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Quantum evolution in disordered transport
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We analyze the propagation of quantum states in the presence of weak disorder. In particular, we investigate the
reliable transmittance of quantum states, as potential carriers of quantum information, through disorder-perturbed
waveguides. We quantify wave-packet distortion, backscattering, and disorder-induced dephasing, which all act
detrimentally on transport, and identify conditions for reliable transmission. Our analysis relies on the treatment
of the nonequilibrium dynamics of ensemble-averaged quantum states in terms of quantum master equations.
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I. INTRODUCTION

Quantum transport theory has mainly been concerned
with the impact of irregular perturbations (i.e., disorder) on
classical macroscopic observables, such as the conductivity of
amaterial. This follows a clear technological motivation, since
disorder can have severe consequences, possibly hindering
transport up to the complete trapping of charge carriers in the
wire, i.e., localization, turning a metal into an insulator [1-6].
In these considerations, the mere arrival of a charge carrier at
the output end of a specimen is of relevance, so details of the
precise transmitted quantum state are usually omitted.

The situation is changing with the ongoing maturing of
quantum technologies. Quantum particles, along with their
quantum behavior, are not confined anymore to serve only
classical technology purposes; they are now expected to fulfill
genuinely quantum tasks, assuming their roles as carriers
of quantum information. In a future quantum computer,
for instance, a bus may transport qubits between different
locations [7-12]. In quantum communication, on the other
hand, photons may deliver quantum information encoded
in their optical angular momentum [13]. Another field of
relevance is the fundamental testing of quantum mechanics
with matter wave interferometry [8,14,15]. Applications are
numerous and growing.

Even the highly controlled environments of quantum
devices are not devoid of uncontrolled perturbations in the
form of disorder. Think, for instance, of stray fields or surface
effects. But the relevant question is not whether transmission
takes place, but rather with which precision. Even if the
transmission loss is negligible, disorder-induced dephasing
can still spoil the performance of the device; similarly, state
distortion can undermine the necessary fidelity. In Fig. 1 we
sketch this refined transport task. To address these issues,
we need a detailed and comprehensive description of (small)
nonequilibrium deviations from a given input.

In this article, we develop such a description. To this end, we
take up the recently introduced treatment of disordered systems
in terms of quantum master equations [16,17]. The latter have
proven to be well suited to describing the transient dynamics
of disorder-averaged systems. In [16], a quantum master
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FIG. 1. Disordered transport channel for quantum states. A
particle of mass m and momentum py, described by the initial state p,,
propagates through an imperfect waveguide. The disorder potential
is symbolized by the darker zigzag inlay. While traditional transport
theory has been focusing on conduction properties (indicated by
t and r), reducing quantum particles to charge carriers, quantum
technologies, with quantum states carrying quantum information, ask
for a more refined description, encompassing comprehensive disorder

modifications on the level of both the populations and coherences
of py.

equation for general disorder configurations was provided,
valid, however, only in the limit of short times. In [17], exact
quantum master equations for specific, symmetric disorder
configurations were derived, excluding, however, the rich and
important family of transport problems. Here, we fill this
gap and substantially extend the quantum master equation
approach, introducing coupled disorder channels, to pertur-
bative treatments of arbitrary disorder configurations beyond
short times. By virtue of this method, we comprehensively
describe the disorder-perturbed evolution of propagating,
massive quantum particles and evaluate it for wave-packet
distortion, backscattering, and disorder-induced dephasing.

II. DISORDER-PERTURBED PROPAGATION

A general disorder ensemble is comprised of a set of Hamil-
tonians H, occurring with probability p,, where the (multi-)
index ¢ labels the different disorder realizations (for simplicity,
we write integrals throughout, e.g., [de p, =1). In our
case, single realizations p, follow unitary dynamics, 9,0, =
—(i /R)[Hs, p;], formally solved by p. (1) = U.(t)poUl(¢), with
the time evolution operator Ug(t) = exp[—( /h)ﬁet] and pg
an arbitrary initial state (identical for all realizations). The
ensemble-averaged state p(t) = f de p. pe(t) is then obtained

from p(t) = [ de p. Uc(t)poUl (1)

