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Optimal sequential state discrimination between two mixed quantum states
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Recently, sequential state discrimination, as a quantum-key distribution protocol, has been proposed for
multiple receivers. A previous study [J. A. Bergou et al., Phys. Rev. Lett. 111, 100501 (2013)] showed that
every receiver could successfully perform a sequential state discrimination of two pure states with identical
prior probabilities. In this study, we extend the sequential state discrimination to mixed states with arbitrary
prior probability. First, we analytically obtain the condition of the receiver’s optimal measurement. In addition,
we show that the optimal probability for every receiver to share the mixed state prepared by the sender is not
zero. Furthermore, we compare the sequential state discrimination to the strategies of quantum reproducing and
quantum broadcasting. We find that there are cases in which, unlike that of the pure state, the sequential state
discrimination of mixed states shows a better performance than the other strategies.
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I. INTRODUCTION

Quantum state discrimination is one of the important
research areas in quantum information processing [1,2]. In
quantum state discrimination, the receiver only knows the prior
probabilities of quantum states prepared by a sender. In order to
obtain information of those states, the receiver should perform
a measurement on those states. The result of the measurement
can be either inconclusive or conclusive. When an inconclusive
result is obtained, the receiver cannot obtain any information
on the quantum states prepared by a sender. If a conclusive
result is found, the receiver can obtain information on those
quantum states, which cannot always be perfect [3]. When
the strategy of unambiguous state discrimination is applied, a
conclusive result of the receiver always provides information
on the quantum state without error [4–7]. This implies that
unambiguous state discrimination may play an important role
in the protocols of quantum-key distribution [8].

Recently, Bergou et al. [9] proposed sequential state
discrimination, which is a strategy for multiple receivers to
discriminate a quantum state prepared by a sender when a
classical communication is prohibited among receivers. By
applying the strategy of unambiguous state discrimination to
the receivers, they obtain the success probability of sequential
state discrimination of two nonorthogonal pure states with
identical prior probabilities. In this case, all of the receivers
discriminate the two pure states. Pang et al. [10] found a
larger success probability for the same situation, considered
in Ref. [9], when every receiver discriminates only one of
the two pure states. Also, sequential state discrimination
was experimentally realized [11]. However, the condition
for the receiver’s optimal measurement of sequential state
discrimination has not been found yet.

In this study, we extend the strategy of sequential state
discrimination to mixed states. Furthermore, in our study, prior
probability can be arbitrary. First, we consider the condition
of the receiver’s optimal measurements for the sequential
state discrimination of two mixed states. Using the condition,
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we show that the success probability of the sequential state
discrimination of mixed states for multiple receivers is not
zero. This implies that multiple receivers can share the mixed
states of a sender. In the case of mixed states with identical
eigenvalues [12,13] and prior probabilities, we analytically
determine the optimal measurement condition for receivers.
In this study, we consider the sequential state discrimination
of a rank-2 mixed state, which naturally includes the rank-1
state (pure state). Our approach can be extended to the
sequential state discrimination of mixed states with arbitrary
rank. In addition, we compare our strategy of sequential state
discrimination to the other strategies, which include quantum
reproducing and quantum broadcasting [14,15]. We show that
there are cases in which sequential state discrimination of
mixed states is better than the other strategies, which implies
that sequential state discrimination of mixed states can be
an effective strategy for state discrimination among multiple
parties.

II. SCENARIO OF SEQUENTIAL STATE
DISCRIMINATION

Quantum state discrimination is often performed between
two parties [16,17]. Suppose that two parties consist of a
sender, Alice, and a receiver, Bob. With a prior probability
qi , Alice prepares a quantum state ρi out of the quantum
ensembles {ρ1,ρ2, . . . ,ρn}. Bob performs a measurement
on the state prepared by Alice, using a positive operator
valued measurement (POVM). If the strategy of quantum
state discrimination is a minimum error discrimination [18],
the result of Bob’s measurement is conclusive. When Bob’s
measurement is allowed to be inconclusive and any two
quantum states of quantum ensembles {ρ1,ρ2, . . . ,ρn} do
not have an identical support, Bob can use an unambiguous
discrimination strategy [19,20]. In the case of unambiguous
discrimination strategy, when Bob’s result is conclusive, Bob
can always trust his result. If the quantum state of a quantum
ensemble {ρ1,ρ2, . . . ,ρn} is not orthogonal, Bob obtains the
probability of an inconclusive result. In fact, unambiguous
discrimination can be used for quantum-key distribution. The
way of applying unambiguous discrimination to quantum-key
distribution can be understood in the following manner. When
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FIG. 1. Sequential state discrimination of Bob and Charlie. First, Alice prepares a quantum state ρi with prior probability qi and sends it
to Bob. By a nonoptimal POVM {Mi}, Bob performs unambiguous discrimination on Alice’s quantum state. If Bob correctly discriminates the
quantum state of Alice, Bob sends his postmeasurement state σi to Charlie. Then, Charlie discriminates σi , with an optimal POVM.

Alice prepares a quantum state out of nonorthogonal quantum
states and sends it to Bob, if Bob performs unambiguous
discrimination, Bob’s conclusive result does not contain any
error. Bob tells Alice whether his measurement succeeded or
failed. In this way, they can establish a key. However, if Eve
intervenes between Alice and Bob, eavesdropper Eve causes
an error. When Eve’s measurement fails, she should guess
which state Alice prepares, which causes an error between the
state Alice prepares and the state Bob receives.

