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Probing quantum correlation functions through energy-absorption interferometry
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An interferometric technique is described for determining the spatial forms of the individual degrees of freedom
through which a many-body system can absorb energy from its environment. The method separates out the spatial
forms of the coherent excitations present at any single frequency; it is not necessary to sweep the frequency and
then infer the spatial forms of possible excitations from resonant absorption features. The system under test is
excited with two external sources, which create generalized forces, and the fringe in the total power dissipated
is measured as the relative phase between the sources is varied. If the complex fringe visibility is measured for
different pairs of source locations, the anti-Hermitian part of the complex-valued nonlocal correlation tensor
can be determined, which can then be decomposed to give the natural dynamical modes of the system and their
relative responsivities. If each source in the interferometer creates a different kind of force, the spatial forms of
the individual excitations that are responsible for cross-correlated response can be found. The technique is related
to holography, but measures the state of coherence to which the system is maximally sensitive. It can be applied
across a wide range of wavelengths, in a variety of ways, to homogeneous media, thin films, patterned structures,
and components such as sensors, detectors, and energy-harvesting absorbers.
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I. INTRODUCTION

Quantum correlation functions [1] and their related Green’s
functions play a central role in solid-state physics. They
describe dynamical behavior and reveal internal order while
preserving the exchange symmetries of the constituent parti-
cles. The Hermitian and anti-Hermitian parts of retarded cor-
relation functions describe reactive and dissipative processes,
respectively, and the anti-Hermitian parts also characterize
the fluctuations that are present when thermal systems are
observed passively [2,3]. Retarded Green’s functions are
central, through Landauer’s formalism [4], to determining
the transmissive channels available in multiport quantum
networks.

In this paper we describe a technique, called energy-
absorption interferometry (EAI), for measuring the anti-
Hermitian parts of retarded correlation functions. Once this has
been done it is possible to determine the spatial forms of the
individual coherent excitations through which a many-body
system can absorb energy from its environment: individual
plasma oscillations, current distributions, spin waves, phonon
modes, etc. Energy-absorption interferometry also allows
the spatial forms of the individual coherent excitations that
connect generalized forces of different kinds to be determined.
Previously we presented this technique solely in the context of
systems of coupled electric dipoles [5], but here we extend
the method to generalized forces and quantum correlation
functions and indeed show that it is possible to isolate the
spatial forms of excitations that are responsive to two different
kinds of force. We also explain how the modal forms of the
cross correlations between different forces and/or different
volumes can be described.

The basic idea is to excite the system under test with two
external sources and then to measure the fringe in the total
power dissipated as the relative phase between the sources
is varied. If the complex fringe visibility is measured for
different pairs of source locations and, where appropriate,
polarizations, the anti-Hermitian part of the complex-valued

nonlocal correlation tensor can be determined, which can then
be decomposed to give the natural dynamical modes of the
system and their relative responsivities.

The method separates out the spatial forms of the coherent
excitations present at any given single frequency; it is not
necessary to sweep the frequency and then infer the spatial
forms of possible excitations from resonant absorption fea-
tures. The spatial forms can in fact be found as a function
of exciting frequency or indeed any other parameter such
as, in the case of magnetic systems, applied static magnetic
field. The proposed technique is related to holography, in the
sense that a holographic system can measure the amplitude
and phase of the reception pattern of a single-mode power
detector, by illuminating the detector with a static reference
beam in addition to the scanning source field. Because EAI
scans the positions of two sources, it measures the two-point
correlation function, which is also the state of coherence to
which the system under test is maximally sensitive.

There is a wide variety of reasons why it is important to
know the allowed collective excitations of many-body systems.
In the case of electromagnetic [6–11], elastic, piezoelectric,
and acoustic sensors such as sonar [12–15], it is essential
to know the number, efficiencies, and precise forms of
the individual modes through which the device can absorb
energy. A scanned measurement with a single source can
only determine the overall power reception pattern; it cannot
determine the amplitude, phase, and polarization patterns of
the individual modes that make up the total response.