©2017 American Physical Society


https://doi.org/10.1103/PhysRevA.96.022135

CLEMENS GNEITING AND FRANCO NORI

We analyze the propagation of a single particle of mass
m and (mean) momentum py in one dimension (1D),
subject to a homogeneous disorder potential but other-

wise free, described by the Hamiltonian H, = % + V.(X).
The disorder potential may exhibit two-point correlations
C(x —x') = [de p, V:(x)V.(x) and may vanish on average,

f de pe Ve(x) = 0. We assume that the disorder potential is

weak, in the sense that the kinetic energy % of the particle is
large compared to its magnitude; otherwise any wave packet
would rapidly be strongly distorted and trapped, rendering
reliable transport meaningless.

Below, we introduce the coupled-disorder-channel equa-
tions (7), and, as their byproduct, the perturbative quan-
tum master equation (8). The latter allows us to derive
analytic solutions for the evolution of ensemble-averaged
quantum states. In the case considered here, such solu-
tion is best represented in terms of the (complex-valued)
characteristic function X,(s,q) = [ dxdp e i@ =PIW (x,p)
of the (real-valued) phase-space representation (for a brief
introduction, see, for instance, [18] or [19]) W,(x,p) =
ﬁ fdx’eipx'(x — %|ﬁt|x + ’%) of the ensemble-averaged
state p;.

Evaluating the quantum master equation (8) for the
ensemble-averaged propagation of a wave packet with momen-
tum po and exposed to a weak disorder potential, we obtain
the phase-space solution

T.@) = xo(s = Lr.g)expl-Fi(s.q)l. (1)
m

where the disorder influence is summarized by

— 2 t n
Fi(s,q) = s dq’G(q’)/ dII/ dt,
0 0

« 1 cos q,(q/—}—ZPO)lz e*iqzl%eﬁq’@*%[f*h])
2mh

"(g' —2 t - q'qt
—cos |14 = 2p0)a | e | (1b)
2mh

This is our main result and the starting point of our analysis.
The propagation equation (1) describes the averaged evolution
of the full disorder-perturbed quantum state. Note that the
propagation equation (1) is derived from the quantum master
equation (8) without further approximations and therefore is
well defined in the entire phase space.

We emphasize that the propagation equation (1) holds for
arbitrary, sufficiently well-behaved initial states xo(s,q) with
momentum width o, < po, where xo(s — %t,q) describes the
free, undisturbed propagation of the initial state; this includes,
e.g., spatially delocalized superposition states. If evaluated, we
hereafter assume, to be generic, pure, Gaussian initial states,
Yo(x) = exp [—3(2)* + § pox]/[V2r0]'/?, with i/ < po.
The characteristics of the disorder enter through the momen-
tum transfer distribution G(gq) = ﬁ f dx e 79 C(x) (see
also [16]). Note that for C(—x) = C(x) we obtain G(—q) =
G(q), which we assume throughout. While the solution (1)
holds for general two-point correlations C(x), we assume,
to be generic, Gaussian correlations for evaluations, C(x) =
Co exp[—(x/£)?], with the correlation length £. This then gives
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rise to a Gaussian momentum-transfer distribution,

ot 1(/qt\’
G(g) = %CXP [_Z(?> :| (2)

The momentum scale /1/¢ will be essential to characterizing
the disorder-induced dynamics. Note that the strength of the
disorder potential is contained in Cy.

III. BACKSCATTERING

Backscattering opposes reliable quantum state transmis-
sion and should, if possible, be strongly suppressed. While
classically not present in the limit considered (of large kinetic
energy), quantum mechanically, backscattering can happen
at any energy; correspondingly, in 1D, Anderson localization
may occur for arbitrarily weak disorder. With disorder being
the only source of backscattering here, scattering is elastic.

