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Quantifications of coherence are intensively studied in the context of completely decoherent operations (i.e.,
von Neuamnn measurements, or equivalently, orthonormal bases) in recent years. Here we investigate partial
coherence (i.e., coherence in the context of partially decoherent operations such as Lüders measurements). A
bona fide measure of partial coherence is introduced. As an application, we address the monotonicity problem of
K-coherence (a quantifier for coherence in terms of Wigner-Yanase skew information) [Girolami, Phys. Rev. Lett.
113, 170401 (2014)], which is introduced to realize a measure of coherence as axiomatized by Baumgratz, Cramer,
and Plenio [Phys. Rev. Lett. 113, 140401 (2014)]. Since K-coherence fails to meet the necessary requirement
of monotonicity under incoherent operations, it is desirable to remedy this monotonicity problem. We show that
if we modify the original measure by taking skew information with respect to the spectral decomposition of an
observable, rather than the observable itself, as a measure of coherence, then the problem disappears, and the
resultant coherence measure satisfies the monotonicity. Some concrete examples are discussed and related open
issues are indicated.
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I. INTRODUCTION

In recent years, inspired by the seminal work of Baumgratz
et al. [1], there is increasing interest in axiomatic and
quantitative studies of coherence [2–12]. In a remarkable study,
Girolami introduced K-coherence, an intuitive quantifier for
coherence, based on the Wigner-Yanase skew information
[2]. This quantifier satisfies all desirable properties of a
coherence measure as postulated by Baumgratz et al. [2], with
the exception of monotonicity under incoherent operations.
However, monotonicity is a key feature for any reasonable
coherence measure, and it is desirable to remedy this problem.

On reconsideration, the failure of monotonicity of K-
coherence is just reasonable since the monotonicity axiom
is formulated with respect to an orthonormal base (von
Neumann measurement), while the K-coherence is based on
an observable K , which is quite different from the associated
orthonormal base due to the involvement of eigenvalues. Once
this is recognized, the recipe to remedying the problem is
immediate: One simply replaces the skew information based
on an observable by that based on the corresponding spectral
decomposition. Since spectral decompositions of observables
in general yield Lüders measurements which can only extract
partial information of coherence, we are led naturally to the
notion of partial coherence and its quantifier in terms of
summation of the skew information involving measurement
operators. This is indeed a bona fide, as well as more general,
measure of coherence, as will be established in this paper.

Before elaborating on the results, let us first recall the
axiomatic approach to coherence by Baumgratz et al. [1],
which is formulated as a resource theory with three basic
ingredients:

(i) a fixed orthonormal base {|i〉} (alternatively, a von
Neumann measurement {|i〉〈i|}), which serves as a reference;
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(ii) incoherent states

I =
{

σ =
∑

i

pi |i〉〈i| : pi � 0,
∑

i

pi = 1

}
,

which are mathematically described by diagonal matrices in
the fixed orthonormal base {|i〉};

(iii) incoherent operations, which cannot create coherence
from incoherent states. More specifically, a quantum operation
� with Kraus operators {Ek} is called incoherent according
to Ref. [1] if 1

λk
EkσE

†
k ∈ I for any σ ∈ I and any k, here

λk = trEkσE
†
k. We note that there are other, different, notions

of incoherent operations [9], and we will not pursue them here.
A functional C(ρ) on the space of quantum states is

regarded as a coherence measure (with respect to the orthonor-
mal base {|i〉}), if it satisfies the following requirements.

C1: C(ρ) � 0, and C(σ ) = 0 for any incoherent state
σ ∈ I.

C2: C(ρ) is convex in ρ.
C3: Monotonicity under incoherent operations: for any

quantum state ρ and any incoherent operation �, it holds that
C(�(ρ)) � C(ρ). For simplicity, we do not treat the strong
monotonicity here.

Several measures of coherence, including the relative
entropy of coherence, l1-norm coherence, robustness of co-
herence, etc., are constructed and verified to satisfy the above
requirements. In an informational approach to coherence [2],
Girolami proposed to use the Wigner-Yanase skew information
[13–15]

I (ρ,K) := −tr 1
2 [

√
ρ,K]2

to quantify coherence, and called it K-coherence. Here K is
diagonal in the base {|i〉}. More precisely, this quantity should
be considered as a quantifier for coherence of ρ with respect to
the observable K rather than the associated orthonormal base.
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This quantifier satisfies C1 and C2, but not C3, as pointed out
in Refs. [16,17].

A question arises immediately: How to reinstall the mono-
tonicity, while still employing the skew information to quantify
coherence? We present a solution here by showing that the
K-coherence can be simply modified to a bona fide measure
of coherence satisfying all the above requirements C1–C3
(including the monotonicity under incoherent operations). The
key observation is to use the spectral decomposition of the
observable K rather than the observable K itself.

