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We study the probabilistic (conditional) teleportation protocol when the entanglement needed for its
implementation is given by thermal entanglement, i.e., when the entangled resource connecting Alice and
Bob is an entangled mixed state described by the canonical ensemble density matrix. Specifically, the entangled
resource we employ here is given by two interacting spin- 1

2 systems (two qubits) in equilibrium with a thermal
reservoir at temperature T . The interaction between the qubits is described by a Heisenberg-like Hamiltonian,
encompassing the Ising, the XX, the XY , the XXX, and XXZ models, with or without external fields. For
all those models, we show analytically that the probabilistic protocol is exactly equal to the deterministic one
whenever we have no external field. However, when we turn on the field, the probabilistic protocol outperforms the
deterministic one in several interesting ways. Under certain scenarios, for example, the efficiency (average fidelity)
of the probabilistic protocol is greater than the deterministic one and increases with increasing temperature, a
counterintuitive behavior. We also show regimes in which the probabilistic protocol operates with relatively high
success rates and, at the same time, with efficiency greater than the classical limit 2/3, a threshold that cannot be
surpassed by any protocol using only classical resources (no entanglement shared between Alice and Bob). The
deterministic protocol’s efficiency under the same conditions is below 2/3, highlighting that the probabilistic
protocol is the only one yielding a genuine quantum teleportation. We also show that near the quantum critical
points for almost all those models the qualitative and quantitative behaviors of the efficiency change considerably,
even at finite T .
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I. INTRODUCTION

The quantum teleportation protocol [1] is one of the most
important quantum communication protocols devised so far.
It was originally built [1] to transfer an unknown quantum
state |ψ〉, describing a qubit located in one place (Alice’s),
to another qubit in another place (Bob’s) without sending the
physical system originally described by |ψ〉 from Alice to Bob.
A few years after its conception, the teleportation protocol was
extended to continuously variable systems [2,3] and also the
first experimental realizations were presented [4–6]. The key
resource needed to accomplish such a task without corrupting
the teleported state is a maximally entangled pure state that
Alice and Bob must share. This maximally entangled pure state
is the ideal entangled resource through which the teleportation
takes place.

Generating and preserving a maximally entangled pure state
is not easy. Unavoidable losses, noise, and decoherence rapidly
reduce its purity and entanglement. A workaround to bypass
those problems using only local operations and classical
communication is entanglement distillation [7], where several
copies of non-maximally-entangled mixed states are converted
into one maximally entangled pure state. A different approach
is based on the modification of the standard teleportation
protocols [1–3], adapting them to operate directly with non-
maximally-entangled states [8–21].

The modified teleportation protocols can be divided into
two main groups. The first one contains the deterministic
protocols [11–22], in which there is no postselection of the
measurement results obtained by Alice during the execution
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of the protocol. In other words, at the end of each run of the
protocol, no matter what measurement outcome Alice obtains,
Bob considers his qubit as a valid output of the teleportation
protocol. The word deterministic means that the probability
of success is one for those protocols, even if Bob’s qubit
at the end of the protocol is not exactly equal to the input
state. The second group contains the probabilistic protocols,
in which Alice and Bob postselect certain measurement results
of Alice. In this scenario, Alice’s measurement outcomes
leading to low-fidelity teleported states are discarded and
thus the protocol is dubbed probabilistic since the chances of
Alice getting the measurement results leading to high-fidelity
teleported states are less than one [8–10,23].

Most of the works dealing with probabilistic teleportation
protocols employ non-maximally-entangled pure states as the
entangled resource connecting Alice and Bob [8–10]. Only
recently was a comprehensive investigation of the proba-
bilistic protocol with mixed entangled states [23] presented.
In Ref. [23], each qubit of a maximally entangled pure
state (Bell state) was independently subjected to all possible
combinations of the four standard types of noise one faces in
the implementation of quantum communication tasks, namely,
the bit flip, the phase flip or phase dumping, the depolarizing,
and the amplitude-damping noise channels. The efficiency of
teleporting a qubit of each one of the 16 mixed states obtained
after the action of those kinds of noise was studied. It was
also assumed that Alice’s qubit might also be acted upon by
each one of those four types of noise, giving a total of 64 case
studies.

In this paper, our goal is to study a different yet important
noise scenario. We now consider that the two qubits shared
between Alice and Bob can interact and that they are in
thermal equilibrium with a thermal reservoir at temperature

2469-9926/2017/96(2)/022315(14) 022315-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.022315


RAPHAEL FORTES AND GUSTAVO RIGOLIN PHYSICAL REVIEW A 96, 022315 (2017)

FIG. 1. The teleportation protocol can basically be divided into
four steps. Upper panel: The first step is related to the preparation
of the entangled resource (qubits 2 and 3) and the input (qubit 1).
Here, the entangled resource is described by two interacting qubits
in thermal equilibrium with a thermal reservoir at temperature T .
Lower panel: The second step consists in Alice implementing a
joint measurement (Bell measurement) in the input and her share
of the entangled resource (qubits 1 and 2), which become entangled.
Step 3 is the broadcasting to Bob, via a classical communication
channel, of Alice’s measurement result. In the fourth and last step,
Bob implements a unitary operation on the output state (qubit 3),
depending on the result of Alice’s measurement. Note that the present
analysis is particularly relevant and meaningful whenever the overall
time needed to implement all steps of the teleportation protocol is
lower than the time needed by the whole system to be brought
back to thermal equilibrium. In other words, the rate at which we
implement all steps of the teleportation protocol must be higher
than the system’s thermal relaxation rate. In the opposite scenario,
however, Bob’s output qubit would return to a thermal equilibrium
state before we could access and further manipulate its content or
even before we could finish the teleportation protocol. In this case,
the present analysis does not apply.

T (see Fig. 1). This scenario naturally appears in a possible
implementation of a quantum computer based on solid-state
devices, where quantum information needs to be transferred
(teleported) from one location to another inside a quantum chip
and T is the temperature under which the quantum computer
operates.

The quantum state of a two-qubit system in equilibrium
with a thermal reservoir is described by the canonical ensemble
density matrix and whenever entanglement is present between
the two qubits it is usually called thermal entanglement
[24–32]. In this paper, we model the interaction between
the qubits of the entangled resource via the Heisenberg
Hamiltonian, either without or with an external magnetic field.
The external magnetic field gives an important extra control
parameter that can be tuned to maximize the teleportation
efficiency. For several combinations of the coupling constants
and external field in the Heisenberg Hamiltonian, we obtain
counterintuitive situations where an increase of the tempera-
ture leads to better teleportation. Also, we show that there are
cases where the probabilistic protocol beats the deterministic
one in a very important way, already seen in the noise models

of Ref. [23]: We prove that for some set of coupling constants
in the Heisenberg model, the probabilistic protocol is the
only one leading to a genuine quantum teleportation. This
is true because the deterministic protocol under the same
conditions cannot overcome the efficiency (average fidelity)
of an all-classical protocol, where no entanglement is used to
teleport the qubit. The probabilistic protocol, on the other hand,
has an efficiency that cannot be achieved by the all-classical
protocol. We also investigate how the efficiencies of the
probabilistic and deterministic protocols are affected in the
vicinity of the quantum critical points for the models we study
here. We noted nontrivial qualitative and quantitative changes
in the behavior of the efficiencies near the critical points, even
at finite T .

II. THE MATHEMATICAL TOOLS

Since the entangled resource in the present paper is not a
pure state, we have to recast the original teleportation protocol
using the language of density matrices. This was done for the
deterministic protocol in Ref. [20] and for the probabilistic
protocol in Ref. [23]. In Secs. II A and II B, we review the
main ideas and results of those references that are needed
here. We follow closely the notation and style of Refs. [20,23].
In Sec. II C, we present the Heisenberg model, preparing the
ground for Sec. III, where we show the main results of this
paper.