If we evaluate the momentum distribution P, (p) =

(plplp) = ﬁ [ds e~ 7Py ,(s,0) for the propagation equa-

tion (1) and for times %t > {,0, we can approximate (without
loss of generality pg > 0)

2mmt
Pi(p) = Po(p) + WGQPO)[PO(I) +2po) — Po(p)], (3)

where Py(p) denotes the momentum distribution of the
(unspecified) initial state. Equation (3) describes, within the
approximation, the linear-in-time buildup of a backscattering
peak at —po. However, in view of Eq. (2), we find that the
backscattering rate can, given appropriate correlations, be
exponentially suppressed, and thus, depending on the transport
task, for all practical purposes be omitted, if pol >,
or, in terms of the de Broglie wavelength % 45 = %/ pg of the
particle, 14p < €. This condition thus constitutes a benchmark
requirement for reliable quantum state transmittance. Let us
remark that similar results for backscattering rates can be
obtained with different methods [20].

Note that reproducing backscattering proves the quantum
nature of our theory, beyond semiclassical approximation.
Moreover, Eq. (3) can, similar to its stationary counterparts
[20], explain the emergence of effective mobility edges
when tailoring momentum transfer distributions with sharp
cutoffs (corresponding to long-range correlations). Evaluated
for periodic disorder, Eq. (3) reflects backscattering-free
propagation (off-resonant) and Bragg scattering (on-resonant),
respectively.

Propagation equation (1) correctly describes the onset of
the first backscattering event, while two or more scattering
processes are not included. These become relevant when
the single-backscattering peak has grown significantly in
size, opening the door to a second scattering event. While
this restriction limits the temporal validity of Eq. (1), it is
already beyond the considered regime of reliable transport,
where already single-scattering events are detrimental and the
single-backscattering peak should be small if not negligible.

IV. DECORRELATION REGIME

Hereafter, we assume that py > i/£ is fulfilled and that
backscattering is, to first order, negligible. As we now show,
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even then the disorder potential may have a significant impact
on the evolution of the quantum state.

To see this, we evaluate the moments of momen-
tum, (p")(t) = (—ih)" a;;ﬁ’ (5,0)|5=0. Specifically, we focus on
the mean momentum (p)(¢) and the momentum variance
((Ap)*)(t). In the case of free, undisturbed propagation,
the momentum distribution is time independent and thus
(pY(t) = po and, in the case of the above Gaussian initial
state, ((Ap)2)(t) = h?/(40?).

The mean momentum in the presence of a disorder
potential, as one deduces from the propagation equa-

tion (1) is described by (p)(t) = 0+;—27qu’G(q/)q’
sinc?[-LL InE L(qg" + 2po)]. Evaluating this to O( ﬁl) we obtam

with Eq. (2), (p)(1) = po — 21 — [1 4 (2)"e™ 50 .
We thus find that, in the course of a decorrelation period,
the ensemble-averaged mean momentum undergoes a shift,
which, after %t >> ¢, takes the plateau value

2m2C0

(PY(t > tm/po) = po — T “4)
Do

This shift, which has also a classical counterpart, must be
attributed to the fact that positive and negative potential
variations affect the momentum differently, giving rise to an
asymmetric distortion of the wave packet in momentum.

We define the onset of backscattering dominance as the
time f,q at which the reduction of the mean momentum
due to backscattering exceeded the decorrelation momen-
tum shift. Since backscattering affects the mean momen-
tum as (P)ps(?) = po —47rmG(2po)h’1t, we obtain f,g =
hmCol 27 py G(2po)] ™

The momentum shift is accompanied by a broadening of
the momentum variance, which, when %t > £, assumes the
plateau value

rﬂ 2m2C0
(AP )t > tm/po) = — +

®)
I

While both these disorder effects scale inversely with powers

of the momentum py, such that the momentum shift (4) is

usually negligible, the momentum broadening (5) can, as we

show next, even if tiny, potentially still have a relevant impact,

mediated by dispersion.

V. PURITY EVOLUTION

To assess the disorder-induced dephasing undergone by a
propagating wave packet, we evaluate the purity loss of the
disorder-averaged quantum state (see also [16]). If we evaluate
the purity r(t) = Tr[p(t)*] = 3% [ ds dq x,(s.9)x(—s. — q)
for solution (1), a Gaussian initial state and Gaussian correla-
tions (2), and assuming py > h/{, we can approximate, after
decorrelation (note that, in the case of purity, decorrelation
is determined by both the correlation length £ and the wave-
packet width o, i.e., pot/m > £,0),

2m CQZ

rt)=1— V2 +302+0(t)? — (6)

where 62(t) = 0> + (2’” ) describes the dispersive spreading
of a free Gaussian wave packet. Remarkably, however, it stems
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from the disorder influence in Eq. (1b). Note that a possible
backscattering contribution is neglected in this approximation;
moreover, it assumes small purity losses.