In Ref. [9], by applying the unambiguous discrimination
strategy, they proposed a sequential state discrimination. Here,
let us explain the scenario of sequential state discrimination
among a sender Alice and two receivers Bob and Charlie,
which is expressed in Fig. 1. Alice prepares a quantum state
ρi , with a prior probability qi . Bob performs a measurement
on the quantum state ρi , prepared by Alice, with POVM
{M0,M1, . . . ,Mn}. Note that Bob does not inform Charlie
of his result. Therefore, Charlie should read Alice’s state
ρi by measuring the postmeasurement state σi , which is the
state after the measurement of Bob. In order to do this,
Charlie measures σi with POVM {�0,�1, . . . ,�n}, where
�0 (�i �= 0) produces an inconclusive (conclusive) result. The
probability for Bob and Charlie to obtain the correct result
becomes

P (B,C)
s,seq =

n∑
i=1

qiTr[ρiMi]Tr[σi�i]. (1)

If Bob performs an optimal unambiguous discrimination on
Alice’s state ρi , because the post-measurement state σi has an
identical support space, Charlie cannot discriminate the state σi

without an error [21]. Therefore, Bob should use a nonoptimal
measurement for Alice’s state ρi . Meanwhile, the last receiver
Charlie should perform the optimal POVM. Therefore, optimal
sequential state discrimination can be obtained by the POVM
that maximizes Eq. (1).

III. FORMULATION OF MIXED-STATE SEQUENTIAL
STATE DISCRIMINATION

In the sequential state discrimination, if the probability
of Eq. (1) is larger than zero, there is a chance for Bob
and Charlie to obtain the information of Alice’s quantum
state. Reference [9] demonstrated that when Alice prepared an
ensemble of pure quantum states {|ψ1〉 , |ψ2〉} with identical

prior probabilities, Bob and Charlie could share Alice’s
quantum state with a nonzero probability.

In this article, we extend the result of Ref. [9], which
considers only pure states, to that of mixed states. Furthermore,
we consider the situation in which Alice prepares an ensemble
of mixed quantum states with arbitrary prior probabilities.
Now, let us assume that Alice prepares an ensemble of two
mixed quantum states {ρ1,ρ2} with a prior probability qi , where
i = 1,2. The two mixed state of Alice lie in four-dimensional
Hilbert space and ρi has a spectral decomposition as follows:

ρ1 = r1 |r1〉 〈r1| + r̄1 |r̄1〉 〈r̄1| ,
(2)

ρ2 = r2 |r2〉 〈r2| + r̄2 |r̄2〉 〈r̄2| .
Here, {|ri〉 , |r̄i〉} is an orthonormal basis of ρi . In the or-

thonormal basis {|ri〉 , |r̄i〉} (i = 1,2), they fulfill the relations
〈r1|r2〉 = c, 〈r̄1|r̄2〉 = c̄ and 〈r1|r̄2〉 = 〈r2|r̄1〉 = 0 [20]. {ri,r̄i}
are the eigenvalues of ρi , satisfying ri + r̄i = 1. When both |c|
and |c̄| are not one, the supports of ρ1 and ρ2 do not coincide.
In this case, there is a POVM of Bob that can discriminate ρ1

and ρ2 without error. The rank of the quantum states of Alice
can be up to two. Therefore, the POVM of Bob becomes

M1 = α1 |α1〉 〈α1| + ᾱ1 |ᾱ1〉 〈ᾱ1| ,
M2 = α2 |α2〉 〈α2| + ᾱ2 |ᾱ2〉 〈ᾱ2| , (3)

M0 = I − M1 − M2,

where {|αi〉 , |ᾱi〉} is an orthonormal basis of Mi (i = 1,2).
αi and ᾱi are non-negative real numbers, with the condition
0 � αi,ᾱi � 1. Bob’s POVM in Eq. (3) fulfills the properties
(B1) Mi � 0 (∀i ∈ {0,1,2}), (B2) M0 + M1 + M2 = I, and
(B3) Tr[ρiMj ] = 0 (∀i ∈ {1,2} such that i �= j ). (B1) is the
positive-semidefinite condition and (B2) is the completeness
condition. (B3) implies that Bob can discriminate Alice’s state
without error. When {|αi〉 , |ᾱi〉} has orthogonal properties
such as |αi〉⊥ |rj 〉 and |ᾱi〉⊥ |r̄j 〉 (∀i,j ∈ {1,2},i �= j ), the
POVM of Eq. (3) fulfills property (B3). If each of |c| and
|c̄| are less than one, there exists {|αi〉 , |ᾱi〉} that satisfies
the orthogonal properties. When M0 = I − M1 − M2 is a
positive-semidefinite operator, (B1) and (B2) hold simulta-
neously and Bob’s POVM should satisfy [19]

α1α2(1 − |c|2) − α1 − α2 + 1 > 0,
(4)

ᾱ1ᾱ2(1 − |c̄|2) − ᾱ1 − ᾱ2 + 1 > 0.