II. PARTIAL COHERENCE

We will work in a more general framework. Suppose
that the observable K has the spectral decomposition K =∑

i ai�i with �i orthogonal projections (not necessarily
one dimensional) satisfying

∑
i �i = 1, then it induces a

corresponding Lüders measurement � = {�i} [18,19], which
includes von Neumann measurements as special cases. In this
context, the basic ingredients for partial coherence are

(i) A fixed Lüders measurement � = {�i}, or equivalently,
an orthogonal decomposition of the system Hilbert space
H = ⊕

i Hi with Hi = �iH, which serves as reference
for coherence. Two extreme cases are (1) there is only
a single component with H1 = H (corresponding to the
trivial measurement � = {I }), and (2) there are d = dimH
components with Hi = {c|i〉 : c ∈ C}, i = 1,2, . . . ,d, where
{|i〉} constitutes an orthonormal base for H (corresponding to
the von Neumann measurement � = {�i}).

(ii) Incoherent states IL = {σ : �(σ ) = σ } consisting of
all block-diagonal states σ (with respect to the previous space
decomposition), here �(σ ) = ∑

i �iσ�i. We emphasize that
coherence here is with respect to the Lüders measurement
�, and consequently, the incoherent states here may have
coherence with respect to other measurements, which are
refinements of �. This means we are actually talking about
partial coherence.

(iii) Incoherent operations � satisfying �(σ ) ∈ IL for any
σ ∈ IL.

Now in analogy to C1–C3, the corresponding reasonable
requirements for a coherence measure C(ρ|�) can be refor-
mulated as:

L1: C(ρ|�) � 0, and C(σ |�) = 0 if and only if σ ∈ IL.

L2: C(ρ|�) is convex in ρ.
L3: Monotonicity under incoherent operations: for any

quantum state ρ, and for any incoherent operation �, it holds
that

C(�(ρ)|�) � C(ρ|�).

In this setting, it is natural to define a coherence measure of
a state ρ with respect to the Lüders measurement � = {�i} as

C(ρ|�) :=
∑

i

I (ρ,�i),

which indeed satisfies the above three requirements L1–L3, as
shown in the following.

Item L1 follows simply from I (ρ,�i) = 0 if and only if
ρ and �i commute, i.e., [ρ,�i] = 0. As for item L2, the
convexity of the skew information guarantees that C(ρ|�) is
convex in ρ [13]. For item L3, we first note that the coherence

measure can be equivalently expressed as

C(ρ|�) = 1 − tr
√

ρ�(
√

ρ),

which follows from �2
i = �i,

∑
i �i = 1. Now since

�(
√

ρ) =
∑

i

�i

√
ρ�i

is block diagonal, we have

[�(
√

ρ)]2 =
∑

i

(�i

√
ρ�i)

2 = aγ

where a := tr
√

ρ�(
√

ρ), and γ := 1
a

∑
i(�i

√
ρ�i)2 is a

block-diagonal state (incoherent state). It follows that both
�(γ ) and

√
�(γ ) are block-diagonal operators for any

incoherent operation �. By the monotonicity of affinity and
the Schwarz inequality, we have

tr
√

ρ�(
√

ρ) = 1

a
[tr

√
ρ�(

√
ρ)]2

= (tr
√

ρ
√

γ )2

� (tr
√

�(ρ)
√

�(γ ))2

= (tr
√

�(ρ)�[
√

�(γ )])2

= (tr�[
√

�(ρ)]
√

�(γ ))2

� tr(�[
√

�(ρ)])2tr�(γ )

= tr
√

�(ρ)�[
√

�(ρ)],

which implies the desired property L3.
We consider two special cases: (i) If the Lüders mea-

surement � is trivial in the sense that � = {1} (identity
operator), i.e., � constitutes only the identity operator, then
C(ρ|�) = 0 for any state ρ. This is intuitive since here
the measurement amounts to do nothing. (ii) If ρ = |ψ〉〈ψ |
is a pure state with |ψ〉 = 1√

d

∑
i |ψi〉, |ψi〉 = ∑di

j=1 |ψij 〉 ∈
�iH = Hi, dimHi = di,d = ∑

i di, then we have I (ρ,�i) =
di

d
− ( di

d
)
2

and C(ρ|�) = ∑
i I (ρ,�i) = 1 −

∑
i d2

i

d2 . The max-

imal value max� C(ρ|�) = 1 − 1
d

is achieved when di = 1
for all i, that is, when � is a von Neumann measurement.

By the way, we remark that the discord DH(ρab) introduced
in Ref. [20] is precisely the minimal coherence:

DH(ρab) = min
�a

C(ρab|�),

where ρab is a bipartite state shared by parties a and b, and
� = {�a

i ⊗ 1} is the Lüders measurement extension of the
local von Neumann measurement �a = {�a

i } on party a. This
instance also shows the necessary to go beyond von Neumann
measurements in studying the interplay between coherence
and quantum correlations.