Inspecting Eq. (6), we find that in the course of a
decorrelation period, purity suffers a loss, which scales with the
disorder-induced momentum broadening, cf. Eq. (5). However,
after assuming an intermediate plateau value, a subsequent
purity decay sets in (which persists until the approximation
breaks down), indicating an increasing susceptibility to de-
phasing as the wave packet spreads dispersively. We charac-
terize the onset of the dispersion dominance by o2(t4q) = 2072,
i.e. tqq = 2mo?/h. We thus find that in order to avoid this
additional, unbound dephasing, the wave packet must not enter
the dispersion-dominated regime, i.e., the duration 7, of the
transport task must satisfy t; ~ mL/po < taa = 2mo?/h, or
iagL < 202, with L the length of the waveguide. We identify
this requirement as another benchmark condition for reliable
transmittance. Note, however, that while large wave-packet
widths o are favorable from this perspective, there is a tradeoff
with the purity loss due to decorrelation. In particular, in the
plane-wave limit, the latter dominates.

For example, we now evaluate the functioning of Mach-
Zehnder interferometers. The latter have, for instance, been
proposed for motional Bell tests with ultracold lithium atoms
[21,22]. The output probabilities in the final arms (denoted
as &) are given by prob  (¢) = %(1 + Im[(y¥|¥')e'*]), where
|¥) and |¢’) denote the wave packets entering the final beam
splitter from the long and the short arm, respectively, with |r)
acquiring an additional phase shift ¢. Optimal functioning,
i.e., maximal contrast of the interferometric modulation with
varying ¢, presupposes identical input states, |) = |¢'). Due
to disorder-perturbed propagation, however, they differ in gen-
eral. Performing the disorder average, we obtain prob_ (¢) =
2(1 + r“ sin ¢), i.e., the disorder-induced visibility reduction,
which 1ndlcates detrimental leakage between the arms, is
quantified by the purity loss of the ensemble-averaged state.

Following [21,22], let us assume that a lithium atom
propagates at vy &~ lcm/s, with Zgg ~ 1 um. To exclude
backscattering, the disorder potential (e.g., due to fluctuations
in the guiding field) should then satisfy £ > 1 um, say £ =
100 um. Moreover, the disorder amplitude must remain well
below the kinetic energy, say, 4m>C Do 421075, To limit
dispersion, we further assume o ~ /AggL/2 ~ 70 um. This
then yields, after decorrelation, a purity loss of 4%. This may
still be tolerable to obtain the required fringe contrast in the
interferometers for a successful Bell test.

VI. NUMERICAL TEST

We test our theory by comparing it to the numerically
exact evolution of the ensemble-averaged state, averaged over
K =250 disorder realizations. To this end, we propagate
(initially) Gaussian wave packets in a 1D Anderson-like model
(with lattice spacing a and hopping constant J), with Gaussian
correlations (2) (Cy = W? /12), and in the vicinity of the lower
band edge. Our system size is M = 100 sites, with periodic
boundary conditions. Note that for larger velocities, at the
limits of the quadratic-dispersion approximation, we work
with velocity-adapted masses.
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(b) ~ (DP)(?) [units of po]
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FIG. 2. Propagating wave packet exposed to a weak disorder
potential with Gaussian correlations. Shown are the time evolu-
tion of the (a) purity () and (b) mean momentum (p)(t) for
(1) strong backscattering, (ii) weak backscattering and high disper-
sion, and (iii) weak backscattering and low dispersion. We compare
the numerically exact evolution of the state, averaged over K = 250
disorder realizations (black dots), the prediction of propagation
equation (1) (blue dashed curves), and the approximations (3) and
(6), respectively (red dotted lines). In all three cases we observe an
initial purity loss due to decorrelation. The vertical, grey dashed line
indicates the termination of decorrelation for case (ii), i.e., when the
purity has reached its intermediate plateau described by Eq. (6). While
in case (i) the subsequent purity decay follows from backscattering,
in case (ii) it stems from dispersion. This is also reflected in (b),
displaying a persistent momentum decrease in (i), while remaining
stable in (ii) and (iii). Case (iii) is most robust against dephasing in
the long run.

