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Secure alignment of coordinate systems using quantum correlation
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We show that two parties far apart can use shared entangled states and classical communication to align their
coordinate systems with a very high fidelity. Moreover, compared with previous methods proposed for such a
task, i.e., sending parallel or antiparallel pairs or groups of spin states, our method has the extra advantages of
using single-qubit measurements and also being secure, so that third parties do not extract any information about
the aligned coordinate system established between the two parties. The latter property is important in many other
quantum information protocols in which measurements inevitably play a significant role.
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I. INTRODUCTION

Almost any protocol in quantum communication between
two or more parties requires measurements in bases which
are agreed upon by the parties involved [1–4]. This in turn
requires that they establish aligned reference frames between
them with arbitrary precision. It has been realized that spatial
direction is a type of information named “unspeakable quan-
tum information” [5] which cannot be transmitted by sending
classical bits unless the sender (Alice) and the receiver (Bob)
have a common coordinate system. Instead, physical objects,
e.g., photons, must be sent [6] to convey this information.

The problem of setting a reference frame between two
separate parties can be reduced to the problem of sharing three
mutually orthogonal directions. Some methods of direction
sharing are based on transmission of spin states (qubits),
followed by single or multiqubit measurements which are
performed by the receiver [7–10]. For example, Gisin and
Popescu investigate the case when many pairs of parallel
or anti-parallel spins are transmitted from Alice to Bob and
show that a higher fidelity is achieved when the two spins are
antiparallel to each other [7]. In [7], the strategy of Bob for
guessing the direction of spins sent to him is based on using
a specific measurement of two-qubit entangled states. The
inequivalence with the case of two parallel spins is justified by
noting that there is no universal NOT machine which can turn
any unknown pair of antiparallel spins into a pair of parallel
spins. It is shown in [8] that in such a case, the average optimal
fidelity of direction sharing is equal to N+1

N+2 . This line of thought
has been further pursued in [11], where it has been shown
that for conveying the direction n, Alice can encode it into a
specific eigenstate of the operator S · n where S is the total
spin operator and send it to Bob who will discern n with a
collective measurement.

In another interesting approach, Alice and Bob find the
unitary operation that rotates the (rigid) frame of Bob to align it
with the (rigid) frame of Alice [12,13]. Thus in one go, the two
frames are aligned. The method is based on sharing a 2N -qubit
highly entangled state upon which collective measurements are
done by Bob after Alice has sent her N -qubit share to him.
Clearly this method, while being optimal in a theoretical sense,
is experimentally demanding.

*mani.azam@ut.ac.ir

In all these works and many other similar works [14–17] the
question of secrecy of the directions has not been considered
and for that reason the question of a possible role that
shared entangled states can play for such a goal has not been
discussed. In view of the role that any quantum communication
protocol is based on measurements in aligned coordinate
systems, it is natural to demand that such alignment be made in
a secure and secret way so that only the legitimate parties know
the directions and nobody else. To the best of our knowledge,
there are only few works about the problem of security of
reference frames, a notable example being [18] where Alice
and Bob share a classical string of bits to achieve security.

In this paper we introduce a method for direction sharing
which uses only bipartite entangled states and single-qubit
measurements instead of multipartite entangled states and
collective measurements. Moreover, no qubits are sent from
one party to the other, and there is no need for sharing
strings of classical bits to ascertain security. In our protocol
N singlet states are shared between Alice and Bob and they
do single-qubit measurements in their specific but private
directions. Finally, they publicly announce the results of their
measurements. From the correlations in these public data
they can discern information about the relative angle between
their directions of measurement and eventually align their
coordinate systems in a precise way. Besides the secrecy in the
common coordinate systems, our protocol has the advantage of
using only single-qubit measurements, compared to multiqubit
measurements proposed in other methods [18–22].

We should also mention Ref. [23], where similar ideas
to those of the present paper are suggested and mutual
information is used to align the two directions. There are,
however, important differences between [23] and the present
work. When the number of singlets is infinite, Bahder
essentially tries to do an extensive (essentially continuous)
search in order to find the direction which maximizes the
mutual information. This certainly gives the aligned direction
but is clearly infeasible for the experiment. In the same limit,
we do the alignment by determining the angles of one axis of
Alice by measuring the correlations with those of Bob who
measures his qubits in three different directions. So we do not
need an exhaustive search over the sphere. When the number of
pairs is finite, Bahder only goes as far as to estimate the angle
between two directions using a Bayesian approach similar to
that of us. However, knowing only this angle, it is not evident
around which axis the vectors should be rotated to be aligned.
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Moreover, the important point is that finite-N fluctuations of
correlations need to be carefully taken into account to extract
useful geometrical information from these correlations. This
problem will be dealt with in this paper.