III. ILLUSTRATIVE EXAMPLES

To illustrate the different behaviors in the monotonicity
problem between the coherence measure C(ρ|�) and the
K-coherence I (ρ,K) in a more concrete way, we revisit two
counterexamples to the monotonicity for the K-coherence, and
show that the problem disappears for the coherence measure
C(ρ|�) (i.e., the partial coherence is indeed monotonically
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nonincreasing under incoherent operations): The first is a
numerical counterexample found in Ref. [16], the second is
a general argument proposed in Ref. [17].

The example due to Du and Bai [16] is as follows. Let the
system Hilbert space be three dimensional with orthonormal
base {|i〉}, and

K = |1〉〈1| + 10|2〉〈2| + 5|3〉〈3|,
ρ = |ψ〉〈ψ |, |ψ〉 = 1√

3
(|1〉 + |2〉 + |3〉).

The operation � is defined by �(ρ) = ∑3
i=1 AiρA

†
i with

A1 = 1√
2

(|1〉〈1| + |2〉〈2|),

A2 = 1√
2

(|1〉〈2| + |2〉〈3|),

A3 = 1√
2

(|1〉〈3| + |2〉〈1|).

Clearly,
∑

i A
†
i Ai = 1, � is an incoherent operation, and

�(ρ) = |φ〉〈φ| with |φ〉 = (|1〉 + |2〉)/√2. Direct evaluation
shows that [16]

I (�(ρ),K) = 81
4 > I (ρ,K) = 122

9 .

Consequently, the K-coherence I (ρ,K) does not satisfy the
monotonicity under incoherent operations, contrary to the
claim in Ref. [2].

However, for this example, we have � = {�i} with �i =
|i〉〈i|, i = 1,2,3, and

I (ρ,�i) = 1
3 − 1

9 = 2
9 , i = 1,2,3.

Therefore

C(ρ|�) =
3∑

i=1

I (ρ,�i) = 2

3
.

On the other hand,

I (�(ρ),�i) = 1
2 − 1

4 = 1
4 , i = 1,2; I (�(ρ),�3) = 0,

and thus

C(�(ρ)|�) =
3∑

i=1

I (�(ρ),�) = 1

2
.

Consequently, we have

C(�(ρ)|�) = 1
2 < C(ρ|�) = 2

3 ,

and the monotonicity is indeed satisfied by the partial coher-
ence.

Next, we elaborate on a remarkable argument leading
to many intuitive counterexamples to monotonicity of K-
coherence, as proposed by Marvian et al. [17]. Consider a
d-dimensional system Hilbert space with orthonormal base
{|i〉}. Let

K =
∑

i

λi |i〉〈i|, λi are real numbers,

ρ = |ψ〉〈ψ |, |ψ〉 =
∑

i

ai |i〉.

The operation � is defined as

�(ρ) = UσρU †
σ , Uσ =

∑
i

|σ (i)〉〈i|,

where σ is a permutation, and Uσ is actually a unitary operator.
Clearly, � is an incoherent operation, and

�(ρ) = |ψσ 〉〈ψσ |, |ψσ 〉 =
∑

i

ai |σ (i)〉.

It can be readily evaluated that

I (ρ,K) =
∑

i

|ai |2λ2
i −

(∑
i

|ai |2λi

)2

,

I (�(ρ),K) =
∑

i

|ai |2λ2
σ (i) −

(∑
i

|ai |2λσ (i)

)2

.

Clearly, the monotonicity inequality I (�(ρ),K) � I (ρ,K)
cannot be satisfied by all K (if we vary λi) simply be-
cause σ is a permutation. More precisely, if I (�(ρ),K) >

I (ρ,K), then this is already a counterexample to mono-
tonicity and we are done. If I (�(ρ),K) < I (ρ,K) (we
assume that I (�(ρ,K) �= I (ρ,K) without loss of gener-
ality since we are considering only special counterexam-
ples), we simply take K ′ = ∑

i λσ−1(i)|i〉〈i| and σ 2 = 1,
then we have I (�(ρ),K ′) = I (ρ,K), I (�(ρ),K) = I (ρ,K ′),
which imply that I (�(ρ),K ′) > I (ρ,K ′), a counterexample
to the monotonicity of K-coherence. For a more concrete
illustration, we may take d = 3, K = 2|1〉〈1| + |2〉〈2| +
|3〉〈3|, |ψ〉 = (|1〉 + √

2|2〉 + |3〉)/2,Uσ = |1〉〈2| + |2〉〈1| +
|3〉〈3|, then ρ = |ψ〉〈ψ |, �(ρ) = |φ〉〈φ| with |φ〉 = (

√
2|1〉 +

|2〉 + |3〉)/2. Simple calculation yields

I (�(ρ),K) = 1/4 > I (ρ,K) = 3/16,

which exhibits a very simple instance for violating the
monotonicity of K-coherence.