In the case of microwave and optical photon-counting
detectors for quantum communications [16–19], it is essential
to avoid, or at least terminate carefully, electromagnetic modes
that can only couple noise and stray light into the detector.
In the case of energy-harvesting components, antenna arrays,
and absorbers, including micromechanical devices [20], it
is essential to maximize the number of degrees of freedom
available for collecting power. The same considerations
apply to near-field energy and information transfer between
separated or overlapping volumes [21–23]. In the case of
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qubits for quantum computing [24,25], which may be based
on electromagnetic, spin [26,27], or mechanical [28,29]
resonators, it is essential to understand the number, nature,
and origin of the mechanisms that couple the active elements
to their passive environments, causing decoherence.

Because we describe EAI in terms of generalized conjugate
variables, it has wide applicability. It can, in principle at least,
be implemented over a wide range of wavelengths, to homoge-
neous media, thin films, nanopatterned structures, classical and
quantum metamaterials [30], and individual components and
arrays. Unlike passive observations of thermal fluctuations,
which through the fluctuation-dissipation theorem [31–33]
also contain information about correlation functions [34–37],
the method achieves high signal-to-noise ratios by driving the
system under test with external sources. Low-power sources
can be used to probe systems in near equilibrium and high-
power sources can be used probe the differential behavior of
systems in highly nonequilibrium states. The method can also
be used as a convenient tool for exploring and characterizing
the behavior of numerical many-body simulations.

II. CORRELATION FUNCTIONS

If a generalized external classical force Fn(r,t) acts on a
many-body quantum system, the change in the Hamiltonian is

Ĥe(t) =
∫
Vn

d3r Fn(r,t) · F̂n(r). (1)

The superscript n denotes a specific generalized force within
some set: electric scalar potential, magnetic vector potential,
magnetic field, elastic force, etc. Each generalized force is
associated, through (1), with a quantum observable F̂n(r) that
determines the forces contribution to the total energy. For
reasons that will become clear, the domain of integration Vn

is indicated explicitly. The domains corresponding to different
forces can be the same, overlapping, or completely disjoint.

According to Kubo [2], the expectation value of the change
in F̂m(r,t) at the space-time point (r,t) when generalized force
Fn(r′,t ′) is applied is

〈�F̂m(r,t)〉 =
∫ +∞

−∞
dt ′

∫
Vn

d3r′χ
mn

(r,t ; r′,t ′) · Fn(r′,t ′),

(2)

which is a generalized displacement. The use of different
superscripts m and n on the operator F̂m(r,t) and force Fn(r′,t ′)
indicates that mixed responses are possible, for example, a
change in magnetization when an electric field is applied or a
change in electric polarization when a magnetic field is applied.
The spatial vector components k and l of the generalized
susceptibility tensor χ

mn
(r,t ; r′,t ′) are given by the retarded

correlation functions

χmn
kl (r,t ; r′,t ′) = − i

h̄
θ (t − t ′)

〈[
F̂ mH

k (r,t),F̂ nH
l (r′,t ′)

]〉
. (3)

We will use dyadic notation, denoted by a double overline,
for spatial vector operators, which does not preclude the
possibility that one or both of the generalized forces may be
scalars. Here F̂ mH and F̂ nH are operators in the Heisenberg

picture, 〈 〉 denotes the expectation over the grand canonical
ensemble using the effective Hamiltonian, which includes
chemical potential, [ ] is the commutator, or anticommutator
where appropriate, and the step function θ (t − t ′) ensures a
causal response. Further, Fm(r,t) and 〈�F̂m(r,t)〉 form conju-
gate pairs and so the formalism is general. Kubo’s expression
provides a way of calculating macroscopic response functions
using quantum-statistical methods and therefore it contains
information about the spatial and temporal excitations allowed.