In a sense our work is the converse of what is done
in quantum key distribution (QKD) [3,4], where Alice and
Bob publicly announce their measurement bases but keep for
themselves the results of measurements. Here they publicly
announce their measurement results (the sequence of 0’s and
1’s or +’s and -’s), and from these public results they align their
axes. In the same way as QKD is secure, this protocol is also
secure in the sense that eavesdroppers cannot gain information
about the aligned directions.

A special case of our method is when Alice and Bob already
agree on a fixed direction, say the z direction, and they only
want to align their x and y axes perpendicular to this axis. In
this case, which we call the two-dimensional case, the protocol
is simpler and can be done in just one step by estimating the
angle between two directions and a complete alignment is
achieved with a very high fidelity. In the general case where
there is no a priori agreed direction or plane, two or three
steps are needed, and again our method will lead to a very
good estimate of the relative directions and hence alignment of
coordinate systems. In both two- and three-dimensional cases,
we first consider the ideal case where an infinite number of
singlet states has been shared between Alice and Bob and then
consider the realistic case where a finite number of N states
has been shared, in which case we obtain the fidelity of the
protocol as a function of the number of shared singlets N . We
will see that with few shared singlets, very high fidelities can
be obtained.

The paper is organized as follows: In Sec. II we show how
correlations of measurements of singlet states by two parties
can lead to an estimation of the angle between directions of
measurements. This is explained in two subsections, first for
the ideal case where the number of singlets N is infinite and
then for the finite N case, where we use a Bayesian approach
to calculate the probabilities [24]. In Sec. III, we consider the
geometrical problem of estimating a vector or direction by
such measurements, and we compare our fidelities with those
of others. The paper ends with a Conclusion section containing
a discussion about the security of the protocol.

II. USING ENTANGLED STATES TO ESTIMATE THE
ANGLE BETWEEN TWO DIRECTIONS

Consider two parties, Alice and Bob, far apart from each
other and sharing a number of singlet states

|ψ〉 = 1√
2

(|01〉 − |10〉), (1)

where |0〉 and |1〉 are the eigenvectors of �σ · �z, and �σ is the
vector of Pauli matrices:

σx =
(

0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
.

(2)

To set up a shared direction in space, Alice and Bob
use the correlations in their measurements to find how they
should correct or rotate their axes of measurement. Alice

and Bob measure their spins in two arbitrary directions
known only to each of them separately. For example, Bob
measures his spin in his supposedly z direction, and Alice
measures her spins in a direction which in the coordinate
system of Bob is denoted by m having an angle θ with
z. The aim of the experiment is to make the best estimate
for this angle from the measurement of correlations. To this
end, one of the parties, say Alice, publicly announces her
results in the form of a sequence (a1,a2, . . . ak, . . . ), where
ai = ±1. Bob compares this sequence with his own results
[(b1,b2, . . . bk, . . . ), bi = ±1] and calculates the correlations
between these two sequences, which for N shared singlet pairs,
is given by

qN = 1

N

N∑
i=1

aibi . (3)

This correlation function can be rewritten as

qN = N+− + N−+ − N++ − N−−
N

= Nd − Ns

N
= 2Nd − N

N
, (4)

where Nab denotes the number of the times that Alice obtains
a value of a and Bob obtains a value of b, and Nd and Ns are
the number of times that Alice and Bob obtain different and
the same results, respectively. It is evident that −1 � Q � 1.
If m and z are either parallel or antiparallel, then the results
will be fully correlated or fully anticorrelated and |Q| = 1.
For perpendicular directions, Bob obtains a value very close
to 0. From this correlation Bob can eventually determine the
axis m of Alice in a three-step process. We will complete the
idea in this section by first considering the ideal case in which
an infinite number of singlet pairs are shared among Alice
and Bob and then considering the case of an finite number of
shared singlet pairs.

