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Tunneling in attosecond optical ionization and a dynamical time operator
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The conundrum parameter-operator of time in quantum mechanics, as well as the time-energy uncertainty
relation and the tunneling delay time, have recently been addressed in attosecond optical ionization experiments.
Dirac’s formulation of the electron’s relativistic quantum mechanics (RQM) allows the introduction of a dynamical
self-adjoint time operator, representing an internal time of the system. Its relation to the parametric (laboratory)
time is derived. Its relevance to the tunneling measurements in these experiments is exhibited, namely, as the
time it takes the wave packet to cross the exit point of the barrier, thus justifying considering this time operator
an additional observable in RQM.
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I. INTRODUCTION

The conundrum parameter-operator of time in quantum
mechanics (QM), as well as the time-energy uncertainty rela-
tion and the tunneling delay time, have recently been addressed
again in the development of attosecond optical ionization
experiments [1–3]. The tunneling phenomenon, one of the
earliest theoretical successes of QM, has been extensively
debated in relation to the question of the time the particle
spends in the barrier region. This has given rise to alternative
definitions of tunneling times but has not been definitively
resolved [3–5]. On the other hand, the technical development
of attosecond pulses of extreme ultraviolet radiation has
allowed photoionization processes where a tunneling delay
time can be measured and compared to theoretical predictions,
although using a time-energy uncertainty relation associated
with the commutation relation rightfully objected to by Pauli
[4,6,7].

Indeed the existence of a time-energy uncertainty rela-
tion analog to the position-momentum one, conjectured by
Heisenberg early on, faced from the start Pauli’s objection
to the existence of a time operator, to quote [8, p. 63]:
“ . . . from the C.R. written above (cf. [t,H ] = ih̄) it follows
that H possesses continuously all eigenvalues from −∞ to
+∞, whereas on the other hand, discrete eigenvalues of H

can be present. We, therefore, conclude that the introduction
of an operator t is basically forbidden and the time t must
necessarily be considered as on ordinary number (‘c’ number)
in Quantum Mechanics.” In the time dependent Schrödinger
equation (TDSE), time appears as a parameter, not an operator
[8,9]. This led to a variety of alternative proposals for a
time-energy uncertainty relation and an extensive discussion
of time in quantum mechanics throughout several decades
[10–14]. Pauli’s argument, sustained also by the fact that the
system’s stability requires the energy to have a finite minimum,
is still the subject of current research, as well as the existence
and meaning of a time-energy uncertainty relation [15,16].
The undisputed experimental corroboration of Schrödinger’s
equation supports the interpretation of the parameter t as
the laboratory time. Its presence in the dynamical evolution
of microscopical systems (TDSE) has been attributed to the
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entanglement of these systems with a macroscopic classical
environment [17].

Now, it has been shown that Dirac’s formulation of the
electron’s relativistic quantum mechanics (RQM) does allow
the introduction of a dynamical time operator that is self-
adjoint [18]. Consequently, it can be considered an additional
system observable representing an internal time, that in the
Heisenberg picture depends on the time parameter of the
Schrödinger equation. This time operator is the generator
of continuous momentum displacements, and consequently
continuous energy displacements within both the positive and
the negative energy branches, but not across the energy gap. In
this way Pauli’s objection is circumvented [19]. In the present
paper it is shown that the dynamical time operator provides an
equal footing of time and space in the analysis of the attosecond
optical ionization processes, as suggested in Ref. [6].1 These
aspects are examined within the standard framework of RQM.
The definition and main properties of the proposed time
operator are recalled in Sec. II. In particular the ensuing
time-energy uncertainty relation is shown to agree with Bohr’s
interpretation of the time uncertainty as the uncertainty in the
time of passage at a point of the trajectory. On the assumption
that this time of passage is a tunneling internal time, Sec. III
develops its application to the attosecond optical ionization
processes, based on its derived relation to the electron external
(laboratory) tunneling time. Section IV advances conclusions
and possible developments.