When a generalized force is applied, the expectation value
of the instantaneous rate of work done is given by

P (t) =
∫
Vm

d3r Fm(r,t) · d〈�F̂m(r,t)〉
dt

, (4)

where 〈�F̂m(r,t)〉 is the expectation value of the resultant
change in the operator on which Fm(r,t) acts. Using (2) in (4)
and allowing for two different kinds of force to be present
simultaneously, m,n ∈ 1,2, the time-averaged rate of work
done becomes

P = lim
T →∞

1

T

∫ T/2

−T/2
dt

∫ +∞

−∞
dt ′

∑
mn

∫
Vm

d3r
∫
Vn

d3r′

× Fm(r,t) · dχ
mn

(r,t ; r′,t ′)
dt

· Fn(r′,t ′). (5)

The diagonal terms m = n give the powers dissipated by the
forces individually, whereas the off-diagonal terms m �= n

arise because the application of one force can result in a
perturbation of the quantum observable associated with the
other force. In some cases, the time averaging, over T ,
should be replaced by a convolution integral representing
postmeasurement filtering.

Often, we are only interested in probing self-correlations
χ

mm
(r,t ; r′,t ′), for example, electric or magnetic susceptibil-

ity. Sometimes, we are interested in measuring cross correla-
tions χ

mn
(r,t ; r′,t ′), for example, ferroelectric susceptibility.

One can never measure all correlations associated with all
possible physical variables and so it will be necessary to extract
subspaces corresponding to the quantities of interest.

We use the spectral decomposition for the susceptibility
tensor

χ
mn

(r,t ; r′,t ′) = 1

(2π )2

∫ +∞

−∞
dω

∫ +∞

∞
dω′

×χ
mn

(r,ω; r′,ω′) exp[−iωt] exp[+iω′t ′]

(6)

and require that the applied forces are time harmonic

Fn(r,t) = Fn
0(r) exp[−iω0t] + Fn∗

0 (r) exp[+iω0t]. (7)

For presentational simplicity, assume that the Hamiltonian of
the unperturbed system is constant so that the correlation
function depends only on time differences χ

mn
(r,r′,t −

t ′) ≡ χ
mn

(r,t ; r′,t ′) and the spectral representation becomes
diagonal χ

mn
(r,ω; r′,ω′) = χ

mn
(r,r′,ω)2πδ(ω − ω′). In this
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case, (5) becomes

P = −iω0

∑
mn

∫
Vn

d3r
∫
Vn

d3r′ lim
T →∞

1

T

∫ T/2

−T/2
dt

{
Fm

0 (r) · χ
mn

× (r,r′,ω0) · Fn
0(r′) exp[−i2ω0t]

− Fm∗
0 (r) · χ

mn
(r,r′, − ω0) · Fn∗

0 (r′) exp[+i2ω0t]

− Fm
0 (r) · χ

mn
(r,r′, − ω0) · Fn∗

0 (r′)

+ Fm∗
0 (r) · χ

mn
(r,r′,ω0) · Fn

0(r′)
}
. (8)

For long integration times T → ∞, the first two terms
disappear and

P = −iω0

∑
mn

∫
Vm

d3r
∫
Vn

d3r′

× {
Fm∗

0 (r) · χ
mn

(r,r′,ω0) · Fn
0(r′)

− Fm
0 (r) · χ

mn∗
(r,r′,ω0) · Fn∗

0 (r′)
}
, (9)

where we have used χ
mn

(r,r′, − ω0) = χ
mn∗

(r,r′,ω0).
Each term is a scalar and so the transpose can be taken

without changing the result. Taking the transpose of the second
term and swapping the dummy variables m and n, and r and
r′, gives

P = 2ω0

∑
mn

∫
Vm

d3r
∫
Vn

d3r′

× Fm∗
0 (r) · D

mn

(r,r′,ω0) · Fn
0(r′), (10)

where

D
mn

(r,r′,ω0) =
[

χ
mn

(r,r′,ω0) − χ
nm†

(r′,r,ω0)

2i

]
. (11)

Here χ
nm†

(r′,r,ω0) is the adjoint of χ
mn

(r,r′,ω0) and

D
mn

(r,r′,ω0) is the anti-Hermitian part of the susceptibility
tensor, rendered Hermitian by the factor i in the denominator.
Equation (10) is the average dissipated power when the spatial
response is nonlocal and the temporal response is stationary.
It reduces to well-known expressions in the appropriate limits,
for example, spatial shift invariance.