The derivation of this condition can be found in Ap-
pendix A. The inequalities of Eq. (4) are strict inequalities. If
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the left-hand side of Eq. (4) becomes zero, Bob’s POVM per-
forms an optimal discrimination on Alice’s mixed state. Then,
Charlie will not be able to obtain any information about Alice’s
quantum states. In order to consider the postmeasurement state
of Bob σi , we should consider the Kraus operator {K0,K1,K2},
corresponding to Bob’s POVM [22]. For i = 1,2, the Kraus
operator Ki satisfying Mi = K

†
i Ki can be determined by a

singular-value decomposition. The Kraus operator we use in
this paper is the special form corresponding to Bob’s POVM
[23,24]. Since in four-dimensional Hilbert space the number of
2-rank mixed states that Charlie can discriminate without error
is two, we can consider the special Kraus operator. Meanwhile,
the Kraus operator K0 corresponding to M0 maps the support
of ρi to the support of σi [9]. In Appendix B, we prove
the existence of the operator K0. Using these operators, the
postmeasurement state of Bob σi becomes

σi = KiρiK
†
i

Tr[KiρiK
†
i ]

≡ si |si〉 〈si | + s̄i |s̄i〉 〈s̄i | , (5)

where {|si〉 , |s̄i〉} are the orthonormal bases of σi and satisfy
〈s1|s2〉 = c′, 〈s̄1|s̄2〉 = c̄′, 〈s1|s̄2〉 = 〈s2|s̄1〉 = 0. Here, {si,s̄i}
are the eigenvalues of σi with the property si + s̄i = 1. In
Appendix B, we demonstrate that |c| < |c′| and |c̄| < |c̄′|.
These inequalities imply that Bob obtains information about
Alice’s state. When Bob uses a nonoptimal POVM, |c′| and |c̄′|
are less than one. In this case, Charlie can obtain information
about Alice’s state ρi from the postmeasurement state of Bob
σi . As the postmeasurement state of Bob σi can be described
by rank-2 density matrices, Charlie’s POVM can be given by

�1 = β1 |β1〉 〈β1| + β̄1 |β̄1〉 〈β̄1| ,
�2 = β2 |β2〉 〈β2| + β̄2 |β̄2〉 〈β̄2| , (6)

�0 = I − �1 − �2.

Here, {|βi〉 , |β̄i〉} are the orthonormal bases of �i(i = 1,2).
βi and β̄i are non-negative real numbers with the property
0 � βi,β̄i � 1. The POVM of Eq. (6) should satisfy (C1)
�i � 0 (∀i ∈ {0,1,2}), (C2) �0 + �1 + �2 = I, and (C3)
Tr[σi�j ] = 0 (∀i,j ∈ {1,2} such that i �= j ). (C3) is the
condition that Charlie can be confident of his results. When
the postmeasurement state of Bob σi fulfills |c′|,|c̄′| < 1, there
exists a POVM with property (C3). When �0 = I − �1 − �2

is positive semidefinite, the inconclusive result of Charlie is
obtained by �0. Then, Charlie’s POVM {�0,�1,�2} satisfies
(C1) and (C2), providing the conditions

β1β2(1 − |c′|2) − β1 − β2 + 1 = 0,
(7)

β̄1β̄2(1 − |c̄′|2) − β̄1 − β̄2 + 1 = 0.

Note that the conditions of Charlie’s POVM are given by
equality, unlike Bob’s condition. This implies that Charlie’s
POVM performs an optimal measurement on the postmea-
surement state of Bob σi . Therefore, the postmeasurement
states of Charlie share the same support, which implies that
any other party cannot obtain information about Alice’s state
ρi , from the postmeasurement states of Charlie. The optimal
success probability of Bob and Charlie becomes P (B,C)

s,seq =
f (αopt

1 ,α
opt
2 ) + f̄ (ᾱopt

1 ,ᾱ
opt
2 ), where (αopt

1 ,α
opt
2 ) and (ᾱopt

1 ,ᾱ
opt
2 )

are given as follows:

(
α

opt
1 ,α

opt
2

) ∈
{

(α�
1,α

�
2),

(
1

1 + |c| ,0
)

,

(
0,

1

1 + |c|
)}

, (8)

(
ᾱ

opt
1 ,ᾱ

opt
2

) ∈
{

(ᾱ�
1,ᾱ

�
2),

(
1

1 + |c̄| ,0
)

,

(
0,

1

1 + |c̄|
)}

. (9)

Here, (αopt
1 ,α

opt
2 ) and (ᾱopt

1 ,ᾱ
opt
2 ) satisfy the following

conditions:

α�
2 = α�

1{1 − α�
1(1 − |c|2)}3

x + α�
1(1 − |c|2){1 − α�

1(1 − |c|2)}3
, x = |c|2 q2r2

q1r1
,

α�
1 = α�

2{1 − α�
2(1 − |c|2)}3

y + α�
2(1 − |c|2){1 − α�

2(1 − |c|2)}3
, y = |c|2 q1r1

q2r2
,

ᾱ�
2 = ᾱ�

1{1 − ᾱ�
1(1 − |c̄|2)}3

x̄ + ᾱ�
1(1 − |c̄|2){1 − ᾱ�

1(1 − |c̄|2)}3
, x̄ = |c̄|2 q2r̄2

q1r̄1
,

ᾱ�
1 = ᾱ�

2{1 − ᾱ�
2(1 − |c̄|2)}3

ȳ + ᾱ�
2(1 − |c̄|2){1 − ᾱ�

2(1 − |c̄|2)}3
, ȳ = |c̄|2 q1r̄1

q2r̄2
,

(10)