However, for this example, we have � = {�i} with �i =
|i〉〈i|, and for any i,

I (ρ,�i) = |ai |2 − |ai |4, I (�(ρ),�i) = |aσ (i)|2 − |aσ (i)|4,
Consequently,

C(�(ρ)|�) = C(ρ|�)

and the monotonicity is indeed satisfied for the coherence
measure C(ρ|�). This is consistent with our intuition since
� in this example is actually a unitary mapping, and the
coherence should be preserved.

Coherence is intimately related to asymmetry, as exten-
sively studied in Refs. [17,21–23]. The following example
illustrates a fundamental difference between asymmetry and
coherence. Consider a system Hilbert space with an orthonor-
mal base {|i〉}. Let

ρ = |ψ〉〈ψ |, |ψ〉 = a|1〉 + b|m〉,
and let � be an operation taking ρ to

�(ρ) = |φ〉〈φ|, |φ〉 = a|1〉 + b|m + n〉.
This operation increases the asymmetry, and from an intuitive
viewpoint, it should not increase coherence since both |ψ〉 and
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|φ〉 are superposition of two basis states with the same sets of
amplitudes. Let us evaluate the coherence. Clearly,

I (ρ,�i) =

⎧⎪⎨
⎪⎩

|a|2 − |a|4, if i = 1

|b|2 − |b|4, if i = m

0, otherwise;

I (�(ρ),�i) =

⎧⎪⎨
⎪⎩

|a|2 − |a|4, if i = 1

|b|2 − |b|4, if i = m + n

0, otherwise.

Consequently,

C(ρ|�) =
∑

i

I (ρ,�i) = |a|2 − |a|4 + |b|2 − |b|4,

C(�(ρ)|�) =
∑

i

I (�(ρ),�i) = |a|2 − |a|4 + |b|2 − |b|4,

and indeed the coherence is preserved, i.e., C(ρ|�) =
C(�(ρ)|�), as the intuition requires.

IV. COHERENCE VIA QUANTUM FISHER INFORMATION

In defining the partial coherence, we have employed the
Wigner-Yanase skew information, which is a particular version
of general quantum Fisher information [14,15]. However, since
there are infinitely many versions of quantum Fisher informa-
tion [24], one is led naturally to ask if we replace the skew
information by other quantum Fisher information, will we
still obtain a bona fide measure for coherence? A particularly
significant version of quantum Fisher information is

IF(ρ,K) = 1
4 trρL2, 1

2 (Lρ + ρL) = i[ρ,K],

defined via symmetric logarithmic derivative, which has (both
quantitatively and qualitatively) intimate relations with the
skew information [25]. If one defines the following measure

CF(ρ|�) =
∑

i

IF(ρ,�i)

in terms of the above quantum Fisher information, then this
measure possesses the following properties:

F1: CF(ρ|�) � 0, and CF(σ |�) = 0 is and only if σ ∈ IL.

F2: CF(ρ|�) is convex in ρ.

We also conjecture that F3: monotonicity under incoherent
operations: for any quantum state ρ, and for any incoherent
operation �, it holds that

CF(�(ρ)|�) � CF(ρ|�).

To establish item F1, noting that according to Theorem 2
in Ref. [25], we have I (ρ,K) � IF(ρ,K) � 2I (ρ,K), which
implies that

C(ρ|�) � CF(ρ|�) � 2C(ρ|�).

Consequently, CF(ρ|�) = 0 if and only if C(ρ|�) = 0. The
desired result follows from L1, the corresponding property
for C(ρ|�). Item F2 follows from the convexity of quantum
Fisher information.

Although we do not have a proof of item F3, the relations
between quantum Fisher information and fidelity (equiva-
lently, the Bures distance) discussed in Ref. [15], as well
as the monotonicity of fidelity under any operations, may
be helpful in establishing the monotonicity. Since quantum
Fisher information plays a fundamental role in parameter
estimation, it is desirable to investigate whether the coherence
measure provide any insight into phase estimation and more
generally, quantum metrology. We leave these issues for
further investigation.

V. CONCLUSION

To summarize, we have shown that the K-coherence can
be readily adapted to a bona fide measure for coherence after
simple manipulation. In this process, we are led to consider
coherence with respect to Lüders measurements, which are
more general and versatile than von Neumann measurements.
Of course, when the Lüders measurement reduces to a von
Neumann measurement, we recover the conventional setup. It
is desirable to explore further applications and implications
of this coherence measure, which is expected to play an
interesting role in foundational study of coherence and
quantum measurements.

Note added in proof. Zhao and Yu addressed the mono-
tonicity in terms of Tsallis relative entropy [26].
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