Suppose that each applied classical force is itself a statistical
quantity defined over an ensemble. Equation (10) is a scalar
and so taking the trace on both sides, rotating Fm∗

0 (r) to the
right, and then calculating the classical average 〈 〉 gives

〈P 〉 = 2ω
∑
mn

∫
Vm

d3r
∫
Vn

d3r′

× D
mn

(r,r′,ω)·· F
nm†

(r′,r,ω), (12)

where the double-dot notation is used to denote the contraction

of the vectorial parts of the tensors. Here F
nm†

(r′,r,ω) =
〈Fn

0(r′)Fm∗
0 (r)〉 is a tensor field that describes the spatial state of

coherence of the applied generalized forces. Strictly, (12) is the
average absorbed power when the applied forces are described
in terms of slowly varying analytic signals [38]. For broadband

FIG. 1. Energy-absorption interferometer. Two phase-locked
sources produce generalized forces Fm

01,js(r) and Fn
02,j ′s′ (r). The

time-averaged total power displays a fringe as the differential phase
φ is varied. The complex visibilities for different source locations

enable the complex-valued system response tensor D
mn

(r,r′) to be
determined.

forces, (12) is a spectral power and should be integrated
over ω.

Equation (12) shows that the total dissipated power is
given by the full contraction of two tensor fields to a scalar,
one of which characterizes the ability of the many-body
system to absorb energy and the other characterizes the spatial
state of coherence of the applied forces. Equation (12) is
formally an inner product in a mixed tensor space and so
the measured power is given by the projection of a tensor that
describes the state of coherence of the applied forces onto
a tensor that describes the state of coherence to which the
system is maximally receptive. This point will be discussed
later.

III. ABSORPTION INTERFEROMETRY

A. Self-correlations

Consider the situation where two external, coherent, phase-
locked sources of the same kind, n = m = 1, are used to excite
a system. In Fig. 1,

F1
0(r) = F1

01,js(r) + F1
02,j ′s ′ (r) exp[iφ],

F2
0(r) = 0. (13)

Here F1
01,js(r) is the vector force produced by the first source,

denoted by the first subscript, when it is placed at sample
position j and in polarization state s, for example, an electric
or magnetic dipole. In addition, F1

02,j ′s ′ (r) is the same quantity
for the second source, but now its relative phase φ can be varied
by the experimenter. In this case, F2

0(r) = 0 because there are
no sources of the second kind.

022131-3



S. WITHINGTON, C. N. THOMAS, AND D. J. GOLDIE PHYSICAL REVIEW A 96, 022131 (2017)

FIG. 2. Fringe in the dissipated power P js,j ′s′ as the relative phase
between sources φ is varied. The average is given by the sum of the
powers dissipated by the sources individually 2ω0(D11

js,js + D11
j ′s′,j ′s′ ),

the height of the fringe is given by the magnitude of the cross
correlation 4ω0|D11

js,j ′s′ |, and the phase of the fringe is given by the
phase of the cross correlation θjs,j ′s′ .

Because the external sources are fully coherent and phased
locked, the dissipated power is given by (10),

P js,j ′s ′ = 2ω0

∫
V1

d3r
∫
V1

d3r′{F1∗
01,js(r) · D

11

× (r,r′,ω0) · F1
01,js(r

′)

+ F1∗
02,j ′s ′ (r) · D

11
(r,r′,ω0) · F1

01,js(r
′) exp[−iφ]

+ F1∗
01,js(r) · D

11
(r,r′,ω0) · F1

02,j ′s ′ (r′) exp[iφ]

+ F1∗
02,j ′s ′ (r) · D

11
(r,r′,ω0) · F1

02,j ′s ′ (r′)
}
, (14)

which follows because only one term is present in the sum
over m and n. The domains of integration are now the same.