A. Recasting the teleportation protocol
in the density matrix formalism

The input qubit that is teleported from Alice to Bob is
assumed a pure state and is given by |ψ〉in = a|0〉 + b|1〉,
with |a|2 + |b|2 = 1. Its density matrix is

ρin = |ψ〉in in〈ψ | =
(|a|2 ab∗

a∗b |b|2
)

, (1)

where ∗ is complex conjugation and the subscript in means
“input.” The entangled state shared between Alice and Bob
(the quantum communication channel) is described by the
canonical ensemble density matrix,

ρch = e− H
kT

Z
= e−βH

Z
, (2)

where Z = Tr(e−H/kT ) is the partition function, Tr is the trace
operation, k is the Boltzmann constant, and ch means the
quantum communication channel. The Hamiltonian H is given
by the Heisenberg model as explained in Sec. II C. Note that
the expression communication channel refers to any physical
apparatus, device, or system whereby Alice and Bob may
send either classical or quantum information. In the former
case we call it a classical communication channel and in the
latter a quantum communication channel. Throughout this text,
the words entangled resource and quantum communication
channel are synonyms.

At this stage, the total state describing all qubits is

ρ = ρin ⊗ ρch. (3)
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The teleportation protocol proceeds as follows:
(i) Alice implements a Bell state measurement onto qubits

1 and 2.
(ii) Alice broadcasts her measurement result to Bob using

a classical communication channel.
(iii) Bob uses the information received in step (ii) to choose

the right unitary operation to be applied on his state (qubit 3).
If Alice and Bob shared a maximally entangled pure state

(Bell state), at the end of step (iii) Bob’s qubit would be exactly
described by ρin. In any realistic scenario, this is not the case
and we invariably have a mixed state describing the quantum
communication channel, leading to a nonperfect teleportation.

The projectors describing Alice’s measurement on the input
qubit and her qubit of the entangled resource are

P
ϕ

j = ∣∣Bϕ

j

〉〈
B

ϕ

j

∣∣, j = 1,2,3,4, (4)

with

∣∣Bϕ

1

〉 = cos ϕ|00〉 + sin ϕ|11〉, (5)

∣∣Bϕ

2

〉 = sin ϕ|00〉 − cos ϕ|11〉, (6)

∣∣Bϕ

3

〉 = cos ϕ|01〉 + sin ϕ|10〉, (7)

∣∣Bϕ

4

〉 = sin ϕ|01〉 − cos ϕ|10〉. (8)

In the standard protocol ϕ = π/4 and |Bj 〉, j = 1,2,3,4, are
respectively the Bell states |�+〉,|�−〉,|�+〉, and |�−〉 [1].
Here, ϕ is a free parameter chosen by Alice to maximize the
efficiency of the probabilistic teleportation.

Alice’s probability to measure a given generalized Bell
state is

Qj (|ψ〉in) = Tr
[
P

ϕ

j ρ
]

(9)

and at the end of step (iii) Bob’s state is

ρ
Bj

= Uj Tr12
[
P

ϕ

j ρP
ϕ

j

]
U

†
j

Qj (|ψ〉in)
. (10)

Here Tr12 is the partial trace on the first two qubits (Alice’s
qubits). We make explicit the dependence of Qj on the
input state |ψ〉in since for mixed-state entangled resources,
or non-maximally-entangled ones, the probability depends on
the input state [8–10,20,23].

In the standard teleportation protocol, the unitary transfor-
mation that Bob implements on his qubit depends not only
on Alice’s measurement outcome but also on the entangled
resource [1]. For example, if ρch is the Bell state |�+〉 =
(|00〉 + |11〉)/√2, we have U1 = 1, U2 = σz,U3 = σx , and
U4 = σzσx , with 1 being the identity matrix and σz and σx

the standard Pauli matrices. For the other three Bell states,
|�−〉,|�+〉, and |�−〉, we have respectively {U1,U2,U3,U4} =
{σz,1,σzσx,σx},{σx,σzσx,1,σz}, and {σzσx,σx,σz,1}. With that
in mind, when we search for the optimal settings leading to
the greatest efficiency for the teleportation protocol, we will
also let Uj run over its possible four values: 1,σz,σx,σzσx .

Before we proceed, it is worth better explaining what
we mean by optimal settings or an optimal protocol. In the
following, we will be looking for the optimal protocols for
several entangled resources shared between Alice and Bob.
Our search for the optimal protocols, the ones leading to the

greatest efficiencies (average fidelities), will be restricted to
projective measurements that Alice might implement on her
qubits, and Bob will be restricted to act on his qubit using only
Pauli matrices, as explained in the previous paragraph. We
decided to work only with projective measurements and with
unitary operations given by Pauli matrices because those are
the resources employed in the original protocol and readily
implementable with current technology. It lies beyond the
scope and aim of this work to deal with more general types of
measurements and more general unitary operations.

B. Success rate and efficiency of the probabilistic teleportation

Since the chance Qj of Alice measuring the general-
ized Bell state |Bϕ

j 〉 when she shares with Bob a non-
maximally-entangled resource depends on the input state |ψ〉in
[8–10,20,23], we assume |ψ〉in is given by a uniform proba-
bility distribution,

PX(x) = P(|ψ〉in). (11)

Here X denotes a continuous random variable whose values
x are all possible pure qubits that together define the sample
space 
. Averaging over this distribution, we obtain input-
state-independent results for the relevant quantities needed
to study the efficiency of the teleportation protocol. The
probability distribution PX(x) is normalized as follows,∫




PX(x)dx =
∫




P(|ψ〉in)d|ψ〉in = 1, (12)

where PX(x) is constant for all x.
If we write an arbitrary qubit as

|ψ〉 = α|0〉 + δeiγ |1〉, (13)

where α � 0, δ � 0, α2 + δ2 = 1, and 0 � γ � 2π are real
numbers, it is not difficult to see that we can select α2 and γ as
independent variables. ThusP(|ψ〉in) = P(α2,γ ) and Eq. (12)
reads ∫ 2π

0

∫ 1

0
P(α2,γ )dα2dγ = 1, (14)

where

P(α2,γ ) = 1

2π
(15)

for a uniform distribution.
It is worth mentioning that the described averaging over

pure states does not correspond to a uniform distribution on
the Bloch sphere. The distribution as given here states that
the relative phase between the states |0〉 and |1〉 is completely
random as well as the probability weight of the state |0〉 (or
|1〉) in the superposition of |0〉 and |1〉. Nevertheless, this
distribution is easy to implement in the laboratory, and from a
mathematical and operational point of view, we have observed
that it simplifies the calculations of the average fidelities, in
particular for the probabilistic protocols.

There is also a discrete variable J with values j = 1,2,3,4
(or j = �+,�−,�+,�−) representing the generalized Bell
states |Bϕ

j 〉. Thus, the probability to measure |Bϕ

j 〉 is denoted
by PJ (j ). The conditional probability PJ |X(j |x) gives Alice’s
chance of measuring the Bell state j if the input state to be
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teleported is x and is given by Eq. (9),

PJ |X(j |x) = Qj [|ψ〉in]. (16)

The joint probability distribution PXJ (x,j ) = PJX(j,x)
can be obtained if we use the definition of the conditional
probability,

PXJ (x,j ) = PX(x)PJ |X(j |x) = P(|ψ〉in)Qj (|ψ〉in), (17)

which subsequently allows us to compute the marginal
distribution PJ (j ) = ∫



PXJ (x,j )dx,

PJ (j ) =
∫




P(|ψ〉in)Qj (|ψ〉in)d|ψ〉in. (18)

And if we use Eq. (17) exchanging the roles of X with J and
Eq. (18), we arrive at

PX|J (x|j ) = PXJ (x,j )

PJ (j )

= P(|ψ〉in)Qj (|ψ〉in)∫


P(|ψ〉in)Qj (|ψ〉in)d|ψ〉in . (19)

These last two expressions, Eqs. (18) and (19), are the
probability distributions needed to quantitatively study the
probabilistic teleportation protocol.

We can better appreciate the last statement by remembering
the meaning of PJ (j ) and PX|J (x|j ). Noting that PJ (j ) gives
the chance for Alice to measure the generalized Bell state
|Bϕ

j 〉 when the distribution for the input states is P(|ψ〉in), it
is straightforward to see that PJ (j ) is the average probability
of measuring |Bϕ

j 〉,

Qj = PJ (j ) =
∫




P(|ψ〉in)Qj (|ψ〉in)d|ψ〉in. (20)

Qj does not dependent on |ψ〉in and is called the probability
of success or the success rate of the probabilistic teleportation
protocol if we postselect the measurement result j [23].