We compare three benchmark situations: (i) strong
backscattering, g = £ with fhq ~ 3.4% (W =0.05/, 0 =
10a, £ = 2a), (ii) weak backscattering and high dispersion,
withigg = €/4,10q ~ 8.5 x 10°2 and 1gq ~ 422 (W = 0.1/,
o =5a, £ =3a), and (iii) weak backscattering and low
dispersion, with Zgg = £/4,1pq ~ 8.5 x 10°2 and 144 ~ 168%
(W =0.1J, 0 = 10a, £ =3a). In Fig. 2 we compare the
numerically exact evolution of the mean momentum and the
purity with the prediction of the propagation equation (1) and
the approximations (3) and (6).

We find that Eq. (1) correctly reproduces the disorder-
induced dynamics when taking into account statistical devi-
ations due to the moderate number (~250) of realizations.
In all three cases we observe an initial purity loss due to
decorrelation. While in case (i) the subsequent purity decay
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follows from backscattering, in (ii) it stems from dispersion.
This is confirmed by the evolution of the mean momentum,
displaying a persistent decrease in case (i), while remaining
stable in (ii) and (iii). In case (iii) the subsequent purity decay is
weakest. Thus, irrespective of the larger purity loss [compared
to (ii)] in the decorrelation period, on the long run case (iii) is
better for reliable quantum state transmittance. Let us remind
the reader that the validity of Eq. (1), which is perturbative

in Co/( p(z) / 2m)2, ceases when two or more scattering events
become relevant, i.e., beyond the scope of reliable transport.
Note that Eq. (6) underestimates the dispersion-induced
purity lost in case (ii). This is due to the neglected higher-
order corrections in /1 /(po£), which remain significant at A gg =
£/4 and the considered times close to t43q. We further remark
that the momentum shift (4), which is ~0.1%, is overlaid
by statistical fluctuations. The broadening of the momentum
variance, Eq. (5), however, is reproduced well (not shown),
yielding an increase of about (i) 20%, (ii) 6%, and (iii) 26%.

VII. COUPLED DISORDER CHANNELS

Hereafter, we introduce the coupled-disorder-channel
method, which can be used to derive the propagation equation
(1). In analogy to the coupled-channel equations used in
atomic theory to describe, e.g., the dynamical influence of
closed channels on an open channel [23-25], we derive a
set of dynamical equations describing the impact of disorder
realizations on the evolution of the ensemble-averaged state.
The following holds for arbitrary disorder configurations.

In order to obtain the desired decomposition of the
dynamics into distinct disorder channels, we represent the
state p, of each specific disorder realization in terms of
the ensemble-averaged state p and its individual offset Ap,
from tlAle latter: p, =p+ Ap.. If, in addition, we define
H. = H + V., where H = [de p. H, and [de p, V. =0,
we obtain, with the von Neumann equation, coupled evolution
equations for the ensemble-averaged state p and the offsets
Apg:

8(1) = —;—[ﬁ,ﬁ(t)] - ;— / de p [Ve. Ape(D)),  (Ta)

3 Ap.(1) = —;—[ﬁg,Apgan - %[Vs,ﬁ(t)]
+ }’—i / de’ py [V, Apa(1)]. (7b)

The corresponding initial conditions are p(t = 0) = py and
Ap:(t =0) =0,V ¢. Note that Eq. (7b) encompasses a cou-
pling between different disorder realizations, mediated by
their collective influence on the ensemble-averaged state p(¢).
Moreover, in contrast to the ensemble average p(¢), the offsets
Ap,(t) do not describe normalized quantum states.

The coupled-disorder-channel equations (7) are exact and
capture the full dynamics of the disorder ensemble, including
the time evolution of single disorder realizations. More
importantly, however, they allow us to develop systematic
approximation methods to obtain closed evolution equa-
tions for the ensemble-averaged state p(¢z). Note that the
coupled-disorder-channel equations (7) can be related to the
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Nakajima-Zwanzig projection operator technique [26-28],
generalizing the latter to the case of many irrelevant com-
ponents.