α�
2 � α�

1{1 − α�
1(1 − |c|2)}

x + α�
1(1 − |c|2){1 − α�

1(1 − |c|2)} , x = |c|2 q2r2

q1r1
,

α�
1 � α�

2{1 − α�
2(1 − |c|2)}

y + α�
2(1 − |c|2){1 − α�

2(1 − |c|2)} , y = |c|2 q1r1

q2r2
,

ᾱ�
2 � ᾱ�

1{1 − ᾱ�
1(1 − |c̄|2)}

x̄ + ᾱ�
1(1 − |c̄|2){1 − ᾱ�

1(1 − |c̄|2)} , x̄ = |c̄|2 q2r̄2

q1r̄1
,

ᾱ�
1 � ᾱ�

2{1 − ᾱ�
2(1 − |c̄|2)}

ȳ + ᾱ�
2(1 − |c̄|2){1 − ᾱ�

2(1 − |c̄|2)} , ȳ = |c̄|2 q1r̄1

q2r̄2

(11)

(see Appendix C for a detailed derivation of the optimization).
If two mixed states of Alice are symmetric and are prepared
with equal prior probability, the optimal success probability
can be found, as summarized in Table I. Note that there exists
a POVM of Bob and Charlie, not being a null operator, that pro-
vides a success probability of sequential state discrimination.
It is different from the case of sequential state discrimination
of the pure state [9]. In sequential state discrimination of a pure
state, there is a case that optimal POVM has a null element [10].
However, in sequential state discrimination of a mixed state,
POVM without a null element can obtain an optimal success
probability, which can be useful in quantum-key distribution.
This is because in a quantum-key distribution protocol one
should discriminate every quantum state. This implies that
Bob and Charlie can always share the mixed state prepared by
Alice, with a nonzero probability, which is one of the main
results of our study. Our approach for mixed states naturally
includes the case of sequential state discrimination of the pure
state. It is because a pure state can be thought of as a special
case in which the eigenvalues of two rank-2 mixed states are
zero and one. Furthermore, by considering an example, we will
show that in the case of the same fidelity, if a sender encodes a
message onto mixed states rather than pure states, the receivers
Bob and Charlie may share the Alice’s message with a higher
success probability. In addition, it will be shown that unlike
the pure state, when a sender prepares the mixed state, there
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TABLE I. Optimal success probability of Bob and Charlie in terms of |c| and |c̄|. Here, |c| = | 〈r1|r2〉 | and |c̄| = | 〈r̄1|r̄2〉 |) denote the
overlap of two mixed states ρ1,ρ2 which Alice prepares. Here, the optimal success probability is obtained when the two mixed states are
prepared with identical prior probabilities, and the optimal success probability can be categorized into four cases, in terms of |c| and |c̄|.

|c| � 3 − 2
√

2 |c| > 3 − 2
√

2

|c̄| � 3 − 2
√

2 P (B,C)
seq = r(1 − √|c̄|)2 + r̄(1 − √|c̄|)2 P (B,C)

seq = 0.5r(1 − |c|)2 + r̄(1 − √|c̄|)2

|c̄| > 3 − 2
√

2 P (B,C)
seq = r(1 − √|c|)2 + 0.5r̄(1 − |c̄|)2 P (B,C)

seq = 0.5r(1 − |c|)2 + 0.5r̄(1 − |c̄|)2

are cases in which the sequential state discrimination strategy
shows a better performance than the other strategies, such as
quantum reproducing and quantum broadcasting.

In fact, our approach can be extended to sequential state
discrimination of the rank-N mixed state (N � 1), as Bob’s
POVM element M0 corresponding to the inconclusive result
consists of the two-dimensional block matrix. This can be seen
in Appendix A.

As explained in Table I, it is clear that if Alice prepares two
symmetric mixed states, receivers can share the mixed state
of Alice, by sequential state discrimination. When the two
mixed states are not symmetric, the optimal sequential state
discrimination is explained in the following example.

Example. Alice prepares a mixed state out of the two mixed
states ρ1,ρ2 with equal prior probabilities,

ρ1 = 0.2 |0〉 〈0| + 0.8 |1〉 〈1| ,
ρ2 = 0.14(0.10 |0〉 + 0.995 |2〉)(0.10 〈0| + 0.995 〈2|)

+ 0.86(0.15 |1〉 + 0.989 |3〉)(0.15 〈1| + 0.989 〈3|). (12)

As we can see, ρ1 and ρ2 are not symmetric. Because |c| =
0.1 and |c̄| = 0.15, there exists a POVM with which Bob can
discriminate ρ1 and ρ2 without error:

M1 = α1(0.995 |0〉 − 0.1 |2〉)(0.995 〈0| − 0.1 〈2|)
+ ᾱ1(0.989 |1〉 − 0.15 |3〉)(0.989 〈1| − 0.15 〈3|),

M2 = α2 |2〉 〈2| + ᾱ2 |3〉 〈3| , (13)

where (α1,α2) = (0.7850, 0.5568) satisfies Eqs. (10) and (11).
Among the three candidates of optimal points {(0.7850,

0.5568),(0,0.9091),(0.9091,0)} (see Fig. 2), the first one
provides the largest value of f . Therefore, (αopt

1 ,α
opt
2 ) =

(0.7850,0.5568) is the optimal point of f . Meanwhile,
(ᾱ1,ᾱ2) = (0.5854,0.6643) fulfills Eqs. (10) and (11). Among
the three candidates of optimal points {(0.5854,0.6643),
(0.8695,0),(0,0.8695)} (see Fig. 2), the first one produces the
largest value of f̄ and (ᾱopt

1 ,ᾱ
opt
2 ) = (0.5854,0.6643) is the

optimal point of f̄ . Therefore, the optimal success
probability of Bob and Charlie becomes f (0.7850,0.5568) +
f̄ (0.5854,0.6643) = 0.45242. Then, the Kraus operators
of Bob become K1 = √