To quantify how similar to the input state is the output after
one run of the protocol, we employ the fidelity [33], which for
a pure input state is

Fj (|ψ〉in) = Tr
[
ρinρBj

] = in〈ψ |ρ
Bj

|ψ〉in, (21)

with ρ
Bj

, Eq. (10), being the output state with Bob after the
teleportation protocol ends. For a perfect teleportation, Fj = 1
(its maximal value) and Fj = 0 (its minimal value) when the
output is orthogonal to the input state.

Looking at Eq. (21), we see that in general Fj depends on
|ψ〉in and by averaging over all possible input states we get
an input-state-independent quantification for the efficiency of
the protocol [23]. Since we are interested in a postselected
measurement result j , the distribution of input states |ψ〉in
in this situation is PX|J (x|j ), Eq. (19), which leads to the
following average fidelity:

Fj =
∫




Fj (x)PX|J (x|j )dx

=
∫



Fj (|ψ〉in)P(|ψ〉in)Qj (|ψ〉in)d|ψ〉in∫


P(|ψ〉in)Qj (|ψ〉in)d|ψ〉in . (22)

This is what we call the efficiency of the probabilistic
teleportation protocol if we postselect the measurement result

j [23]. If all measurement results are accepted, i.e., no
postselection is made, we get back the efficiency of the
deterministic protocol [20,23],

〈F 〉 =
4∑

j=1

PJ (j )Fj =
∫




F (|ψ〉in)P(|ψ〉in)d|ψ〉in, (23)

where F (|ψ〉in) = ∑4
j Qj (|ψ〉in)Fj (|ψ〉in).

Following the strategy of Ref. [23], we want to maximize
Eq. (22) over the set of free parameters present in the
probabilistic protocol. In particular, we want to get scenarios
in which Fj > 〈F 〉, where 〈F 〉 is the optimal efficiency of the
deterministic teleportation protocol.

C. The Heisenberg model

The Hamiltonian describing the Heisenberg model for a
spin- 1

2 chain of two qubits is

H = jxσ
(2)
x σ (3)

x + jyσ
(2)
y σ (3)

y + jzσ
(2)
z σ (3)

z + haσ
(2)
z + hbσ

(3)
z ,

(24)

where σ
(2)
j σ

(3)
j = σ

(2)
j ⊗ σ

(3)
j , with the superscripts (2) and (3)

representing qubits 2 (with Alice) and 3 (with Bob) of the
quantum communication channel (see Fig. 1). In Eq. (24), σj ,
j = x,y,z are the standard Pauli matrices such that σz|0〉 = |0〉
and σz|1〉 = −|1〉, σx |0〉 = |1〉 and σx |1〉 = |0〉, and σy |0〉 =
i|1〉 and σy |1〉 = −i|0〉, with i being the imaginary unity.
Furthermore, jx,jy,jz,ha,hb are real numbers with the former
three representing the coupling constants between the qubits
and the latter two denoting external magnetic fields applied
respectively on qubits 2 and 3 along the z direction.

Inserting Eq. (24) into Eq. (2), we get the canonical en-
semble density matrix describing the quantum communication
channel ρch, which together with Eq. (1) allows us to compute
the total state ρ initially describing all three qubits employed
in the teleportation protocol [see Eq. (3)]. Using ρ we can
evaluate Eq. (9) and insert it along with Eq. (15) into Eq. (20)
to obtain the four success rates Qj , each of which is associated
with the average probability of measuring the generalized Bell
state |Bϕ

j 〉. Those success rates can be written as follows:

Q1 = Q4 = q(ϕ), (25)

Q2 = Q3 = q(π/2 ± ϕ), (26)

where

q(ϕ) = 1

4
− cos(2ϕ)[η�h sinh(βχ ) + χ�he

2βjz sinh(βη)]

4χη[cosh(βχ ) + e2βjz cosh(βη)]
.

(27)

In Eq. (27), β = 1/kT and ϕ were already defined in Eqs. (2)
and (4), respectively, while the other quantities are given as
follows:

η =
√

�2
j + �2

h, �j = jx − jy, �h = ha + hb, (28)

χ =
√

�2
h + �2

j , �h = ha − hb, �j = jx + jy. (29)

We now turn our attention to the efficiency of the telepor-
tation protocol (average fidelities). Before we proceed, it is
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important to recall that the unitary operation Uj that Bob must
implement on his qubit at the end of the protocol depends,
in addition to Alice’s measurement result, on which quantum
communication channel (entangled state) she shares with Bob.
In the original protocol [1], for each one of the four possible
Bell states (maximally entangled pure states) that Alice and
Bob might share, we can associate a set S containing four
Uj . Each member of S corresponds to the unitary operation
that Bob needs to implement on his qubit according to Alice’s
measurement result (see Sec. II A).

Here we deal with a mixed-state entangled resource
which, similarly to any two-qubit state, can be written
as ρch = p

�+ |�+〉〈�+| + p
�− |�−〉〈�−| + p

�+ |�+〉〈�+| +
p

�− |�−〉〈�−| + nondiagonal terms. We are employing the
Bell states as a basis to expand ρch and thus pj , j =
�+,�−,�+,�−, are the probabilities of projecting ρch onto
the respective Bell states. Depending on the parameters of
Eq. (24), one (or more) pj dominates and it is expected that the
set S associated with the corresponding Bell state will yield the
best efficiency for the teleportation protocol. Therefore, in our
search for the optimal protocol, we compute the efficiencies
of the probabilistic and deterministic protocols, Eqs. (22) and
(23), using the four possible sets S. In the end, i.e., after we
optimize all expressions with respect to the free parameters of
the protocol, we pick out of all possibilities the one giving the
greatest efficiency.

1. The deterministic protocol

Let us begin by analyzing the efficiency for the determin-
istic protocol, Eq. (23), where we append a superscript to
〈F 〉 to remind us of which set S = {U1,U2,U3,U4} of unitary
operations we employ in the calculation of 〈F 〉. For example,

〈F 〉�+
means that we use the set S associated to the case where

the entangled resource is the Bell state |�+〉 (see Sec. II A).
Using Eqs. (9), (10), (15), and (21) in Eq. (23), we get

〈F 〉�+ = f� (ϕ), (30)

〈F 〉�− = f� (−ϕ), (31)

〈F 〉�+ = f� (ϕ), (32)

〈F 〉�− = f� (−ϕ), (33)

where

f�(ϕ) = 1

3
+ χ cosh(βχ ) − �j sin(2ϕ) sinh(βχ )

3χ [cosh(βχ ) + e2βjz cosh(βη)]
, (34)

f� (ϕ) = 1

3
+ η cosh(βη) − �j sin(2ϕ) sinh(βη)

3η[e−2βjz cosh(βχ ) + cosh(βη)]
. (35)

Looking at Eqs. (34) and (35) and noting that β, χ ,
and η are positive quantities, we easily see that the optimal
expressions are obtained by setting ϕ = ±π/4. In other words,
the measurement basis Alice must employ is the standard
Bell basis. More specifically, we must choose ϕ such that
−�j sin(2ϕ) = |�j | and −�j sin(2ϕ) = |�j |. If �j < 0 we
choose ϕ = π/4, and when �j > 0 we set ϕ = −π/4 (or
5π/4). A similar analysis applies to �j . Therefore, the optimal

TABLE I. In the table below we list to each F
ε

j the corresponding
Alice’s measurement outcome |Bϕ

j 〉 and the respective unitary
operation Bob implements on his qubit.