II. THE DYNAMICAL TIME OPERATOR IN RQM

A dynamical self-adjoint “time operator”

T̂ = α · r̂/c+βτ0 (1)

has been introduced [18] in analogy to the Dirac free particle
Hamiltonian ĤD = cα · p̂ + βm0c

2 , where αi(i = 1,2,3) and

1In this respect, Dodonov’s quoted paper in Ref. [6], that claims that
no unambiguous and generally accepted results have been obtained
so far, refers only to the present author’s paper of 1983 [20], where
the necessary conditions to define a time operator are discussed, but
not to the 2014 paper [18] that introduces a specific dynamical time
operator in RQM.
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β are the 4 × 4 Dirac matrices, satisfying the anticommutation
relations [9,21,22]

αiαj + αjαi = 2δij αiβ + βαi = 0 β2 = 1. (2)

τ0 represents in principle an internal property of the system,
determined to be the de Broglie period h/m0c

2 [19,23,24].
In the Heisenberg picture the time evolution of the time

operator is given by

T̂ (t) = α(t) · r̂(t)/c+β(t)τ0

= α(0) · r̂(0)/c + β(0)τ0 + [α(0)/c] · (c2p̂/ĤD)t

+ oscillating terms

= T̂ (0) + {1 − β(0)/γ }t + oscillating terms, (3)

where use has been made of

α(0) · (cp̂/ĤD)

= {ĤD − β(0)m0c
2}/ĤD = {1 − β(0)m0c

2/ĤD}
= {1 − β(0)m0c

2/m0c
2γ } = {1 − β(0)/γ } (4)

and the fact that 〈ĤD〉 = m0c
2γ is a constant of motion. γ =

{1 − (vgp/c)2}−1/2 is the Lorentz factor with vgp the group
velocity. Thus T̂ (t) exhibits a linear dependence on t together
with a superimposed oscillation (Zitterbewegung), as occurs
with the time development of the position operator r̂(t).

Leaving aside the oscillating terms, its expectation value
for a free wave packet is given as

〈T̂ (t)〉 = 〈T̂ (0)〉 + {1 − 〈β(0)/γ 〉}t
= 〈T̂ (0)〉 + {1 − 〈β(0)〉{1 − (vgp/c)2}1/2t. (5)

For low (“nonrelativistic”) positive energies [〈β(0)〉 � 1,
〈ĤD〉 � m0c

2, 1/γ � 1 − 1
2 (vgp/c)2 + · · · ] a time lapse is

given as

〈T̂ (t2)〉 − 〈T̂ (t1)〉 � {1 − 〈β(0)〉 + 1
2 〈β(0)〉(vgp/c)2}(t2 − t1)

� 1
2 (vgp/c)2(t2 − t1) � (t2 − t1). (6)

Thus, in this case, electron parametric (external) intervals are
enhanced with respect to dynamical (internal) intervals, that
by definition [Eq. (1)] are related to the time it would take light
to travel the distance.

On the other hand, for high (“relativistic”) energies
[〈ĤD〉 � cp, vgp � c, (1/γ ) � 0], one obtains

〈T̂ (t2)〉 − 〈T̂ (t1)〉 � (t2 − t1), (7)

and electron parametric (external) intervals coincide with
dynamical (internal) intervals.

It also follows [18,19] that the time operator and the Dirac
Hamiltonian satisfy the commutation relation

[T̂ ,ĤD] = ih̄{1 + 2 < βK > +2β(τ0ĤD − m0c
2T̂ )}, (8)

where K = β(2s · l/h̄2 + 1), a function of the spin orbit
coupling, is a constant of motion [21]. The last term vanishes
at the origin of the proper system where T = βτ0 and ĤD =
m0c

2.
From this follows an uncertainty relation

(�T̂ )(�ĤD) � (h̄/2)|1 + 2 < βK >|
= (3h̄/2)

∣∣1 + 4
3 〈s · l/h̄2〉∣∣. (9)

For central potentials where the eigenstates are such that 〈r̂〉 =
0 and 〈p̂〉 = 0, the uncertainty of this time operator is related
to the uncertainty in position �r, namely:

�T 2 = 〈T 2〉 − 〈T 〉2 ≈ 〈r2〉/c2 + τ 2
0 {1 − 〈β〉2} ≈ 〈r2〉/c2,

(10)

whereas in the same way the energy uncertainty is related to
the momentum uncertainty �p. Thus,

�T ≈ �r/c �ĤD ≈ c�p̂ (11)

and

(�T̂ )(�ĤD) ≈ (�r̂)(�p) �(3h̄/2). (12)

The association of �T̂ with �r̂, and of �ĤD with �p̂,
corresponds to Bohr’s interpretation [25], namely, the width
of a wave packet in space, complementary to its momentum
dispersion (and thus to its energy dispersion), measures the
uncertainty in the time of passage at a point of the trajectory.