0.7850 |0〉 (0.995 〈0| − 0.1 〈2|) +√
0.5854 |1〉 (0.989 〈1| −0.15 〈3|), K2=

√
0.5568(0.316 |0〉 +

0.949 |2〉) 〈2| + √
0.6643(0.387 |1〉 + 0.922 |3〉) 〈3| (see Ap-

pendix B). Charlie’s POVM to discriminate σ1,σ2 without error
becomes

�1 = β1(0.949 |0〉 − 0.316 |2〉)(0.949 〈0| − 0.316 〈2|)
+ β̄1(0.922 |1〉 − 0.387 |3〉)(0.922 〈1| − 0.387 〈3|),

�2 = β2 |2〉 〈2| + β̄2 |3〉 〈3| , (14)

where β1,β2,β̄1,β̄2 are determined automatically if Bob’s
POVM is fixed. The fidelity [25] of two mixed states in this

example is 0.1411. For the pure states with the same fidelity,
the optimal success probability becomes 0.3989, which is less
value than that of the mixed states with the same fidelity. It
implies that our proposal using mixed states is more effective
in quantum-key distribution than that of pure states. In the case
of the same fidelity, if Alice encodes a message onto mixed
states rather than pure states, Bob and Charlie can share the
Alice’s message with a higher success probability.

FIG. 2. Bob’s POVM condition that optimizes sequential state
discrimination. The solid lines display the points satisfying Eq. (10).
The dotted lines display the points satisfying the equality condition
of Eq. (11).
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FIG. 3. Quantum reproducing scenario of Bob and Charlie for a quantum state prepared by Alice. Bob performs the optimal POVM {Mi}
on quantum state ρi prepared by Alice with prior probability qi . If Bob correctly discriminates Alice’s quantum state, he reproduces ρi and
sends it to Charlie. Using an optimal POVM, Charlie discriminates the quantum state ρi received by Bob. When Bob’s measurement fails to
discriminate Alice’s mixed state, Bob informs Charlie of the fact that his measurement fails.

IV. COMPARISON WITH OTHER SCENARIOS

In this section, we compare the sequential state discrim-
ination strategy with the other strategies. The first strategy
is considered in Ref. [9], which can be called quantum
reproducing (see Fig. 3). However, the difference between
this and our strategy is that Alice uses mixed states. First,
Alice prepares a quantum state out of {ρ1,ρ2} with the
same prior probabilities and sends it to Bob [the spectral
decomposition of the two mixed states is identical to Eq. (2)].
When Bob succeeds at discriminating Alice’s mixed state
without error, Bob produces Alice’s mixed state and sends it to
Charlie. Charlie may discriminate the mixed state sent by Bob
without error. When Bob’s measurement fails to discriminate
Alice’s mixed state, Bob informs Charlie of the fact that his
measurement fails. In this strategy, Bob and Charlie should
use an optimal POVM. The probability that Bob and Charlie
can successfully share Alice’s mixed state ρi becomes

P
(B,C)
s,reproduce = (1 − √

r1r2|c| − √
r̄1r̄2|c̄|)2. (15)

The other strategy is that Bob broadcasts Alice’s mixed state
with a probability [14] (see Fig. 4). The broadcast strategy is
to transform the initial state ρi into the ρ satisfying TrBρ =
TrCρ = ρi . If Alice’s state is pure, the broadcast strategy
is identical to quantum cloning. When Bob successfully
broadcasts Alice’s state ρi , Bob and Charlie can share ρ. Bob
and Charlie perform an optimal POVM on their partial state.
When Bob’s measurement fails to discriminate Alice’s mixed
state, Bob informs Charlie of the fact that his measurement
fails. In this broadcast strategy, the probability that Bob and
Charlie can find ρi can be given by [15]

P
(B,C)
s,broad = min

{
1

1 + |c| ,
1

1 + |c̄|
}

(1 − √
r1r2|c| −

√
r̄1r̄2|c̄|)2.

(16)

The detailed calculation can be found in Appendix D.
Here, let us compare the sequential state discrimination
strategy with the other strategies described above. We
should note that unlike the pure state, when Alice prepares
the mixed state, there are cases in which the sequential
state discrimination strategy shows a better performance
than the other strategies. As a first example, let us con-
sider ρ1 = 0.5 |0〉 〈0| + 0.5 |3〉 〈3| and ρ2 = 0.5(0.7317 |0〉 +
0.6816 |2〉)(0.7317 〈0| + 0.6816 〈2|) + 0.5 |1〉 〈1|. If a sender

prepares one of these states with identical prior proba-
bilities, we have P (B,C)

s,seq = 0.51799, P
(B,C)
s,broad = 0.2322, and

P
(B,C)
s,reproduce = 0.40214. Therefore, P (B,C)

s,seq is larger than P
(B,C)
s,broad

(P (B,C)
s,reproduce) by 0.28577 (0.11585). The second example is the

quantum system with ρ1 = 0.3 |0〉 〈0| + 0.7 |1〉 〈1| and ρ2 =
0.3(0.09109 |0〉 + 0.9958 |2〉)(0.09109 〈0| + 0.9958 〈2|) +
0.7(0.8639 |1〉 + 0.5036 |3〉)(0.8639 〈1| + 0.5036 〈3|). When
the prior probabilities are identical, we have P (B,C)

s,seq = 0.15272,

P
(B,C)
s,broad = 0.07263, and P

(B,C)
s,reproduce = 0.13538. Therefore,

P (B,C)
s,seq is larger than P

(B,C)
s,broad (P (B,C)

s,reproduce) by 0.08009 (0.01734).
This fact implies that the sequential state discrimination
strategy can be the better strategy for mixed states, which
differs in the case of the pure state [9].