F �+
1 → |Bϕ

1 〉 → 1 F �−
1 → |Bϕ

1 〉 → σz

F �+
2 → |Bϕ

2 〉 → σz F �−
2 → |Bϕ

2 〉 → 1

F �+
3 → |Bϕ

3 〉 → σx F �−
3 → |Bϕ

3 〉 → σzσx

F �+
4 → |Bϕ

4 〉 → σzσx F �−
4 → |Bϕ

4 〉 → σx

F �+
1 → |Bϕ

1 〉 → σx F �−
1 → |Bϕ

1 〉 → σzσx

F �+
2 → |Bϕ

2 〉 → σzσx F �−
2 → |Bϕ

2 〉 → σx

F �+
3 → |Bϕ

3 〉 → 1 F �−
3 → |Bϕ

3 〉 → σz

F �+
4 → |Bϕ

4 〉 → σz F �−
4 → |Bϕ

4 〉 → 1

average fidelities for each set S are

〈F 〉�+

opt
= 〈F 〉�−

opt
= f�

opt
, (36)

〈F 〉�+

opt
= 〈F 〉�−

opt
= f�

opt
, (37)

where

f�

opt
= 1

3
+ χ cosh(βχ ) + |�j | sinh(βχ )

3χ [cosh(βχ ) + e2βjz cosh(βη)]
, (38)

f�

opt
= 1

3
+ η cosh(βη) + |�j | sinh(βη)

3η[e−2βjz cosh(βχ ) + cosh(βη)]
. (39)

Finally, the optimal efficiency for the deterministic telepor-
tation protocol is given by

〈F 〉opt = max
{
f�

opt
,f�

opt

}
. (40)

Equation (40) is the benchmark we want to surpass using the
probabilistic protocol.

2. The probabilistic protocol

Following the superscript notation just introduced in the
preceding analysis, we now need to evaluate F

ε

j , Eq. (22), for
j = 1,2,3,4 and ε = �+,�−,�+,�−. Here each j represents
one of the four possible measurement outcomes of Alice; i.e.,
it denotes which generalized Bell state |Bϕ

j 〉 she measured,
and ε represents which set of unitary operations S Bob uses
to properly correct his qubit, where each element of the set
corresponds to a given measurement result of Alice. For
instance, F

�+
1 means that Alice and Bob are working with

the postselected measurement outcome |Bϕ

1 〉, discarding the
other three possible measurement results, and Bob’s unitary
operation for all valid runs of the protocol is always 1 (the
respective U1 associated with ε = �+). In Table I, we list all
16 possibilities.

By inserting Eqs. (9), (15), and (21) into (22), and using
the proper unitary operation Uj (see Table I) to compute ρ

Bj
,
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Eq. (10), we get

F
�+
1 = F

�+
4 = g �(ϕ), (41)

F
�+
2 = F

�+
3 = g �(π/2 − ϕ), (42)

F
�−
1 = F

�−
4 = g �(−ϕ), (43)

F
�−
2 = F

�−
3 = g �(π/2 + ϕ), (44)

F
�+
1 = F

�+
4 = g � (ϕ), (45)

F
�+
2 = F

�+
3 = g � (π/2 − ϕ), (46)

F
�−
1 = F

�−
4 = g � (−ϕ), (47)

F
�−
2 = F

�−
3 = g � (π/2 + ϕ), (48)

where

g � (ϕ) = 1

3
+ η{χ cosh(βχ ) − sinh(βχ )[�h cos(2ϕ) + �j sin(2ϕ)]}

3{ηχ [cosh(βχ ) + e2βjz cosh(βη)] − cos(2ϕ)[η�h sinh(βχ ) + χ�he2βjz sinh(βη)]} , (49)

g � (ϕ) = 1

3
+ χ{η cosh(βη) − sinh(βη)[�j sin(2ϕ) + �h cos(2ϕ)]}

3{ηχ [e−2βjz cosh(βχ ) + cosh(βη)] − cos(2ϕ)[η�he−2βjz sinh(βχ ) + χ�h sinh(βη)]} . (50)

The first important thing worth noting if we look at Eqs. (49)
and (50) is the fact that ϕ = ±π/4 (or ϕ = ±3π/4) are not
in general the optimal settings. In other words, the optimal
measurement bases are not formed by the standard maximally
entangled Bell states. Indeed, whenever an external magnetic
field is present, either �h or �h (or both) is not zero. This
leads to the presence of the cos(2ϕ) terms, in addition to the
sin(2ϕ) terms, in Eqs. (49) and (50). The optimal ϕ in this case
can be found by solving the equations dgε/dϕ = 0, ε = �,�,
and then selecting the gε giving the greatest efficiency.

Second, comparing Eqs. (49) and (50) with (34) and (35),
it is not difficult to see that

gε(ϕ) = f ε(ϕ), if �h = �h = 0. (51)

This means that if we have no external fields (�h = �h = 0),
the probabilistic teleportation protocol gives exactly the same
efficiencies of the deterministic protocol. We thus arrive at
the important conclusion that the probabilistic protocol can
only beat the deterministic one if external magnetic fields are
turned on.

There is another interesting feature of the present prob-
abilistic protocol. Looking at Eqs. (41)–(48), we see that we
always have F

ε

1 = F
ε

4 and F
ε

2 = F
ε

3, which implies that F
ε

1 and
F

ε

4, and equivalently F
ε

2 and F
ε

3, share the same optimal ϕ. This
property enhances the effective success rate of the probabilistic
protocol since two out of four possible measurement results of
Alice give the same optimal efficiency with the same optimal
settings. Thus, instead of postselecting only one outcome,
Alice and Bob can postselect two measurement outcomes,
increasing the success rate to twice the value given in Eq. (27),

Q1,4 = 2q(ϕ), (52)

Q2,3 = 2q(ϕ ± π/2). (53)

Finally, putting together all the pieces of information in
the last paragraphs, and noting that in Eqs. (49) and (50) the
arguments of all sines and cosines are given by 2ϕ, we can
obtain the optimal efficiency for the probabilistic protocol by
solving the following maximization problem:

Fopt = max
ϕ∈[0,π]

{g�(ϕ),g� (ϕ)}. (54)

By ranging ϕ from 0 to π , we can obtain the optimal settings
for all instances listed in Eqs. (41)–(48), and by choosing the
greatest value from g�(ϕopt) and g� (ϕ̃opt), we get the optimal
efficiency Fopt . The corresponding success rate is given by
either 2q(ϕopt) or 2q(ϕ̃opt), where ϕopt and ϕ̃opt are the ϕ’s
maximizing g� and g� , respectively.

III. RESULTS

We are now ready to study the efficiency to teleport an
arbitrary pure state qubit for several entangled resources
described by Heisenberg-like models in thermal equilibrium
with a heat reservoir at temperature T . We divide our entangled
resources into two main groups, all of which are subjected
to external magnetic fields in the z direction. The first
group encompasses all models in which there is no σ (2)

z σ (3)
z

interaction and the second one those models possessing it. Note
that whenever there are no external fields, the deterministic
and probabilistic protocols yield the same results and, thus,
we work only with cases in which the external field is present.

A. XY -like models

The one-dimensional XY model in a transverse field is
obtained from Eq. (24) by setting jz = 0 and ha = hb. It is

022315-6



PROBABILISTIC QUANTUM TELEPORTATION VIA . . . PHYSICAL REVIEW A 96, 022315 (2017)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
kT

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 F
id

el
ity

0 0.2 0.4 0.6 0.8 1.0
kT

0.20

0.30

0.40

0.50

Su
cc

es
s R

at
e

Ising Model in a Transverse Field (ζ = 1.0)

λ = 1.3

λ = 0.7

Solid lines → Deterministic protocol 
Dashed lines → Probabilistic protocol 

λ = 0.7

λ = 1.3

FIG. 2. Main plot: The efficiencies for the deterministic (solid
curves) and probabilistic (dashed curves) teleportation protocols as
a function of the temperature when the quantum communication
channel connecting Alice and Bob is given by the thermalized Ising
model in a transverse field. The efficiency for the deterministic
protocol is given by Eq. (40) and for the probabilistic one by
Eq. (54). The dot-dashed red line marks the classical limit (2/3)
below which the teleportation protocol can be matched by a purely
classical protocol. Inset: The success rate (probability of success)
for the probabilistic protocol. Here and in the following figures all
quantities are dimensionless.

more usual, however, to rewrite Eq. (24) as follows [32],

H = −λ
[
(1 + ζ )σ (2)

x σ (3)
x + (1 − ζ )σ (2)

y σ (3)
y

] − σ (2)
z − σ (3)

z ,

(55)

with λ � 0 being the inverse of the magnitude of the external
field and ζ being the anisotropy parameter. The Ising model is
obtained when ζ = ±1, and for ζ = 0 we get the XX model
in a transverse field. At T = 0 and in the thermodynamic limit
(infinite chain), the XY model has a quantum critical point at
λ = 1, where a second-order quantum phase transition sepa-
rates a ferromagnetically ordered phase from a paramagnetic
one [34–37].

