ρtarρ(2τ )

√
ρtar ]2 to measure

the desired output ρtar given an input of all the logi-
cal states |ψ0〉 = 1

2 (|0〉1|0〉2 + |0〉1|1〉2 + |1〉1|0〉2 + |1〉1|1〉2),
where ρtar = |ψtar〉〈ψtar | with |ψtar〉 being the target state
obtained through an ideal gate operation |ψtar〉 = UCZ|ψ0〉,
and ρ(2τ ) is the actual output state in the logical space
produced in the presence of the error sources, such as nonadia-
batic transitions, docoherence induced by atomic spontaneous
emission, and atomic motion. In Fig. 6, we have shown the
fidelity of the controlled-Z gate [Eqs. (14) and (19)] under the
condition of asymmetric Rydberg coupling V22 � V23,V33 in
the coherent regime. Considering the dynamically perturbative
effect of V22 (i.e. V22τ � 1), the fidelity reaches its optimum
at V33 = 0.7, V23 = 1 and V33 = 0.9, V23 = 1 for gates based
on the Berry and the non-Berry adiabatic phase, respectively,
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FIG. 6. Fidelities of gates based on Berry phase (a) and non-Berry
adiabatic phase (b) vs the energy shift V33/� of the collective Rydberg
states |3〉1|3〉2 for the DDI strength V23/� = 0,1,2,4 (from top to
bottom) and V22/� = 0.005. Other parameters are as in Fig. 3.

where the interaction strengths V23,V33 are of comparable
magnitude with the maximum of the Rabi frequencies �, cor-
responding to the intermediate coupling regime V23,V33 ∼ �.
Further increasing V23 or V33 will lead to reduction of
the gate fidelity (due to nonadiabatic transfer towards the
nonzero-energy eigenstates); however, note that the non-Berry
operation is more robust against the variation of the Rydberg
interactions compared with the geometric Berry operation. For
the special situation where V22 � 0 and V23 = 0, available for a
cascaded level configuration involving a single Rydberg state
(see later discussion), the condition for a high-fidelity gate
performance is simply V33 > 2�, which lies in the regime of
Rydberg blockade. In this case, the optimal implementation
of the Berry-phase-based controlled-Z gate requires slightly
weaker V33 than that for the non-Berry adiabatic operation,
but again, the latter exhibits its robustness as V33 increases.

For small V33, the temporal evolution of the system is no
longer adiabatically confined in the state |d2(t)〉 and the effect
of the other dark component |d ′

2(t)〉 should be considered. In
this case, the nonadiabatic transition to the doubly excited
state |3〉1|3〉2 accompanied with interatomic interaction will
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FIG. 7. Time dependence of the state populations during the
gate operations based on Berry phase [(a), (b)] and non-Berry
adiabatic phase [(c), (d)] with (V22,V23,V33)/� = (1,1.5,0.1). The
color scheme and other parameters are as in Fig. 3.

introduce a dynamical phase, which may be constructive for
implementing the controlled-Z gate as well. To gain the insight,
we have repeated the procedures for generating the Berry
and the non-Berry phases as before under the condition of
V33 � V22,V23. If V33 = 0, the system strictly evolves along
the dark state |d ′

2(t)〉, where the phase difference φr of the
control fields becomes the only relevant phase factor for the
modulation process. For the operation to obtain Berry phases,
the system acquires no geometric phase during the cyclic
evolution since φr is kept invariant [see Figs. 7(a)–7(b)].
Alternatively, for the operation to obtain non-Berry adiabatic
phases, the rise of φr at t = τ introduces phase factors
ei2φr = eiπ and eiφr = eiπ/2 to the basis states |1〉1|1〉2 and
|1〉1|0〉2 (or |0〉1|1〉2), respectively, which are irrelevant to a
binary gate. But for a finite V33, the instantaneous ground state
of H′

R evolves from the bare |1〉1|1〉2 state into a “dressed”
state with some admixture of |3〉1|3〉2, which additionally
supplements a dynamical phase ϕd ≈ ∫

sin4θV33 dt to |1〉1|1〉2

[see Figs. 7(c)–7(d)]. Therefore, the implementation of a
controlled-Z gate via the completely dynamical control is still
available for ϕd = π for both cases and is sensitive to the
fluctuation of Rydberg interactions nevertheless.
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rates as functions of the Rydberg interaction V33 for (V22,V23)/� =
(0.005,1) (solid) and V22 = V23 = 0 (dash). We here set γ2 = γ3 = γ .