V. CONCLUSION

In our study, we extended the sequential state discrimination
of pure states to that of mixed states with arbitrary prior
probabilities. First, we obtained the success probability and
optimal measurement of receivers Bob and Charlie, for a
rank-2 mixed state prepared by Alice. The condition of
eigenvalues for an optimal POVM was found by a high-order
algebraic equation. In order to find an optimal POVM, we
had to solve the high-order algebraic equation, which can be
determined numerically. When the rank-2 mixed states have
identical eigenvalues and prior probabilities, the solution to
the algebraic equation could be obtained analytically, which
implies the existence of an analytic optimal solution. By the
optimal POVM condition, we could show that Bob and Charlie
could share the rank-2 mixed state, prepared by Alice, with a
nonzero probability. In fact, our approach can be extended to a
rank-N mixed state. In addition, we compared our strategy
of sequential state discrimination to the cases of quantum
reproducing and quantum broadcasting. We found that unlike
the pure-state case, the sequential state discrimination of mixed
states may be better than the other strategies.

In fact, we assumed that the support spaces of the two mixed
states should not be overlapped. As the unambiguous state
discrimination of two mixed states with an arbitrary support
space is not yet solved, it is difficult to handle the sequential
state discrimination of arbitrary mixed states [26–28]. In the
future, we will study the sequential state discrimination for
mixed states with an arbitrary support space.
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FIG. 4. Quantum broadcasting scenario of Bob and Charlie for a quantum state prepared by Alice. Bob broadcasts a quantum state ρi

prepared by Alice with prior probability qi . When Bob succeeds at broadcasting it, Bob can share the bipartite state ρ with Charlie. Then, Bob
and Charlie perform an optimal POVM on the partial state. When Bob’s measurement fails to discriminate Alice’s mixed state, Bob informs
Charlie of the fact that his measurement fails.
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APPENDIX A: DERIVATION OF BOB AND CHARLIE’S
POVM CONDITION

Here, we derive the POVM conditions of Bob and Charlie,
which are described in Eqs. (4) and (7). First, we show that
POVM conditions of Bob are given by the inequalities of
Eq. (4). From Eq. (3) and completeness condition (B2), we
can write the POVM element M0 of Bob,

M0 = I − α1 |α1〉 〈α1| − α2 |α2〉 〈α2|
− ᾱ1 |ᾱ1〉 〈ᾱ1| − ᾱ2 |ᾱ2〉 〈ᾱ2|

= (I ′ − α1 |α1〉 〈α1| − α2 |α2〉 〈α2|)
⊕ (Ī ′ − ᾱ1 |ᾱ1〉 〈ᾱ1| − ᾱ2 |ᾱ2〉 〈ᾱ2|). (A1)

Here, I ′(Ī ′) is an identity matrix of space spanned by |α1〉
and |α2〉 (|ᾱ1〉 and |ᾱ2〉). The space spanned by |α1〉 and |α2〉 is
orthogonal to the space spanned by |ᾱ1〉 and |ᾱ2〉. Therefore,
the last term of Eq. (A1) contains the direct sum “⊕.” M0

consists of the block matrix M ′
0,M̄

′
0. Then, we have M0 =

M ′
0 ⊕ M̄ ′

0. The condition that M0 is positive semidefinite is
equivalent to the condition that the two block matrices M ′

0,M̄
′
0

are positive semidefinite. M ′
0 and M̄ ′

0 have identical forms.
Therefore, if the condition that M ′

0 can be positive semidefinite
is obtained, we can find the condition for M̄ ′

0. As |r1〉⊥ |α2〉
according to (B3), when |r1〉 = [1 0]T and |α2〉 = [0 1]T , M ′

0
can be written as

M ′
0 =

[
1 − α1(1 − |c|) α1c

√
1 − |c|2

α1c
∗√1 − |c|2 1 − α1|c|2 − α2

]
. (A2)

Similarly, we obtain M̄ ′
0,

M̄ ′
0 =

[
1 − ᾱ1(1 − |c̄|) ᾱ1c̄

√
1 − |c̄|2

ᾱ1c
∗√1 − |c̄|2 1 − ᾱ1|c̄|2 − ᾱ2

]
. (A3)

From (A2), the condition for M ′
0 � 0 becomes

α1α2(1 − |c|2) − α1 − α2 + 1 � 0. (A4)

Similarly, the condition for M̄ ′
0 � 0 can be determined as

ᾱ1ᾱ2(1 − |c̄|2) − ᾱ1 − ᾱ2 + 1 � 0. (A5)

However, as the POVM of Bob is not optimal, Eqs. (A4) and
(A5) become strict inequalities. The condition for the POVM
of Charlie can be obtained. However, as the POVM of Charlie
is optimal, the condition for the POVM of Charlie becomes
strict equalities.