III. TUNNELING TIME IN ATTOSECOND OPTICAL
IONIZATION

The laser pulse opens the electron bound state at energy
E0 = −Ip to tunneling through a practically static barrier
created by an effective potential in the direction of the
pulse polarization. This is justified by the fact that the laser
center wavelength in the infrared range is much slower
(0.0456–0.065 a.u.) than the oscillating frequency of the
electron in the atom [O(1) a.u.]. This means that for a bound
electron, the time-dependent field varies adiabatically [3]. The
barrier is thus modeled as [3,4,7]

Veff = −Zeffe

|r| − F · r. (13)

The first term is the binding Coulomb potential and the second
is the dipole interaction with a pulse of maximum intensity F .
The barrier width dB in any radial direction, say (θp,ϕp), of the
electric field polarization is given by the difference between
the entrance re,− and exit re,+ points of the barrier (Fig. 1 of
Ref. [7]), i.e., the solutions to the equation

−Zeffe

r
− Fr = −Ip

yielding

dB(F )
.= {re,+ − re,−} = (Ip/F )

√
1 − 4ZeffeF/I 2

p (14)

as given in Eq. (13) of Ref. [7].
At this point it is important to note that in the presence

of potentials dependent only on position, e.g., Coulomb type
potentials, one has

[T̂ ,ĤD + V (r̂)] = [T̂ ,ĤD] (15)

and the same internal time uncertainty relation, Eq. (9),
follows.

Considering that the sudden onset of the pulse spreads
the stationary ground eigenstate (〈r̂〉 = 0, 〈p̂〉 = 0) into a
continuum, it sets the particle wave packet in motion by
modifying the momentum distribution component in the
direction of polarization. The time of passage at a point
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FIG. 1. Dependence on ξ of tunneling time vs experimental data
(Fig. 3(d) of Ref. [2]).

of the barrier (say the exit point) acquires a finite internal
time uncertainty related to the increasing position uncertainty,
initially confined to the atomic size, but now occupying part
of the much larger barrier width dB(F ). As shown in Sec. II
above, the minimum internal time uncertainty for spherical
symmetry is

�T̂ = �r̂/c = 〈r2〉1/2/c, (16)

where integration is carried over all directions. For a spher-
ically symmetric state one can write �r̂ = 4π�r with the
contribution in one radial direction being �r = ξ{dB(F )},
where the phenomenological parameter ξ � 1 allows one to
consider that the wave packet, although spreading, occupies
only a fraction of the barrier width. An estimation of ξ is given
in the Appendix below.

The main assumption now is that this time of passage
uncertainty at the exit point represents the time needed to
cross this point and represents a tunneling internal time τ̄T ,
namely:

τ̄T = (1/4π )�r/c ≈ (1/4π )ξ{dB(F )}/c. (17)

However, from Eq. (6), the corresponding electron laboratory
tunneling time ϒT in the nonrelativistic regime is obtained
through the enhancement from this internal time lapse as
follows:

ϒT ≈ τ̄T / 1
2 (cp/m0c

2)2

≈ {(1/4π )ξdB(F )/c}/ 1
2 (vgp/c)2 � τ̄T . (18)

This approach is seen to yield a linear relation between
laboratory electron tunneling time and barrier width, as has
been experimentally obtained (Fig. 3(d) of Ref. [2]). Given a
group velocity vgp, the parameter ξ determines the slope of this
linear dependence as well as the magnitude of the laboratory
tunneling time. Reference [2] reports an electron tunneling
time of 40 as for a barrier width of 13 a.u. = 6.88 Å. This
gives a laboratory group velocity vgp = 6.88

40 Å/as, and a ratio
1/ 1

2 (vgp/c)2 = 608.44. It then follows

ϒT ≈ (1/4π )608.44[ξdB (F )/c] as = (16.14ξ )dB (as), (19)

where the barrier width is given in angstroms.

Figure 1 shows the dependence on ξ of the tunneling time
vs barrier width for different values of ξ , together with the
background of experimental data of Fig. 3(d) of Ref. [2], where
the tunneling time of light—that by definition corresponds
to the internal tunneling time—is also exhibited. Note that
the value ξ = 0.45 practically reproduces the FPI (Feynman
path integral) quantum mechanical result that is considered to
realize a good fit to the experimental data [2].