A. The case when an infinite number of pairs are shared

In this case we will have

Q∞ = P+− + P−+ − P++ − P−−, (5)

where Pab now denotes the probability of Alice obtaining a
value of a and Bob obtaining a value of b. These probabilities
are equal to

P+− = |〈m+,z−|ψ〉|2, (6)

with similar expressions for the other three terms. A simple
calculation shows that

P+− = P−+ = 1

2
cos2 θ

2
, P++ = P−− = 1

2
sin2 θ

2
, (7)

and from (5) we find

Q∞ = cos θ. (8)

If infinite singlet pairs were shared between Alice and Bob,
then the value of Q∞ does not show any fluctuation and Bob
could find the exact value of the angle θ from (8). Therefore
while Alice is measuring along the m direction, Bob can make
measurements along his x, y, and z directions to determine the
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Euler angles of m and hence completely determine the vector
m in the form

m = qx x + qy y + qz z. (9)

If he has some prior knowledge about the vector m being either
in the upper or lower hemisphere, then he can determine the
vector m by only two sets of measurements in the form

m = qx x + qy y ±
√

1 − q2
x − q2

y z, (10)

where the sign is determined by the aforementioned prior
knowledge. In the realistic case where the number of singlets is
finite, then the above two methods, which we label as methods
A and B, respectively, differ in their fidelity versus resource
(i.e., number of singlets) used. We will make a detailed
comparison of the two methods in the sequel.

B. The case where a finite number of pairs are shared

In the realistic case where we have only a finite number N

of singlets, the correlations will fluctuate around their mean
values and we can estimate only the vector m. As the number
of pairs increases the fluctuations decay and the fidelity of
our estimation also increase. To estimate the angle between
two directions used by Alice and Bob from correlations of
their quantum measurements, we use the standard estimation
procedure based on Bayesian inference [24]. However, as in the
ideal case, the rest of problem has a geometrical character and
there are various methods for estimation of the final vector m,
and the final fidelity depends on our method of estimation. In
any method used for estimation, the fidelity of the estimation
between the original vector of Alice (m) and the estimated
vector me is given by

F (me,m) = (1 + m · me)

2
. (11)

The average fidelity of this procedure is then given by

FN :=
∫

dm
∫

dmePN (me|m)
(1 + m · me)

2
, (12)

where PN (me|m) is the conditional probability that the vector
of Alice is m and it is estimated to be me. Here dm =

1
4π

d cos θ dφ with a similar expression for dme.
We first consider estimation of the angle between one vector

and z direction, say θ from measurement of correlations. Alice
and Bob share N singlets where Bob is measuring his qubits in
his z direction and Alice is measuring her qubits in a direction
which appears as m in the coordinate system of Bob. The
correlation in this case is a random variable QN which takes
values qN . In view of the relation (4) and (7), we have the
conditional probability for the correlation to be qN :

P (qN |z,m) =
(

N

Nd

)(
cos2 θ

2

)Nd
(

sin2 θ

2

)N−Nd

. (13)

Note that this probability depends only on the angle θ , so it
can equally be written as P (qN |θ ). Moreover, it is easily seen
from this binomial distribution that

〈qN 〉 = cos θ,
〈
q2

N

〉 = cos2 θ + 1

N
sin2 θ, (14)

facts which will be used later on.

Remarks on notation.
(i) Since we take the measurement axis of Bob to be fixed

along the z direction, we sometimes omit z from the conditional
probabilities when there is no risk of confusion.

(ii) As it is evident from (4), the correlation qN has a one-to-
one correspondence with Nd , e.g., the number of times where
Alice and Bob obtain opposite results in their measurements.
In the following summations we use these two instead of each
other, i.e., summing over q from −1 to 1 is equivalent to
summing over Nd from 0 to N .

The conditional probability that Alice has measured her
spins along m given a specific value of correlation qN is
given by

P (m|qN ) = P (qN |m)P (m)

P (qN )
= P (qN |m)P (m)∫

dm P (qN |m)P (m)
,

(15)

where P (m) is the probability that Alice has measured her
spins in the direction m and in the absence of any preference,
this probability is taken to be uniform. From (13) we obtain∫

dmP (qN |m)

= 1

4π

∫
dφd cos θ

(
N

Nd

)(
cos2 θ

2

)Nd
(

sin2 θ

2

)N−Nd

= 1

N + 1
, (16)

where we have used the formula for the β function

B(x + 1,y + 1) = x!y!