Here D
11

(r,r′,ω0) is Hermitian and so the first and last terms
are real and independent of the phase difference between the
sources. The first term is the total power absorbed from the
source at position j and in polarization s, whereas the last
term is the total power absorbed from the source at position
j ′ in polarization s ′. The second and third terms are complex
scalars and the complex conjugates of each other.

The dissipated power can be written

P js,j ′s ′ = 2ω0
[
D11

js,js + D11
j ′s ′,j ′s ′

+ 2
∣∣D11

js,j ′s ′
∣∣ cos(φ + θjs,j ′s ′ )

]
, (15)

where |D11
js,j ′s ′ | and θjs,j ′s ′ are the amplitudes and phases of

D11
js,j ′s ′ =

∫
V1

d3r
∫
V1

d3r′

× F1∗
01,js(r) · D

11
(r,r′,ω0) · F1

02,j ′s ′ (r′), (16)

which are the matrix elements of the dissipative part of the
susceptibility tensor in the vector space, strictly the dual space,
of the sources. As the phase is varied, the dissipated power
displays a fringe (Fig. 2), which gives the complex matrix
elements. In practice, it is not necessary to sweep out each

fringe explicitly, but it is sufficient to switch between two
states φ = 0 and φ = π/2 to record the real and imaginary
parts of the matrix element directly. In experimental work, we
have found it convenient to run the sources at slightly different
frequencies and then to use a lock-in amplifier to measure the
real and imaginary parts of the modulation directly [39].

If the fringe is recorded for enough source locations and
polarization states, the complex-valued response tensor can
be found in the vector space of the sources. Suppose that
the sources are moved throughout some scanning region,
volume, or surface, leading to a total of K sample positions
and polarizations. The impressed forces then form a basis
F = {F0,k(r)∀k ∈ 1, . . . ,K}, where different k correspond to
different combinations of j and s. The resulting basis is
general: It is not necessary to use the same polarization
states, or indeed orthogonal polarization states, at the sample
positions, which helps devise simple scanning strategies.

In cases where the sources produce pointlike unidirectional
forces, say, mechanical probes,

F1
01,js(r) = F 1

01,sδ(r − rj )x̂s ,

F1
02,j ′s ′ (r) = F 1

02,s ′δ(r − rj ′ )x̂s ′ (17)

can be substituted into (16) to yield

D11
js,j ′s ′ = F 1∗

01,sD
11
ss ′

(
rj ,r′

j ′ ,ω0
)
F 1

02,s ′ (18)

and the experiment measures directly the corresponding vector
component of the spatial response tensor at the positions of the
sources. The spatial coherence function can be traced out by
moving the probes.

At the other extreme, where the sources provide spatially
uniform forces in orthogonal directions, as in the case of the
magnetic fields produced by orthogonal Helmholtz pairs,

F1
01,s(r) = F 1

01,s x̂s ,

F1
02,s ′ (r) = F 1

02,s ′ x̂s ′ . (19)

Equation (16) then gives

D11
s,s ′ = F 1∗

01,s

{ ∫
V1

d3r
∫
V1

d3r′D11
ss ′ (rj ,r′

j ′ ,ω0)

}
F 1

02,s ′ , (20)

which shows that fringes are formed in the total dissipated
power as the phase between the fields, currents in the
orthogonal Helmholtz pairs, is varied. As will be seen later,
this allows the directional forms of the individual degrees of
freedom that make up the total, spatially integrated, directional
response to be determined.