APPENDIX B: STRUCTURE OF K0 AND FORM OF c′,c̄′

Here, we obtain the Kraus operator K0, corresponding to the
POVM element M0 of Bob. When K0 is given in the following
form, K0 maps the support space of ρi to that of σi :

K0 = (
√

γ1 |s1〉 〈α1| + √
γ2 |s2〉 〈α2|)

⊕ (
√

γ̄1 |s̄1〉 〈ᾱ1| + √
γ̄2 |s̄2〉 〈ᾱ2|)

≡ K ′
0 ⊕ K̄ ′

0. (B1)

Now, let us find γ1,γ2,γ̄1,γ̄2 satisfying M0 = K
†
0K0. Here,

we introduce the following theorem.
Theorem 1. Two n × n matrices A,B are equal iff

〈x| A |y〉 = 〈x| B |y〉 for elements |x〉 , |y〉 obtained from the
linear independent basis {|a〉 , |b〉 , |c〉 , . . . }.

If M ′
0 = K

′†
0 K ′

0 and M̄ ′
0 = K̄

′†
0 K̄ ′

0 are satisfied, we have
M0 = K

†
0K0. When |r1〉 and |r2〉 (|r̄1〉 and |r̄2〉) are linearly

independent, the supports of ρ1 and ρ2 are not identical. From
Theorem 1, we find the conditions that give M ′

0 = K
′†
0 K ′

0,
M̄ ′

0 = K̄
′†
0 K̄ ′

0:

1 − α1(1 − |c|2) = γ1(1 − |c|2),

1 − α2(1 − |c|2) = γ2(1 − |c|2),

c = √
γ1γ2(1 − |c|2)c′,

(B2)
1 − ᾱ1(1 − |c̄|2) = γ̄1(1 − |c̄|2),

1 − ᾱ2(1 − |c̄|2) = γ̄2(1 − |c̄|2),

c̄ = √
γ̄1γ̄2(1 − |c̄|2)c̄′.
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From Eq. (B2), we obtain c,c̄′:

c′ = c√
{1 − α1(1 − |c|2){1 − α2(1 − |c|2}

,

(B3)

c̄′ = c̄√
{1 − ᾱ1(1 − |c̄|2){1 − ᾱ2(1 − |c̄|2}

.

The conditions that c′,c̄′ of Eq. (B3) satisfy |c′|,|c̄′| � 1 are
Eqs. (A4) and (A5) of Appendix A. In other words, the fact
that the postmeasurement states σ1,σ2 do not have identical
support spaces is equivalent to the condition that the POVM
of Bob is not optimal.

APPENDIX C: OPTIMIZATION OF SEQUENTIAL STATE
DISCRIMINATION

In this section, we optimize the probability that Bob and
Charlie perform sequential state discrimination successfully
in terms of the POVM. First of all, the probability is given by
P (B,C)

s,seq = f + f̄ . Here, f and f̄ are

f = (1 − |c|2)(1 − |c′|2)(q1r1α1β1 + q2r2α2β2),
(C1)

f̄ = (1 − |c̄|2)(1 − |c̄′|2)(q1r̄1ᾱ1β̄1 + q2r2ᾱ2β̄2).

Note that αi,ᾱi ,βi,β̄i are parameters of the POVM. Here,
we obtain the conditions of αi,ᾱi ,βi,β̄i , which can optimize f

and f̄ of Eq. (C1), as follows:

α1α2(1 − |c|2) − α1 − α2 + 1 > 0,

ᾱ1ᾱ2(1 − |c̄|2) − ᾱ1 − ᾱ2 + 1 > 0,
(C2)

β1β2(1 − |c|2) − β1 − β2 + 1 = 0,

β̄1β̄2(1 − |c̄|2) − β̄1 − β̄2 + 1 = 0.

According to Eqs. (C1) and (C2), αi,βi and ᾱi ,β̄i consist
of independent constraints. Therefore, the optimization of
P (B,C)

s , being the success probability of sequential state
discrimination, can be rewritten as

maximize f

subject to α1α2(1 − |c|2) − α1 − α2 + 1 > 0, (C3)

β1β2(1 − |c|2) − β1 − β2 + 1 = 0.

The optimization of f̄ is understood similarly. The param-
eters |c′|,|c̄′|, related to the postmeasurement state of Bob
σi , depend on αi,ᾱi (see Appendix B). Now, let us find
the conditions of βi,β̄i for optimizing f . From (8), we can
express f as f = 
1β1 + 
2β2, where 
1 = (1 − |c|2)(1 −
|c′|2)q1r1α1 and 
2 = (1 − |c|2)(1 − |c′|2)q2r2α2 are indepen-
dent of (β1,β2). As 
1 and 
2 are non-negative, (β1,β2), which
is tangential of f and the equality of Eq. (7) and exists in the
regions of 0 � β1 � 1 and 0 � β2 � 1, is an optimal point of
f (see Fig. 5). The conditions of Bob’s POVM, satisfying the
above conditions, become

α2 � α1{1 − α1(1 − |c|2)}
x + α1(1 − |c|2){1 − α1(1 − |c|2)} , x = |c|2 q2r2

q1r1
,

α1 � α2{1 − α2(1 − |c|2)}
y + α2(1 − |c|2){1 − α2(1 − |c|2)} , y = |c|2 q1r1

q2r2
.

(C4)

FIG. 5. Geometric condition for Charlie’s optimal POVM. If in
0 � β1,β2 � 1, the line f = 
1β1 + 
2β2 becomes a tangent to the
boundary of the set satisfying Charlie’s POVM condition, Charlie’s
POVM is optimal.