(x + y + 1)!

=
∫

dθ

(
cos

θ

2

)2x+1(
sin

θ

2

)2y+1

. (17)

This leads to

P (m|qN ) = (N + 1)!

Nd !(N − Nd )!

(
cos2 θ

2

)Nd
(

sin2 θ

2

)N−Nd

.

(18)

We now follow the standard estimation strategy and find the
best estimate for m as

me :=
∫

mP (m|qN )dm, (19)

or equivalently, by using z · m = cos θ and z · me = cos θe,

cos θe :=
∫

cos θP (m|qN )dm. (20)

Using (18), a straightforward calculation now gives

cos θe = N

N + 2
qN, (21)

which goes to Eq. (8) for infinite N . This gives the estimated
angle θe between z and m.

III. ALIGNMENT OF COORDINATE SYSTEMS

The complete alignment of two coordinate systems is
equivalent to the determination of the complete orientation
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FIG. 1. Two-dimensional coordinate sharing scheme shown in
the coordinate system of Bob: Alice and Bob agree on the z direction
and they want to share the direction m which has been located in the
x-y plane. Bob estimates the desired direction me due to the value of
the correlation function.

of two orthogonal vectors of Alice in Bob coordinate system.
Therefore this problem reduces to the determination of one
single vector of Alice in Bob coordinate system. This part is
purely geometrical, to which we now turn. To this end, we
first study the case of two dimensions where Alice and Bob
agree on a third direction (or a plane) and then go on to the
full dimensional problem.

A. Two-dimensional coordinate systems

Here we assume that Alice and Bob agree on a third
direction, say z, and their problem is to align two x-y
coordinate systems in plane perpendicular to this direction,
see Fig. 1.

The fidelity in this case is given by F (me,m) = 1+cos(φ−φe)
2 ,

where φ and φe are respectively the actual and estimated angles
of Alice vector with Bob x axis. Using (12) we find the average
fidelity to be

FN = 1

π

∫ π

0
dφ

N∑
Nd=0

(
N

Nd

)(
cos2 φ

2

)Nd

×
(

sin2 φ

2

)N−Nd 1 + cos(φ − φe)

2
, (22)

and straightforward calculations by using the β function (17)
give us

FN = 1

2
+ N

4(N + 2)
+ 1

π (N + 1)

×
N∑

Nd=0

√
1 −

(
2Nd − N

N + 2

)2

. (23)

For large N , this leads to

lim
N→∞

FN = 3

4
+ 1

π

∫ 1

q=−1

√(
1 − q

2

)(
1 + q

2

)
dq = 1.

(24)

2 4 6 8 10 12 14
N

0.88

0.9

0.92

0.94

0.96

0.98FN

FIG. 2. The average fidelity for different values of N when the
direction m which is estimated by Bob is located in a specific plane
that he is aware of.

Figure 2 shows the behavior of fidelity for different values of
shared singlet pairs N . As it can be seen in this figure, Alice
and Bob can achieve the average fidelity around 0.9 by using
only three singlet pairs.

B. Three-dimensional coordinate systems

We now come to the problem of aligning a full three-
dimensional coordinate system. This reduces to the problem
of sharing three aligned directions. Similar to the procedure
expressed in the ideal case of Sec. II A, Alice and Bob may
use 3N shared singlet pairs in method A, Eq. (9), or use 2N

singlet pairs as in method B, Eq. (10). We explain in detail
both methods and compare them with each other and also with
the method of Massar and Popescu [8].