The dependence on the field intensity is obtained using
Eq. (14), namely:

ϒT ≈ (1/4π )ξ
[
(Ip/F )

√
1 − 4ZeffeF/I 2

p/c
]/[

1
2 (vgp/c)2

]
,

(20)

which gives the observed shape of the dependence of the
barrier width on the field intensity (Fig. 3(b) of Ref. [2]).

IV. CONCLUSION

The dynamical time operator provides a plausible explana-
tion within standard RQM of the tunneling times measured
in the photoionization experiments. As an observable, it
introduces an internal time, in addition to the parameter
(laboratory) time in the TDSE, that has been shown to be
an emergent property arising from the entanglement of a
microscopic system with a classical environment in an overall
closed time independent system, a property being apparent
only to an internal observer [17,26]. There is no conundrum
parameter-operator of time in quantum mechanics, as both
times are seen to play a role in RQM and Pauli’s objection is
circumvented [19]. The tunneling internal time is assumed
to be given by the dynamical time operator uncertainty
considered, following Bohr, as a time of passage at, say, the
exit point of the potential barrier. The derived enhancement
at low energies of the tunneling internal time to exhibit
the corresponding electron laboratory tunneling time yields
the agreement with the measurements in attosecond optical
ionization experiments. The point of view adopted certainly
differs from other conceptions and definitions of tunneling
time, some of which fail to agree with experimental data, as
exhibited in Ref. [2].

Some aspects to be explored beyond this paper are the
following. Based on the position observable, the time operator
is seen to exhibit a Zitterbewegung behavior about its linear
dependence on t . As occurs with the position one, its observa-
tion is beyond current technical possibilities. However it may
be observable in systems that simulate Dirac’s Hamiltonian,
where a position Zitterbewegung has already been exhibited
experimentally [27–29]. A corresponding time operator can
be constructed in each case and perhaps its properties may be
exhibited in similar experiments.

Finally, general relativity accords a dynamical behavior
to space-time, firmly confirmed recently by the detection
of gravitational waves. As a dynamical time is definitively
incompatible with a time parameter, this becomes from the
start a fundamental “problem of time” in quantum gravity
[30,31]. Whether the time operator here introduced has a
relevance in this problem is a venue to be considered [32].
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APPENDIX: AN ESTIMATION OF ξ

The spreading of a free wave packet from an initial value
�q0 is given as [33]

�q(t) = �q0

[
1 +

(
�p0

m�q0
t

)2
]1/2

= �q0

[
1 +

(
�H0

mc2

ct

�q0

)2
]1/2

, (A1)

where, from Eq. (11), �H0 ≈ c�p0 is considered as the
energy spread produced by the sudden onset of the laser.
For a spherically symmetric potential, this spread is �H0 =
F/

√
2|E0|, where E0 is the ground state energy of the bound

electron and F is the electric field strength [4]. Now Ref. [2]
quotes in Fig. 3(d) a tunneling time of 40 as for a barrier

width of 13 a.u. (6.88 Å) together with F = (0.08/2π ) a.u. =
4.47 W/cm2 (see Fig. 2(b) of Ref. [2]). As the target is helium
(Zeff ≈ 2), one has for the ground state �q0 ≈ (

√
3/2) a.u.,

and |E0| = 24.59 eV = 0.904 a.u. [1], to yield

ξ (t = 40 as) ≡ �q(t = 40 as)

dB

≈ 1.23
�q0

dB

≈ 0.18. (A2)

This value is of the order of the phenomenological adjustment
in Fig. 1. It agrees with the assertion that �H0 is small and
spreads slowly, as quoted, and furthermore exhibited in Fig.
4(b) of Ref. [4]. The value will be increased if the effect of
traveling through the barrier corresponds on average to free
motion with an effective mass meff < m.

Finally, from the Dirac equation [9,21,33], the laboratory
time taken by a free wave packet to cover a distance dB =
〈r(t)〉 − 〈r(0)〉 is, neglecting the oscillating terms, given as
dB/〈c2p/H 〉 = dB/vgp. Taking vgp = √

2|E0|/m, one obtains

T = dB/vgp = (dB/c)/(vgp/c)

= (dB/c)/
√

2|E0|/mc2 ≈ 226 as (A3)

to compare with the 230 as quoted in Ref. [2].
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