1. Efficiency as a function of T

We first analyze the optimal efficiencies (average fidelities)
of the deterministic and probabilistic protocols, Eqs. (40) and
(54), respectively, as a function of the temperature T . We start
with the Ising model in a transverse field, whose main results
are shown in Fig. 2.

Looking at Fig. 2, we note that the efficiency is a
monotonically decreasing function of the temperature and that
for kT ≈ 1.2 the optimal efficiencies for the deterministic and
probabilistic protocols are almost the same. As we continue to
increase the temperature, we arrive at a value of T after which
the efficiency of the protocol is below 2/3. This value for the
average fidelity is called the classical limit since any protocol
with average fidelities lower than 2/3 can be implemented
without Alice and Bob sharing an entangled resource [38].
Also see the Appendix for further details and a proof of this
limit for the deterministic teleportation protocol studied here.
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FIG. 3. Same as Fig. 2 but now we work with the isotropic XX

model in a transverse field. Note that under certain conditions (λ < 1)
the efficiency for the probabilistic protocol may increase with the
temperature and be the only one yielding an efficiency greater than
the classical threshold (2/3). Also, the optimal ϕ for the probabilistic
protocol depends on T and is not equal to ±π/4, with the latter being
the optimal settings for the deterministic case.

For low values of T , however, we can have considerable
gains in efficiency by working with the probabilistic protocol.
For instance, whenever kT < 0.2, the probabilistic protocol
yields an almost perfect teleportation, a considerable improve-
ment over the deterministic one. In this case, the success rate
is about 10% when λ = 0.7 and 30% when λ = 1.3. We also
note that the optimal efficiencies for the deterministic and
probabilistic protocols are given by f�

opt and g� (ϕ), respectively
[see Eqs. (40) and (54)]. Moreover, the optimal ϕ for the latter
depends on T and is not equal to ±π/4.

Moving to the XX and XY models, i.e., turning on the
σ (2)

y σ (3)
y interaction, we observe the following two similar

and interesting trends (see Figs. 3 and 4). First, whenever
λ < 1 (ferromagnetic phase), there exists a range of values of
temperature where the efficiency of the probabilistic protocol
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FIG. 4. Same as Figs. 2 and 3 but now we have the anisotropic
XY model in a transverse field.
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increases with T . This is a remarkable property and tells us
that working with a “warmer” entangled resource is better than
working with a “colder” one. We can understand this behavior
by noting that under certain configurations of the coupling
constants, the ground state of the Hamiltonian has little or no
entanglement at all, although the first excited states are highly
entangled ones and very close to Bell states [26]. Thus, by
increasing the temperature, we start to populate those highly
entangled states in such a manner that a warmer entangled
resource has more entanglement than a colder one. The latter
effect is more intense in the probabilistic protocol where, by
postselecting the appropriate measurement results, we may
project the entangled resource ρch onto highly entangled
states and consequently enhance even more the efficiency
of the teleportation protocol. If we continue to increase the
temperature, however, more states get populated and we start
to get a less entangled quantum communication channel,
reducing the efficiency of the protocol. For sufficiently high
temperatures, the entangled resource is nearly described by a
completely mixed state with no entanglement at all. This is
why we always end up with efficiencies lower than 2/3 for
very high temperatures.

Second, another important characteristic shared by the XX

and XY models is the fact that for certain values of T the
efficiency for the deterministic protocol does not surpass the
classical limit 2/3, while the probabilistic protocol’s efficiency
does. In this scenario, therefore, we can only get a truly
quantum teleportation if we employ the probabilistic protocol.

There are also different characteristics between the XX

and XY models. For example, the deterministic protocol for
the XX model does not yield an average fidelity greater than
the classical limit for λ < 1. This is only possible when we use
the probabilistic protocol. For the XY model, however, there
is no such restriction and we can have for λ < 1 the average
fidelity for both the deterministic and probabilistic protocols
greater than 2/3 if we work at a sufficiently low temperature.

Another distinctive feature of the XX model is the fact that
whenever the optimal average fidelities for the deterministic
and probabilistic protocols are greater than 2/3, f�

opt and g� (ϕ),
respectively, are the functions optimizing the efficiency [see
Eqs. (40) and (54)]. For the XY model, however, the functions
leading to the optimal efficiency for certain values of T may be
different for the probabilistic protocol when the efficiency is
greater than 2/3. In this case, either g� (ϕ) or g� (ϕ) may give the
optimal efficiency. This is the reason for the cusp of the curve
of the optimal average fidelity (the λ = 0.7 dashed curve) and
for the discontinuity in the success rate (the λ = 0.7 curve in
the inset) that we see for the probabilistic protocol in Fig. 4.
The cusp for the efficiency curve and the discontinuity for the
probability of success curve occur exactly at the temperature in
which g�(ϕ) and g� (ϕ) exchange roles. Below this temperature
g�(ϕ) gives the optimal efficiency, while above it g� (ϕ) does.

2. Efficiency as a function of the external field

We now turn our attention to the behavior of the average
fidelities for the deterministic and probabilistic protocols as
functions of the inverse of the strength of the external magnetic
field λ. Starting with the Ising model in a transverse field
(upper panel of Fig. 5), we note that for a fixed temperature
there is an optimal λ that gives the greatest efficiency and
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FIG. 5. The optimal efficiencies of the deterministic (solid
curves) and probabilistic (dashed curves) teleportation protocols as a
function of λ for the Ising model (upper panel), the XX model (left
lower panel), and the XY model (right lower panel), all of them in an
external magnetic field of strength 1/λ. Circles denote kT = 0.1 and
squares kT = 0.3. The dot-dashed black lines delimit the classical
limit 2/3.

that the optimal λ’s are different for the deterministic and
probabilistic protocols. This is most clearly seen looking at
the curves for kT = 0.3. We also see that the probabilistic
protocol outperforms by far the deterministic one for small
values of λ.

Studying the XX model (left lower panel of Fig. 5), we
note that as the value of λ is greater, the efficiency of the
probabilistic protocol is better. For the deterministic protocol,
an increase of λ increases the efficiency only for λ greater than
a certain critical value that depends on T . Also, when λ < 1
the average fidelity for the deterministic protocol does not
exceed 2/3. It is interesting to note that the efficiencies for the
probabilistic protocols, and in particular for the deterministic
ones, change abruptly near the quantum critical point λ = 1.

Near the quantum critical point λ = 1 there is a similar
abrupt behavior for the efficiencies of the deterministic and
probabilistic protocols for the XY model (right lower panel of
Fig. 5). In this case, the average fidelities tend to their minimum
values near the critical point. As we move to the right or left of
the critical point, the efficiency starts to increase. For λ > 1 this
trend continues as we increase λ, while for λ < 1 the average
fidelity starts to decrease after reaching a local maximum. This
behavior is more clear as the value of T increased. Finally,
the reason for the cusps in the curves for the efficiencies is
again related to which of the functions f�

opt or f�

opt [g�(ϕ) or
g� (ϕ)] gives the optimal average fidelity for the deterministic
(probabilistic) protocol. For small λ, f�

opt and g�(ϕ) give the
highest efficiencies and, as we increase λ, f�

opt and g� (ϕ)
dominate after we cross a certain value of λ that depends on T .