In general, the basis functions are neither orthogonal nor
uniform over V1, for example, the sampling fields produced by
a scanned electric or magnetic dipole. The spatial susceptibility
tensor must then be reconstructed through

D
11

(r,r′,ω0) ≈
∑
k,k′

D11
k,k′ F̃1

01,k(r)̃F1∗
02,k′ (r′), (21)

where F̃1
01,k(r) is the dual of F1

01,js(r). The dual set F̃ =
{̃F0,k(r)∀k ∈ 1, . . . ,K} can be found numerically (discussed
later) once the functional forms of the impressed force are
known. This scheme applies even if the two sources in the
interferometer do not produce the same force distributions,
say, because they are not identical.
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The source fields and their duals span the same vector space.
Equation (21) may, however, be an approximation because it
is not generally known whether F is complete, overcomplete,
or undercomplete with respect to the degrees of freedom in

D
11

(r,r′,ω0). Reconstruction using the dual functions covers
all possibilities, giving the orthogonal metric projection when
the basis is undercomplete. The process of reconstructing

D
11

(r,r′,ω0) using the dual set F̃ amounts to “deconvolving”
the probe field patterns from the measurements.

B. Cross correlations

In some cases, the primary need is to determine the response
tensor corresponding to two different kinds of generalized
force. Interferometry is then carried out using two different
kinds of source

F1
0(r) = F1

01,js(r),

F2
0(r) = F2

02,j ′s ′ (r) exp[iφ] (22)

and (10) becomes

P js,j ′s ′ = 2ω0

∫
V1

d3r
∫
V1

d3r′F1∗
01,js(r) · D

11

× (r,r′,ω0) · F1
01,js(r

′)

+
∫
V2

d3r
∫
V1

d3r′F2∗
02,j ′s ′ (r) · D

21

× (r,r′,ω0) · F1
01,js(r

′) exp[−iφ]

+
∫
V1

d3r
∫
V2

d3r′F1∗
01,js(r) · D

12

× (r,r′,ω0) · F2
02,j ′s ′ (r′) exp[iφ]

+
∫
V2

d3r
∫
V2

d3r′F2∗
02,j ′s ′ (r) · D

22

× (r,r′,ω0) · F2
02,j ′s ′ (r′). (23)

The first and last terms are the powers dissipated by the two
sources individually, into their respective loss mechanisms.
The second and third terms lead to a fringe, which only exists
when there is a cross coupling in the system. Notice the mixed
domains on the integrals. The dissipated power can be written

P
12
js,j ′s ′ = 2ω0

[
D11

js,js + D22
j ′s ′,j ′s ′

+ 2
∣∣D12

js,j ′s ′
∣∣ cos(φ + θjs,j ′s ′ )

]
. (24)

We have used the fact that the overall tensor D(r,r′,ω0)

is Hermitian, from which it follows that D
12

(r,r′,ω0) =
D

21†
(r′,r,ω0), which is Onsager’s reciprocity [40]. It follows

that D12
js,j ′s ′ = D21∗

j ′s ′,js . The complex visibility of the observed
fringe gives the real and imaginary parts of D12

js,j ′s ′ , which are
the matrix elements of the cross response tensor in the basis
of the source fields

D12
js,j ′s ′ =

∫
V1

d3r
∫
V2

d3r′

× F1∗
01,js(r) · D

12
(r,r′,ω0) · F2

02,j ′s ′ (r′). (25)

The matrix elements in this case are evaluated with respect to
two different vector spaces, not least because V1 and V2 can
be different. The cross response tensor is then reconstructed
through

D
12

(r,r′,ω) ≈
∑
k,k′

D12
k,k′ F̃1

01,k(r)̃F2∗
02,k′ (r′), (26)

where F̃
n

is the dual set of Fn, over the appropriate domain.
In summary, interferometry can be used to find the matrix

elements of the anti-Hermitian part of the generalized suscep-
tibility tensor in the vector space of the field patterns of the
applied forces. Dual functions can then be used to reconstruct
the response tensor in the space domain. One may only be
interested in the spatial correlations corresponding to one kind
of force, in which case it is sufficient to carry out an experiment
with two sources of the same kind, or one may be interested
in finding the spatial correlations corresponding to two kinds
of force, in which case it is possible to use two different kinds
of source. Two different sources create fringes that isolate
and extract information relating to cross-correlated response.
The connection with quantum correlation functions is clear:
An excitation at one point space may propagate to a different
point in space at some later time and therefore block a second
excitation, perhaps involving a different kind of force, which
would otherwise be allowed.