Solving Eqs. (7b) formally in the Green’s formalism yields
recursive, time-nonlocal integral representations for the offsets
Apg(t). In the perturbative limit, one derives, with Eq. (7a), a
closed, time-local quantum master equation in Lindblad form
for 7(¢), which is second order in V,:

AP = — %[ﬁeff(r>,ﬁ<r>]

2 ’ @
+ ) h—‘z / de p. fo ar £(E,51)).  (8a)
}

ae{tl

Here, £(L,p) = LpLt — %ﬂi,o - %pI:TlA,. The (in general
time-dependent) effective Hamiltonian Heg(¢) = Hgff(t) and
Lindblad operators szf‘t) are given by

~ B i ! PN
Het(1) = H — —/dSPa/ dt' [V, Ve(1))],
2h o

U R
L) = S [V + o V0], (8b)

where V,(1) = U)V.U(t)! and U(r) = exp(—i Ht /k). Note
how Eq. (8) consistently separates coherent and incoherent
contributions to the evolution. Moreover, we remark that the
o = —1 term in Eq. (8) refers to the feedback of coherence
into the system, while the corresponding incoherent process,
Izg;), only builds up slowly in time, Iz(;t):o = 0, in agreement
with the positivity of the evolution. Let us stress that taking
the limit # — oo in the integral, corresponding to a Markov
approximation, would in general not only neglect essential
disorder effects, but also lead to wrong results.

Solving the quantum master equation (8), following similar
steps as in [16], for a disorder-perturbed, but otherwise
free, material particle, yields the propagation equation (1).
To this end, it is helpful to (intermediately) switch into a
comoving frame, described by the replacement p?/2m —
p*/2m + pop/m in the averaged Hamiltonian. Solution (1)
results exactly from Eq. (8) and thus is manifestly superior to
a standard Born approximation, obtained by expanding Eq. (1)
to first order in Cy.

VIII. CONCLUSIONS

We analyzed the transport of massive quantum particles
through disorder-perturbed single-mode waveguides. To this
end, we presented the propagation equation (1), which
temporally resolves the impact of weak disorder on the
full ensemble-averaged quantum state. It is valid for kinetic
energies sufficiently large compared to the disorder strength
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and up to the second backscattering event. Propagation
equation (1) describes, within its validity range, the disorder
effects on all diagonal and off-diagonal matrix elements
or, equivalently, on state moments of any order, position,
and momentum, for arbitrary input states with the required
properties and sufficiently well-behaved disorder correlations.
In that sense, while reproducing known disorder effects, it
provides a comprehensive description of the propagation in the
presence of disorder, as it may be required in order to assess
the impact of disorder when particles function as carriers of
quantum information.

For examples, we elaborated the first two momentum
moments for Gaussian input states and Gaussian disorder cor-
relations, identifying, in the course of a decorrelation period, a
momentum reduction and a momentum broadening. This goes
along with a purity loss, which, in the dispersion-dominated
regime, persists even in the absence of backscattering. Conse-
quently, we identify two benchmark requirements for reliable
quantum state transmittance: pol/h > 1 or kg <K £ (weak
backscattering) and t; ~ mL/py < 2mo?/h or AggL < 202
(low dispersion).

We expect that our description, which accurately captures
any disorder effect, classical or quantum, in the regime of
reliable transport, may generally be relevant for devices or
experiments which rely on the precise transport of quantum
states, i.e., where details of state propagation are relevant
and a comprehensive state description is imperative. In that
sense, it may complement other established methods to treat
disordered quantum systems, e.g., based on Green’s functions.
Attractive systems for scrutiny tests are ultracold atoms in
optical waveguides [29,30], microwave waveguides [31,32],
and classical light in the paraxial approximation [33,34], which
all allow high control over disorder properties and state readout
with excellent spatial resolution.

While the perturbative master equation (8) can also be ap-
plied to a variety of other cases, such as transport in spin baths
or mobility edges in higher dimensions, the method of coupled
disorder channels (7) may also be used to systematically
derive quantum master equations beyond the perturbative limit
considered here, then possibly encompassing higher-order
disorder effects such as coherent backscattering.
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