1. Method A: Using 3N singlets

Let 3N singlet pairs be shared between Alice and Bob
and they want to share the original vector m, which in the
coordinate system of Bob has the form

m = cos α x + cos β y + cos γ z, (25)

as it is shown in Fig. 3. While Alice measures all her qubits
along the m direction, Bob measures his qubits in the directions

FIG. 3. Alice and Bob want to share the direction m, which in
the coordinate system of Bob makes the angles α, β, and γ with x,
y, and z axes, respectively.
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2 4 6 8 10 12 14 N
0.78

0.82

0.86

0.9

0.94

0.98FN

FIG. 4. The blue circles show the behavior of the average fidelity
for different values of N when 3N singlet pairs are shared between
Alice and Bob and they use method A of Sec. III B to share a
direction. The upper red squares show the optimal fidelity 3N+1

3N+2
which is achievable only by collective measurements [8]. We use 3N

in the formula of optimal fidelity in order to have a comprehensive
comparison.

x, y, and z (N qubits in each direction) and finds the respective
correlations qx,N , qy,N , and qz,N . Then by using Eqs. (9) and
(21), he estimates m to be

me = 1√
q2

x + q2
y + q2

z

(qxx + qyy + qzz). (26)

Note that in the above equation and hereafter we have dropped
the subscript N from q for brevity, that is, qx stands for qx,N .
Note that due to fluctuations, q

i
’s are no longer equal to the

cosine of the angles of m with the three axes, and hence the sum
of their squares do not add to unity. Therefore normalization of
the final vector is part of the estimation procedure in Eq. (26).

The probability of obtaining these correlations depends on
the angles α, β, and γ as given by (13) [see the paragraph after
(13)]. Therefore we have

P (me|m) = P (q
x
,q

y
,q

z
|m) = P (q

x
|α)P (q

y
|β)P (q

z
|γ ),

(27)

where P (q
x,N

|α) is given by (13), with θ replaced by α

and similar formulas for the other two probabilities hold.
The fidelity between the vector and its estimate is given by
F (me,m) = 1

2 (1 + me · m), and the average fidelity is then
given by

FA
N =

1∑
qx ,qy ,qz=−1

∫
dmP (me|m)F (me,m). (28)

Here the sum over qi from −1 to 1 can be replaced with
the sum over Ni,d from 0 to N [see the second remark after
Eq. (13)], and the probability is given by (27). The right-hand
side of (28) can be computed numerically, and the behavior of
the average fidelity for different values of N can be seen in
Fig. 4. One can see that our protocol achieves high fidelities
for small values of N , even though we have used just one-qubit
measurements. The optimal fidelity of direction sharing is
calculated in [8] when Alice sends the state |m〉⊗N to Bob, and
they show that the optimal measurement procedure necessarily
involves a positive operator-valued measure on the whole
system and cannot be achieved by performing measurements

on the components of the system; however, we reach the
optimal fidelity by only a very small gap. Figure 4 compares
the average direction sharing fidelities of our protocol with
that of the optimal method [8] for different values of N . For
example when N = 2, Alice and Bob use six singlet pairs and
one-qubit measurements to share the direction m with average
fidelity 0.85, while the optimal fidelity 6+1

6+2 = 0.875 can be
achieved exclusively by global measurements. Hence if the
laboratory restrictions force us to have simple measurements,
our method will be a very good procedure for direction sharing.

2. Method B: Using 2N singlets

Let 2N singlet pairs be shared between Alice and Bob. By
the same procedure as in the ideal case of an infinite number
of pairs (Sec. II A), while Alice is measuring along the m
direction, Bob measures his first N qubits along the x axis
and the other qubits along the y axis, and from the respective
correlations q

x
and q

y
and by using Eq. (21) he can estimate

the vector me to be

me = Nqx

N + 2
x + Nqy

N + 2
y

+
√

1 −
(

Nqx

N + 2

)2

−
(

Nqy

N + 2

)2

z, (29)

where we have used the partial information that the vector m
lies in the northern hemisphere and hence have chosen the plus
sign for mz.

Note that due to fluctuations of the values q
x

and q
y

for

finite N , it may happen that ( Nqx

N+2 )
2 + ( Nqy

N+2 )
2

> 1, in which
case me cannot be defined. Such cases are inadmissible.
Bob has to abandon his inadmissible cases and repeat the
protocol to obtain acceptable values for q

x
and q

y
. The

question is then what is the probability that Bob obtains
inadmissible correlations, that is, the probability of obtaining

( Nqx

N+2 )
2 + ( Nqy

N+2 )
2

> 1. To put a bound on this probability, we
use the Chebyshev formula according to which for a positive
random variable X we have

Pr(X � a) � 〈X〉
a

. (30)

In view of (14), this gives after some simple algebra

Pr(inadmissible) ≡ Pr
(

q2
x + q2

y �
(

N + 2

N

)2)