IV. RESPONSE TENSOR DECOMPOSITION

What information is contained in the susceptibility tensor
and how many degrees of freedom need to be found? The
susceptibility tensor and force correlation tensor are, by
definition, Hermitian when considered over all variables:
position, polarization, and type. The response tensor only
appears as the kernel of an integral equation (10) and so it
is appropriate to look for a discrete decomposition. It can

be shown that a tensor field D
mn

(r,r′) is a Hilbert-Schmidt
decomposition [41] if

∑
mn

∫
Vm

d3r
∫
Vn

d3r′D
mn

(r,r′)·· D
nm†

(r′,r) < ∞. (27)

Every physical system must satisfy this condition. Accord-

ing to (11), D
mn

(r,r′) comprises a forward and time-reversed
process, both of which map a set of generalized forces onto a
set of responsive perturbations. Because there is only a finite
number of physical degrees of freedom available for effecting
this mapping, (27) follows. Equivalently, the response tensor
has a finite coherence volume, wherever it is measured, and the
system occupies a finite region and therefore there is a finite
number of degrees of freedom available. A truly local response
having the form δ(r − r′) is not physically possible because
there would be an infinite number of degrees of freedom in
every finite volume. A similar condition holds for the force
correlation tensor∑

mn

∫
Vm

d3r
∫
Vn

d3r′ F
mn

(r,r′)·· F
nm†

(r′,r) < ∞. (28)
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Because any physical system must satisfy (27) and any
realizable force must satisfy (28), the following Hilbert-
Schmidt decompositions exist:

D
mn

(r,r′) =
∑

i

αidm
i (r)dn∗

i (r′), (29)

F
mn

(r,r′) =
∑

j

βj fm
j (r)fn∗

j (r′). (30)

The basis set {dm
i (r)∀i ∈ 1, . . . ,∞} spans fields of type m =

1,2 over the domains V1 and V2, respectively. The same is
true of {fm

i (r)∀i ∈ 1, . . . ,∞}. However, orthogonality is only
guaranteed over the whole of the vector space, including the
sum over m: ∑

m

∫
Vm

d3r dm
i (r) · dm∗

j (r) = δij , (31)

which is undesirable in some circumstances, as will be
discussed. The integrals in (27) can be evaluated by substi-
tuting (29) and using the orthogonality condition (31). This
process gives

∑
i α

2
i and therefore (27) essentially states

that the number of channels for absorbing power is limited.
Likewise, (28) states that the number of channels available
in the source that can do work is limited. For all systems, the
eigenvalue spectrum αi tends rapidly to zero as some threshold
value of i is exceeded and only a finite number of degrees of
freedom need to be found when carrying out interferometry.

Equations (29) and (30) can be substituted into (12) to give

〈P 〉 = 2ω
∑
ij

αiβj

∑
m

Sm
ij

∑
n

Sn∗
ij︸ ︷︷ ︸

tij

, (32)

where

Sm
ij =

∫
Vm

dm
i (r) · fm∗

j (r) d3r. (33)

Equation (32) describes power absorption in terms of a
scattering process tij that projects the natural modes of the
forces, having weightings βj , onto the natural modes of the
system, having responsivities αi . When the system is driven
by an incoherent superposition of its natural modes tij = δij

and the system is maximally responsive with respect to spatial
variations in the force.