B. X X Z-like models

The one-dimensional XXZ model in an external field in
the z direction is obtained from Eq. (24) when we set jx = jy
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FIG. 6. Main plot: The average fidelities (efficiencies) of the
deterministic (solid curves) and probabilistic (dashed curves) telepor-
tation protocols as a function of the temperature when the quantum
communication channel connecting Alice and Bob is the thermalized
XXX model in an external field. As explained in the text, for the
deterministic protocol we plot f�

opt and for the probabilistic one we
plot Eq. (54). The dot-dashed red line marks the classical limit (2/3)
below which the teleportation protocol can be matched by a purely
classical protocol. Inset: The success rate (probability of success) for
the probabilistic protocol.

and ha = hb. This model is usually written as [32]

H = 2J
[
σ (2)

x σ (3)
x + σ (2)

y σ (3)
y + �σ (2)

z σ (3)
z

] − h

2

[
σ (2)

z + σ (3)
z

]
,

(56)
where J is the exchange constant, � is the anisotropy
parameter, and h is the external field. When � = 1 we have the
isotropic XXX model, and for � 
= 0 we get the anisotropic
XXZ model. In the thermodynamic limit and at T = 0, the
XXZ model has two quantum critical points [39–43]: �inf ,
where an infinite order quantum phase transition takes place,
and �1, where a first-order quantum phase transition happens.
The expressions giving those critical points are not so simple
and can be found in Refs. [39,40].

1. Efficiency as a function of T

Let us start studying the isotropic XXX model (� = 1).
The first thing worth noting is that for J < 0 the efficiencies
for both the deterministic and probabilistic protocols do not
surpass the classical limit 2/3, even for low T . We thus restrict
the following analysis to the cases in which J > 0. It can
also be proved that for the deterministic protocol f�

opt � 2/3
and thus, since we are interested in the cases surpassing the
classical limit, instead of Eq. (40) we work only with f�

opt in
the determination of the optimal efficiency. The curves for the
deterministic protocol in Figs. 6 and 8 show f�

opt. Also, by
setting the magnetic field to h = 8.0 we get that the first-order
quantum phase transition for this model occurs at Jc = 1.0.

Looking at Fig. 6, we note that we have two regimes for the
behavior of the average fidelities. For J < Jc, the deterministic
protocol does not give an efficiency greater than 2/3. In this
regime, the classical limit can only be surpassed using the
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FIG. 7. Same as Fig. 6 but now we work with the XXZ model
with an external field in the z direction.

probabilistic protocol. Indeed, for kT � 5.0 the probabilistic
protocol yields an efficiency greater than 2/3 and greater than
that of the deterministic protocol, with success rates of the
order of 10%. We also see that in this range of temperatures
there are instances where the efficiency increases with T .

For J > Jc, on the other hand, both the deterministic
and probabilistic protocols can yield efficiencies above the
classical limit. In this regime, the efficiencies are always a
monotonically decreasing function of the temperature and we
still have a small range of temperatures in which only the
probabilistic protocol gives an average fidelity greater than
2/3. For all values of J > 0, the optimal efficiency for the
probabilistic protocol is given by g� (ϕ), with the optimal ϕ

being different from ±π/4 and dependent on T .
We now focus our attention at the XXZ model in an external

field in the z direction. We set J = 1.0 and the magnitude
of the field (h = 4.0) such that the first-order quantum phase
transition occurs at �1 = 0. Here we can also prove that f�

opt �
2/3 for the deterministic protocol, and similarly to the XXX

model, we show f�

opt instead of Eq. (40) in Figs. 7 and 8 when
analyzing the deterministic protocol.

Looking at Fig. 7, we note that many features seen for the
XXX model are also present in the XXZ model. Indeed, we
have two regimes for the behavior of the efficiency of the
protocol. One before (� < �1) and another after (� > �1)
the quantum critical point delimiting the first-order quantum
phase transition. For � < �1, only the probabilistic protocol
yields average fidelities greater than the classical limit, with
success rates lying between 10% to 20% for a considerable
set of values of � < �1. We also have ranges of temperatures
where the efficiency of the probabilistic protocol increases
with T .

For � > �1, the efficiencies are monotonically decreasing
functions of T and both the deterministic and probabilistic
protocols can work above the classical limit at sufficiently low
temperatures. We also have small ranges of T in which the
probabilistic protocol leads to an efficiency greater than 2/3
while the deterministic protocol works below this value.

022315-9



RAPHAEL FORTES AND GUSTAVO RIGOLIN PHYSICAL REVIEW A 96, 022315 (2017)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
J

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
ve

ra
ge

 F
id

el
ity

kT = 0.1; Deterministic
kT = 0.1; Probabilistic
kT = 1.0; Deterministic
kT = 1.0; Probabilistic
Classical limit

-2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0
Δ

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
ve

ra
ge

 F
id

el
ity

XXX Model with h = 8.0

XXZ Model with h = 4.0

FIG. 8. The optimal efficiencies of the deterministic (solid
curves) and probabilistic (dashed curves) teleportation protocols as a
function of J for the XXX model (upper panel) and of � for the XXZ

model (lower panel). As discussed in the text, for the deterministic
protocol we plot f�

opt and for the probabilistic one Eq. (54). Circles
denote kT = 0.1 and squares kT = 1.0. The dot-dashed black lines
delimit the classical limit 2/3.

Finally, and similarly to the XXX model, whenever the
efficiency is above the classical limit, the functions leading
to the optimal efficiencies are f�

opt for the deterministic and
g� (ϕ) for the probabilistic protocols. The optimal values of ϕ

for the probabilistic protocol depend on T and are not ±π/4,
the optimal ones for the deterministic case.

2. Efficiency as a function of the coupling constants

We now investigate how the efficiencies (average fidelities)
for the deterministic and probabilistic protocols behave as a
function of the exchange constant J for the XXX model and
of the anisotropy parameter � for the XXZ model.

For the XXX model, we keep as before h = 8.0 and for
several values of kT we compute the efficiency as a function
of J (upper panel of Fig. 8), including values of J near and
at the critical point Jc = 1.0. For the XXZ model, we set
h = 4.0 and J = 1.0, which leads to a critical point �1 = 0,
and we also evaluate for several values of kT the efficiency as
a function of � (lower panel of Fig. 8), including values of �

near and at the critical point �1.
Looking at Fig. 8, we note that the efficiencies for the XXX

and XXZ models, as functions of J and �, respectively,
share the same qualitative features. In particular, we note a
clear distinctive behavior for the optimal average fidelities
before and after the first-order quantum critical points, even
at considerably high temperatures (kT ≈ 1.0). It is now clear
that below the critical point the deterministic protocols do
not yield an efficiency greater than the classical limit 2/3
while the probabilistic protocols do. We also observe that
for sufficiently high values of J and �, above the critical
points, the efficiencies for the deterministic and probabilistic
protocols converge to their greatest possible value, leading to
a perfect teleportation. Moreover, at low values of J or �, the

functions f�

opt and g�(ϕ) give the optimal average fidelities. As
we approach the critical point, f�

opt and g� (ϕ) dominate and
furnish the optimal values for the efficiencies. Note that this
exchange of functions leading to the optimal efficiencies never
occurs exactly at the critical point for finite T .

It is also worth noting that we have computed the efficien-
cies about and at the other quantum critical point, where an
infinite-order quantum phase transition happens (�inf). For
the present XXZ model, with h = 4.0 and J = 1.0 we obtain
�inf ≈ 2.74 [31,39,40]. We have not observed, however, any
quantitative or qualitative changes in the behavior of the
efficiencies. Actually, before reaching �inf the efficiency of the
teleportation protocol already saturates to its highest possible
value and no changes are seen after that value is attained.

IV. CONCLUSION

We have extensively studied the probabilistic teleportation
protocol when the entangled resource connecting Alice and
Bob is given by interacting two-qubit systems in equilibrium
with a thermal reservoir. In this scenario, the quantum state
describing the entangled resource is the canonical ensemble
density matrix and any entanglement present in that state is
usually dubbed thermal entanglement [24–32].