Considering the tangential point of f and equality of
Eq. (7), f is a function of (α1,α2), f (α1,α2). In order
to examine a local maximum of f (α1,α2) in the region
satisfying Eq. (C4), we find (α�

1,α
�
2), where the gradient

of f (α1,α2) is a zero vector. (α�
1,α

�
2) fulfills the following

conditions:

α�
2 = α�

1{1 − α�
1(1 − |c|2)}3

x + α�
1(1 − |c|2){1 − α�

1(1 − |c|2)}3
, x = |c|2 q2r2

q1r1
,

α�
1 = α�

2{1 − α�
2(1 − |c|2)}3

y + α�
2(1 − |c|2){1 − α�

2(1 − |c|2)}3
, y = |c|2 q1r1

q2r2
.

(C5)

If Bob’s POVM does not satisfy Eq. (C4), (β1,β2) of
optimizing f is (1,0) or (0,1). When (β1,β2) = (1,0), f has
an optimal point at α2 = 0 and f becomes a single-valued
function f (α1,0). f (α1,0) has a maximum value at α1 =
1/(1 + |c|). Similarly, if (β1,β2) = (0,1), f has an optimal
point at α1 = 0 and f becomes a single-valued function
of α2, f (0,α2). f (0,α2) has a maximum value at α2 =
1/(1 + |c|). Therefore, the optimal point for f , (αopt

1 ,α
opt
2 ),

becomes

(
α

opt
1 ,α

opt
2

) ∈
{

(α�
1,α

�
2),

(
1

1 + |c| ,0
)

,

(
0,

1

1 + |c|
)}

. (C6)

In the same way, we can obtain the optimal condition
of f̄ ,

(
ᾱ

opt
1 ,ᾱ

opt
2

) ∈
{

(ᾱ�
1,ᾱ

�
2),

(
1

1 + |c̄| ,0
)

,

(
0,

1

1 + |c̄|
)}

. (C7)
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From Eq. (C7), the equality condition for (ᾱ�
1,ᾱ

�
2) becomes

ᾱ�
2 = ᾱ�

1{1 − ᾱ�
1(1 − |c̄|2)}3

x̄ + ᾱ�
1(1 − |c̄|2){1 − ᾱ�

1(1 − |c̄|2)}3
, x̄ = |c̄|2 q2r̄2

q1r̄1
,

ᾱ�
1 = ᾱ�

2{1 − ᾱ�
2(1 − |c̄|2)}3

ȳ + ᾱ�
2(1 − |c̄|2){1 − ᾱ�

2(1 − |c̄|2)}3
, ȳ = |c̄|2 q1r̄1

q2r̄2
.

(C8)

When Alice prepares mixed states with arbitrary prior
probability, it is difficult to determine (α�

1,α
�
2) and (ᾱ�

1,ᾱ
�
2)

in an analytic manner. However, if Alice prepares a symmetric
mixed state (that is, the case of identical eigenvalues) [13]
with the same prior probabilities, we obtain α�

1 = α�
2 =

(1 − √|c|)/(1 − |c|2) and ᾱ�
1 = ᾱ�

2 = (1 − √|c̄|)/(1 − |c̄|2).
Furthermore, we find f (1/(1 + |c|),0) = f (0,1/(1 + |c|)) and
f̄ (1/(1 + |c̄|),0) = f̄ (0,1/(1 + |c̄|)).

APPENDIX D: OPTIMIZING SUCCESS PROBABILITY OF
QUANTUM BROADCASTING

Here, we obtain the probability that one of the mixed states
{ρ1,ρ2} prepared by Alice can be broadcast correctly. The
necessary and sufficient conditions that the quantum broadcast
can be performed can be found in the following theorem.

Theorem 2. Suppose that a bipartite state ρ satisfies
TrBρ = TrAρ = ρi , where ρi is one of Alice’s two quantum
states {ρ1,ρ2}. Then, if a square matrix � ≡ X − √

�Y
√

� is
positive semidefinite, Bob and Charlie can share ρ with the
probability ti . Here,

√
� = diag{√t1,

√
t1,

√
t2,

√
t2} and X,Y

are defined by [15]

X =

⎡
⎢⎣

〈r1|r1〉 〈r1|r̄1〉 〈r1|r2〉 〈r1|r̄2〉
〈r̄1|r1〉 〈r̄1|r̄1〉 〈r̄1|r2〉 〈r̄1|r̄2〉
〈r2|r1〉 〈r2|r̄1〉 〈r2|r2〉 〈r2|r̄2〉
〈r̄2|r1〉 〈r̄2|r̄1〉 〈r̄2|r2〉 〈r̄2|r̄2〉

⎤
⎥⎦,

(D1)

Y =

⎡
⎢⎢⎣

〈r1|r1〉2 〈r1|r̄1〉2 〈r1|r2〉2 〈r1|r̄2〉2

〈r̄1|r1〉2 〈r̄1|r̄1〉2 〈r̄1|r2〉2 〈r̄1|r̄2〉2

〈r2|r1〉2 〈r2|r̄1〉2 〈r2|r2〉2 〈r2|r̄2〉2

〈r̄2|r1〉2 〈r̄2|r̄1〉2 〈r̄2|r2〉2 〈r̄2|r̄2〉2

⎤
⎥⎥⎦.

In this study, we assume t1 = t2 ≡ t . From this, we obtain the
condition that � is positive semidefinite,

(1 − t) ± c(1 − tc) � 0,
(D2)

(1 − t) ± c̄(1 − t c̄) � 0.

The left side of Eq. (D2) show the four eigenvalues of �.
Here, we assumed that c,c̄ are real because the phases of c,c̄

are irrelevant. t , satisfying the inequalities of Eq. (D2), fulfills
t � min{1/(1 + c),1/(1 + c̄)}.
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