�
(

1 − cos2 γ + 1

N
(1 + cos2 γ )

)
, (31)

where γ is the angle between m and the z axis. Obviously the
probability depends on the angle γ . Averaging over all angles
γ in the northern hemisphere, this will give a bound

〈Pr(inadmissible)〉 �
(

N

N + 2

)2(2

3
+ 4

3N

)
, (32)

which shows that for large N at least one-third of pairs lead
to admissible correlations. In fact, it is much better than
this, and numerical calculations show that the admissible
probability is about 0.9 for N = 15. Since not all steps of
the protocol of method B are admissible, in order to have
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0 10 20 30 40 50 60
Neff

0.8

0.85

0.9

0.95

F

FIG. 5. Average fidelity of estimation for two different methods
as a function of the effective number of singlet pairs used in each run
of the protocols. Blue circles correspond to the fidelities of method
A, and green stars correspond to the fidelities of method B. For more
explanation see the paragraph after Eq. (32).

a comprehensive comparison between methods A and B, we
define the effective number of pairs used in each protocol to be
Neff = Nused

Pr(admissble) for each method. Nused is the number of pairs
used in each run of the protocols. In method A, Nused = 3N

and Pr(admissible) = 1, while for method B Nused = 2N and
the admissible probability has been calculated numerically.
Figure 5 shows the fidelities of both methods as a function
of the effective number of pairs used. Note that although in
method B Alice and Bob use 2N pairs, they rely on a priori
information about their axes (for example, being in the upper
or lower hemisphere), and for small values of N this prior
information helps them to achieve higher fidelities compared
with method A (see Fig. 5). As N increases both methods reach
the same fidelity, which means that Alice and Bob compensate
the lack of prior information in this case by consuming extra
shared singlets. For sufficiently large values of N , the fidelity
of method A exceeds that of method B, as expected.

IV. CONCLUSION

In this article we have introduced a method for secure
alignment of coordinate systems between two distant parties
in a way which prevents third parties from getting information
about the aligned coordinate systems. This is certainly signif-
icant for the two parties who want to use measurements along
different bases for performing quantum information tasks. The
method is essentially based on obtaining information about
directions from the correlations in the measurement results on
singlet states shared between the two parties. The presented
method achieves a very high average fidelity even though

we have just one-qubit measurements. In a sense this is the
converse of what is done in quantum key distribution, where
instead of publicly announcing the measurement bases, Alice
and Bob publicly announce the measurement results, which
enables them to align their coordinate systems. Of course they
both have to trust the dealer who has sent them truly singlet
pairs.

The protocol is secure in the following sense: Clearly
the access of Eve to the classical strings (a1,a2, . . . ,aN ) OR
(b1,b2, . . . ,bN ) publicly announced by Alice OR Bob does not
convey to her any information about the actual measurement
directions of them. However, the whole protocol can be
sabotaged by Eve in the following ways. She can entangle
herself with the entangled pairs shared by Alice and Bob, i.e.,
sharing a GHZ state with them, in which case the correlations
between Alice and Bob will be diminished considerably and
will not lead to aligned reference frames. This kind of sabotage
can be detected later by running a test quantum information
protocol by Alice and Bob.

The other way that Eve can interfere is in the initial process
of distributing singlets between the two parties. For each
singlet which is to be distributed and shared by Alice and Bob,
Eve can intercept the qubit of, say, Alice, and instead produce a
new singlet, one qubit of which is kept by herself and the other
one sent to Alice. In this way she can share a singlet with Alice
and another singlet with Bob. If in our protocol both Alice and
Bob were to announce their classical strings of bits, then this
would enable Eve to align two reference frames, one with
Alice and the other with Bob, preventing Alice and Bob from
sharing an aligned reference frame. By further intercepting the
classical communications between Alice and Bob, Eve could
interfere with any quantum information protocol being run
between Alice and Bob. However, in our protocol only one
of the parties announces his or her classical bits (results of
measurements) while the other party keeps her or his results
for comparison and determines the correlations. Therefore in
this kind of attack, Eve can only align her reference frame with
one of the parties. Further interception of classical messages
between Alice and Bob does not help her anymore in hiding
her presence, which can be detected by them once they perform
a test quantum information protocol.
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