We worked with several standard Heisenberg-like models
in order to describe the interaction between the two qubits
of the quantum communication channel. Those models are
widely employed to describe the interaction between two or
more spins in several condensed-matter systems and can be
used to describe the interactions we might face when building
a quantum computer or a quantum communication protocol
operating on solid-state devices. Being more specific, we
studied the Ising model, the XX model, the XY model, the
isotropic XXX model, and the anisotropic XXZ model. We
also considered the cases where an external magnetic field is
applied in the z direction.

After studying all those models, three important common
features emerged. First, we proved analytically that the
efficiency for the probabilistic protocol can only be greater
than the efficiency of the deterministic protocol if we have an
external magnetic field. Whenever the external field is zero,
the probabilistic and deterministic protocols have exactly the
same efficiency.

Second, whenever the probabilistic teleportation protocol
outperforms the deterministic protocol, the measurement basis
employed by Alice during the execution of the teleportation
protocol is not the standard Bell basis, which is spanned by four
maximally entangled states. The optimal measurement basis
for the probabilistic protocol is given by the generalized Bell
states, whose entanglement degree is not maximal. Moreover,
the appropriate generalized Bell basis depends on the value of
the temperature and on which Heisenberg-like model we are
working with.

Third, the optimal settings leading to the optimal efficiency
for the probabilistic protocol are the same for two out of four
possible measurement results that Alice may obtain at each
run of the protocol. Thus, the success rate for the probabilistic
protocol is enhanced since Alice and Bob can postselect two
instead of one measurement result at each run of the protocol.
In general, the success rate for the probabilistic protocols here
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studied are above 10%, being much higher than this value
under certain arrangements.

Other three features are clearly shared by all models here
investigated with the exception of the Ising model. The first
one is related to the fact that more heat (higher temperatures)
may lead to a more efficient probabilistic teleportation. In
the notation of the present paper, this happens whenever the
coupling constants and the external magnetic field are such that
the system lies below the quantum critical point separating its
two phases. In the appropriate phase, there exists a scenario in
which the efficiency increases with increasing temperature.

Another characteristic shared by almost all models is the
fact that under the same conditions the optimal efficiencies
for the probabilistic and deterministic protocols may differ
in a very important way. There are ranges of temperatures
where only the probabilistic protocol crosses the classical
limit of 2/3 for the optimal average fidelity. Below this value
any teleportation protocol can be simulated by a “classical”
protocol, where no entanglement at all is needed between Alice
and Bob. Only local operations and classical communication
(LOCC) suffice to deliver the same efficiency. Thus, whenever
this happens, we can only have a truly quantum teleportation
if we work with the probabilistic protocol. The deterministic
protocol fails in delivering a quantum teleportation that is
genuinely quantum.

Third, we have also noted that the behavior for the
efficiencies of the deterministic and probabilistic protocols
may be qualitatively and quantitatively affected in the vicinity
of the quantum critical points, even at finite temperatures. For
instance, for the XX, XXX, and XXZ models, the optimal
efficiencies can only surpass the classical limit 2/3 as we
approach the critical point from below. As the temperature
lowers, the quantum critical point increasingly marks this
transition in the behavior for efficiency. For the XX and XY

models, we also noted that near the critical point we have the
global minimum for the efficiency.

Finally, and similarly to the results of Ref. [23], we have
a trade-off between the success rates and the efficiencies for
the probabilistic protocols. The optimizations performed here
were carried out to maximize the average fidelity without
imposing any other restriction. It is possible, however, to
increase the success rate by diminishing the efficiency.
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APPENDIX: THE CLASSICAL LIMIT
FOR THE AVERAGE FIDELITY

Our goal here is to prove that the average fidelity as
given by Eq. (23) for the deterministic teleportation protocol
cannot have values greater than 2/3 if Alice and Bob share a
nonentangled state.

The most general nonentangled state that Alice and Bob
can share is given by [44]

ρAB =
n∑

k=1

pkρ
A
k ⊗ ρB

k , (A1)

where n is a positive integer, 0 � pk � 1,
∑n

k=1 pk = 1, and
ρA

k and ρB
k are density matrices describing states with Alice

and Bob, respectively. Equation (A1) is a convex combination
of product states.

Because of the linearity of the two averaging processes
employed to define Eq. (23) and because Eq. (A1) is a convex
combination of product states, we obtain

〈F 〉
ρAB

=
n∑

k=1

pk〈F 〉
ρA
k

⊗ρB
k

. (A2)

The subscripts ρAB and ρA
k ⊗ ρB

k attached to 〈F 〉 tell us
which shared quantum resource between Alice and Bob we are
employing to compute the averages. We should also note that
a long but straightforward calculation, where we use Eq. (A1)
to compute Eqs. (9), (10), (21), and finally (23), also leads to
Eq. (A2).

As we will show in what follows,

〈F 〉
ρA
k

⊗ρB
k

� 2/3. (A3)

Thus, inserting Eq. (A3) into (A2), we get

〈F 〉
ρAB

� 2

3

n∑
k=1

pk = 2

3
, (A4)

which proves our claim.
In order to prove Eq. (A3), we first note that the most general

way of writing a density matrix describing a single qubit is

ρA = (
1 + axσ

A
x + ayσ

A
y + azσ

A
z

)/
2. (A5)

Here A denotes Alice, aj = Tr[σA
j ρA] for j = x,y,z, the

symbol 1 is the unitary matrix of dimension 2, and σA
j are

the Pauli matrices. A similar expression can be written for
Bob,

ρB = (
1 + bxσ

B
x + byσ

B
y + bzσ

B
z

)/
2. (A6)

The eigenvalues of ρA are

λ± = (
1 ±

√
a2

x + a2
y + a2

z

)/
2.

Since ρA is positive definite and normalized to one, we must
have 0 � λ± � 1, which implies that

a2
x + a2

y + a2
z � 1. (A7)

A similar argument for ρB gives

b2
x + b2

y + b2
z � 1. (A8)

Now, if we use Eqs. (A5) and (A6) to compute ρA ⊗ ρB

and use it in the evaluation of Eq. (23), we get

〈F 〉�±

ρA⊗ρB
= [3 + azbz ± (axbx − ayby) sin(2ϕ)]/6, (A9)

〈F 〉�±

ρA⊗ρB
= [3 − azbz ± (axbx + ayby) sin(2ϕ)]/6, (A10)
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where the superscripts, as explained in Sec. II C, denote the
four possible sets of unitary corrections that Bob can apply
to his qubit. The parameter ϕ defines which generalized Bell
states Alice uses to project her qubits (see Sec. II A).

Since ϕ can be freely set by Alice, she can always choose
it to maximize the above expressions, leading to the following
optimal average fidelities for the deterministic teleportation
protocol,

〈F 〉�±

ρA⊗ρB ,opt
= (3 + azbz + |axbx − ayby |)/6, (A11)

〈F 〉�±

ρA⊗ρB ,opt
= (3 − azbz + |axbx + ayby |)/6, (A12)

where |x| is the magnitude of x. Those optimal average
fidelities satisfy the following inequality, which is an upper
bound for their possible values (ε = �±,�±),

〈F 〉ε
ρA⊗ρB ,opt

� (3 + |axbx | + |ayby | + |azbz|)/6. (A13)

But as we show below,

|axbx | + |ayby | + |azbz| � 1, (A14)

leading to the proof of Eq. (A3),

〈F 〉
ρA
k

⊗ρB
k

� 〈F 〉ε
ρA⊗ρB ,opt

� (3 + 1)/6 = 2/3. (A15)

We can show that Eq. (A14) is indeed true by noting that
the sum of the following three identities,

(|ax | − |bx |)2 � 0 ⇒ |axbx | �
(
a2

x + b2
x

)/
2, (A16)

(|ay | − |by |)2 � 0 ⇒ |ayby | �
(
a2

y + b2
y

)/
2, (A17)

(|az| − |bz|)2 � 0 ⇒ |azbz| � (a2
z + b2

z )/2, (A18)

gives

|axbx | + |ayby | + |ayby |
�

(
a2

x + a2
y + a2

z + b2
x + b2

y + b2
z

)/
2. (A19)

Then, using Eqs. (A7) and (A8), we immediately get

|axbx | + |ayby | + |ayby | � (1 + 1)/2 = 1, (A20)

which proves Eq. (A14).