V. THE EFFECT OF SPONTANEOUS EMISSION
AND INTERATOMIC FORCE

The two atoms excited to Rydberg states are subjected
to decoherence due to atomic spontaneous emission and
interatomic force. The dissipative dynamics can be calculated
by the Lindblad master equation for the density operator ρ of
the two-atom system,

ρ̇(t) = −i[H′
R,ρ(t)] +

2∑
i=1

2∑
k=1

L[Ai,k]ρ(t), (20)

where L[Ai,k]ρ=Ai,kρA
†
i,k − 1

2 {A†
i,kAi,k,ρ}, Ai,1=√

γ2|1〉ii
〈2| and Ai,2 = √

γ3|2〉ii〈3| with γ2 and γ3 being the spon-
taneous decay rates for the transition channels |2〉i → |1〉i and
|3〉i → |2〉i respectively. In Fig. 8 we show overlap (fidelity)
between the realistic density matrix ρ(2τ ) at the end of
the pulse sequences from Eq. (20) and the ideal result ρtar

(for γ2 = γ3 = 0), for the system initially in |ψ0〉. Since the
lifetime of the Rydberg states |2〉 (|3〉) with principal quantum
number n = 40 or 41 is around 60 μs, thus the decay rates
are taken as γ2 = γ3 = 10−4�, 10−3�, corresponding to the
peak Rabi frequency �/2π = 20 MHz, 2 MHz, respectively.
For the former case, the fidelities of the gates relying on the
Berry phase and non-Berry adiabatic phase are 0.983 and
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FIG. 9. Level configuration. Two hyperfine ground states |1〉, |2〉
are coupled via the Raman process with the effective Rabi frequency
�p . The Rydberg state |3〉 is excited via a single-photon transition of
the Rabi frequency �μ.

0.992, respectively; while for the latter case, fidelity of better
than 0.92 is still achievable for both schemes. On the other
hand, the interatomic force (induced by double excitation
of Rydberg states) during the gate operation can couple the
internal degree of freedom to the externally atomic motion.
Its perturbative effect on the gate fidelity can be estimated by
∼ 3λ0V33

Rω0
(1 − e−iω0τ ) to the first order, with ω0 the trapping

frequency and λ0 the wavelength of trapping light [7]. Thus,
one can enlarge the Rabi frequency � to reduce the gate
duration τ or alternatively use an optical lattice (instead of
an optical tweezer trap) with higher trapping frequency to
trap the atoms such that the motional effect can be reasonably
ignored.

As mentioned before, the controlled-Z gate can be imple-
mented as well with the atomic level scheme involving only
a single Rydberg state. In this case, the microwave control
becomes unnecessary. However, for the usual Rydberg EIT
configuration (i.e., a cascaded three-level system), the popu-
lated intermediate state |2〉 (such as 6p1/2 for Rb and 7p1/2 for
Cs atoms) is an excited state with strong spontaneous emission
rate, which will irreversibly deteriorate the coherent population
transfer and then the gate fidelity [7,35]. However, the obstacle
can be overcome by using the single-photon excitation scheme
for the ground-Rydberg transition and by mapping |1〉 and |2〉
to the atomic hyperfine states, which can couple to each other
via two-photon Raman processes (see Fig. 9). Therefore, the

fidelity can be further improved by selecting a Rydberg state
with larger principal quantum number and longer lifetime. For
example, in a 300 K environment, the Cs Rydberg states |90p〉,
|95p〉 have the lifetimes 361 μs and 406 μs, respectively [9].
Moreover, double excitation of Rydberg states is avoided, and
thus the effect of the interatomic force that may entangle their
motional degree of freedom can be neglected.

VI. CONCLUSION

In conclusion, we have shown that the Rydberg-Rydberg
interaction between two highly excited atoms can be exploited
for implementing a reliable controlled-Z gate via adiabatic pas-
sage and tailored phase modulation. The developed addressing
schemes drive the system Hamiltonian to change in a cyclic or
a noncyclic manner, giving rise to a Berry phase or a non-Berry
adiabatic phase for implementation of conditional phase gates.
In the former case, the geometric phase is acquired through
concurrent control of the phases of the driving fields and can
be alternatively obtained via modulation of the relative phase
in two different ways, while for the latter the requirement of
adiabatic phase control becomes unnecessary, and therefore
the experimental complexity can be significantly released. We
also pointed out that the implementation of the schemes with
multilevel atomic configuration involving a unique Rydberg
state might be more promising for experimental demonstra-
tion. We note that our adiabatic Rydberg gates may not replace
the conventional approaches with fast dynamical control;
however, the merits of the adiabatic technique itself and the
addressing schemes of phase modulation found here will
provide perspectives for adiabatic manipulation of interacting
Rydberg systems.
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