1. Remarks

It is important to note that the previous proof can be
extended to arbitrary projective measurements that Alice
might implement onto her qubits and also to arbitrary sets
{V1,V2,V3,V4} of unitary operations that Bob might apply to
his qubits, as long as Vj are orthogonal in the sense that the
Hilbert-Schmidt inner product between different matrices are
zero. More specifically, we must have Tr[VjV

†
k ] = 2δjk . Note

that the original set of the standard teleportation protocol, for
example, {U1,U2,U3,U4} = {1,σz,σx,σzσx} are orthogonal in
the above sense and, as we will see, that is why Vj inherits this
property.

Let us start by showing that the previous proof applies to
arbitrary projective measurements. First, we write Eq. (A1) as

follows:

ρ̃AB =
n∑

k=1

pkρ̃
A
k ⊗ ρB

k , (A21)

where ρ̃A
k = UAρA

k (UA)† and UA is an arbitrary unitary
operator acting on the Hilbert space of qubit A. We also write
the input qubit to be teleported as ρ̃in = UinρinU

†
in, with Uin

an arbitrary unitary operator acting on the Hilbert space of the
input qubit. With those choices, the total state describing the
input qubit and ρ̃AB is

ρ̃ = (Uin ⊗ UA)(ρin ⊗ ρAB)[U †
in ⊗ (UA)†]. (A22)

The state ρ̃ changes to

ρ̃ → P
ϕ

j ρ̃P
ϕ

j

Tr
[
P

ϕ

j ρ̃P
ϕ

j

] (A23)

after Alice projects her state onto the generalized Bell state
|Bϕ

j 〉, Eqs. (5)–(8), with projector P
ϕ

j given by Eq. (4). Tracing
out Alice’s qubits, we get the state with Bob (before he applies
his unitary correction),

ρ̃
Bj

= Trin,A

[
P

ϕ

j ρ̃P
ϕ

j

]
Tr

[
P

ϕ

j ρ̃P
ϕ

j

] = Trin,A

[
P

ϕ

j ρ̃
]

Tr
[
P

ϕ

j ρ̃
] , (A24)

where the last equation was obtained using the invariance of
the trace under cyclic permutations and that P

ϕ

j P
ϕ

j = P
ϕ

j .
Inserting Eq. (A22) into (A24) and once again using the
invariance of the trace under cyclic permutations, we get

ρ̃
Bj

= Trin,A[P̃jρ]

Tr[P̃jρ]
, (A25)

where ρ = ρin ⊗ ρAB and

P̃j = (U †
in ⊗ (UA)†)P ϕ

j (Uin ⊗ UA). (A26)

Now, if we show that P̃j can represent an arbitrary projector,
we have shown that the proof of the classical limit is valid for
arbitrary projective measurements.

The key tool we need to show that P̃j is an arbitrary
projector is the Schmidt decomposition. For definiteness, and
without losing in generality, let us work from now on with
j = 1. In this case, P ϕ

1 = |Bϕ

1 〉〈Bϕ

1 |, with |Bϕ

1 〉 = cos ϕ|00〉 +
sin ϕ|11〉. If we set cos ϕ = λ1, sin ϕ = λ2, and remember
that Alice is free to choose ϕ in the range [0,π/2], we
readily see that |Bϕ

1 〉 = λ1|00〉 + λ2|11〉 represents a Schmidt
decomposition of an arbitrary two-qubit pure state |B̃1〉 =
a11|u1〉|v1〉 + a12|u1〉|v2〉 + a21|u2〉|v1〉 + a22|u2〉|v2〉, where
|ui〉 and |vi〉, i = 1,2, are any basis one can employ to expand
the first and second qubits, respectively. Thus, if we write
the unitary transformation connecting these two states as
|Bϕ

1 〉 = (Uin ⊗ UA)|B̃j 〉, and this can always de done locally
due to the properties of the Schmidt decomposition, Eq. (A26)
becomes for j = 1

P̃1 = [U †
in ⊗ (UA)†]P ϕ

1 (Uin ⊗ UA)

= [U †
in ⊗ (UA)†]

∣∣Bϕ

1

〉〈
B

ϕ

1

∣∣(Uin ⊗ UA)

= |B̃1〉〈B̃1|, (A27)

which shows that P̃1 is an arbitrary projector. The same unitary
operations above when applied to P

ϕ

2 ,P
ϕ

3 , and P
ϕ

4 generate
the other three projectors, P̃2,P̃3, and P̃4, that together with
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P̃1 form a complete set of orthogonal projectors describing an
arbitrary projective measurement.

We now move on to show that the classical limit proof given
here also applies when Bob implements more general unitary
operations on his qubit. The argument we use is similar to
the one just developed above. It lies in the fact that 〈F 〉

ρAB
�

2/3 for any separable state ρAB and using this property to
conveniently express ρAB .

Similar to what we did before, we rewrite Eq. (A1) as
follows:

ρ̃AB =
n∑

k=1

pkρ
A
k ⊗ ρ̃B

k , (A28)

where ρ̃B
k = UBρB

k (UB)† and UB is an arbitrary unitary
operator acting on the Hilbert space of qubit B. The state
describing the input qubit and ρ̃AB reads

ρ̃ = UB(ρin ⊗ ρAB)(UB)†. (A29)

After Alice’s measurement ρ̃ changes to

ρ̃ → P
ϕ

j ρ̃P
ϕ

j

Tr
[
P

ϕ

j ρ̃P
ϕ

j

] , (A30)

and by tracing out Alice’s qubits we get Bob’s state,

ρ̃
Bj

= Trin,A

[
P

ϕ

j ρ̃P
ϕ

j

]
Tr

[
P

ϕ

j ρ̃
] . (A31)

By inserting Eq. (A29) into (A31) we obtain

ρ̃
Bj

= UBTrin,A

[
P

ϕ

j ρP
ϕ

j

]
(UB)†

Qj (|ψ〉in)
, (A32)

where ρ = ρin ⊗ ρAB and Qj (|ψ〉in) = Tr[P ϕ

j ρ]. After Bob
implements the corresponding unitary operation Uj on his
qubit, we arrive at the final output state after a single run of
the teleportation protocol,

ρ
Bj

= UjU
BTrin,A

[
P

ϕ

j ρP
ϕ

j

]
(UB)†(Uj )†

Qj (|ψ〉in)
,

= UjU
BTrin,A

[
P

ϕ

j ρP
ϕ

j

]
(UjU

B)†

Qj (|ψ〉in)
,

= Vj Trin,A

[
P

ϕ

j ρP
ϕ

j

]
V

†
j

Qj (|ψ〉in)
. (A33)

Equation (A33) is exactly Eq. (10) if we change
Vj = UjU

B to Uj . Also, Tr[VjV
†
k ] = Tr[UjU

B(UkU
B)†] =

Tr[UjU
B(UB)†U †

k ] = Tr[UjU
†
k ] = 2δjk .

We can repeat the previous arguments leading to
Eq. (A33) without using explicitly the fact that ρ̃ = UB(ρin ⊗
ρAB)(UB)†. This gives

ρ
Bj

= Uj Trin,A

[
P

ϕ

j ρ̃P
ϕ

j

]
U

†
j

Qj (|ψ〉in)
. (A34)

Now, since Eqs. (A33) and (A34) are equal, both repre-
sentations of ρ

Bj
when inserted into Eq. (21) will give the

same expressions, which, when employed to compute the
deterministic average fidelity, as given by Eq. (23), will furnish
the same results: 〈F 〉ρAB,Vj

= 〈F 〉ρ̃AB ,Uj
. Here the subscripts

Vj and Uj remind us of which set of unitary operations one
must use in the evaluations of Eq. (23). But we know that
〈F 〉ρ̃AB ,Uj

� 2/3, since we already proved that the average
fidelity for the deterministic protocol is upper bounded by
2/3 for any nonentangled state shared between Alice and Bob
and when Bob uses the set Uj . Thus, we arrive at the desired
result,

〈F 〉ρAB,Vj
� 2/3. (A35)
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