Equations (29) and (30), where a single set of basis func-
tions spans both domains, are the most suitable decompositions
in many cases. For example, if m = 1 corresponds to an
electric field and m = 2 to a magnetic field, then these would
be correlated if an electromagnetic wave is incident on the
system. In this case, the diagonal block terms m �= n should

be retained in F
mn

(r,r′). Alternatively, the impressed field
may, for example, comprise a physical force and magnetic
vector potential, in which case the two generalized forces can
be regarded as independent and the block off-diagonals are not
needed. Later we will discuss the situation where one force is
a scalar and the other a vector, as in the case of the electric
scalar potential and magnetic vector potential.

Rather than using (29) and (30), there is a different
approach, which seems better suited to decomposing data
when only part of the susceptibility tensor is measured.

Because (27) and (28) hold, the individual terms under the sum
must also be Hilbert-Schmidt decompositions and because the
block-diagonal terms m = n are each Hermitian, they can be
diagonalized separately:

D
mm

(r,r′) =
∑

i

αm
i dm

i (r)dm∗
i (r′), (34)

F
mm

(r,r′) =
∑

j

βm
j fm

j (r)fm∗
j (r′). (35)

In this case, {dm
i (r)∀i ∈ 1, . . . ,∞} forms a complete orthonor-

mal basis overVm. Different orthogonal basis sets are therefore
generated for the two domains. The same is true of the force
basis {fm

i (r)∀i ∈ 1, . . . ,∞}.
Consider what happens when only one kind of force is

present, say, m = n. Substituting (34) and (35) into (12) gives

〈P 〉 = 2ω
∑
ij

αm
i βm

j

∣∣Sm
ij

∣∣2
. (36)

Equation (35) describes the partially coherent generalized
force in terms of an incoherent superposition of fully coherent
fields, with weighting factors βm

j . These are the natural modes
of the illumination, as introduced in the context of optics by
Mandel and Wolf [38]. Equation (34) describes the absorptive
response in terms of a set of orthogonal modes, each having
responsivity αm

i . According to (36), the natural modes of
the force scatter, with efficiencies |Sm

ij |2, into the modes to
which the system is responsive. This representation constitutes
the coupled-mode model [6,7] of power absorption. Again,
maximum coupling is achieved when the modes of the field
match those of the system, over the appropriate domain, which
defines the state of coherence to which the system is maximally
receptive as the spatial form of the impressed field is varied.

If the system responds in an entirely local way D
mm

(r,r′) =
D

mm

0 (r)δ(r − r′), a Hilbert-Schmidt decomposition does not
exist, but (12) still results in finite power, because the number
of channels available for absorbing power is limited by the
smoothness of the impressed force. Because, in this case,
the natural modes of the system span any force distribution
over Vm, it behaves as a near-perfect absorber the generalized
equivalent of a “light bucket.”

Now consider the case where two different kinds of force
are present simultaneously. In order to calculate the absorbed
power, it is necessary to calculate the Hilbert-Schmidt decom-
position of the cross terms m �= n:

D
mn

(r,r′) =
∑

i

αmn
i dm′

i (r)dn′∗
i (r′), (37)

F
mn

(r,r′) =
∑

j

βmn
j fm′

j (r)fn′∗
j (r′). (38)

Primes have been used to indicate that the natural basis
functions that describe the cross response may be different
from those that describe the self-response. Equations (37)
and (38) have the forms needed to ensure that the overall
response tensor is Hermitian. Equation (38) describes the cross
correlations in terms of an incoherent superposition of fully
coherent field pairs. In other words, for every basis function
in the domain [V1,f1′

j (r)] there is a unique associated basis
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FIG. 3. Two domains corresponding to two different generalized
forces. They may be fully separated, partially overlapping, or the
same. The dissipative response in domain V1 is spanned by the
orthonormal collective excitations d1

i (r) having responsivities α1
i .

The dissipative response in domain V2 is spanned by the orthonormal
collective excitations d2

i (r) having responsivities α2
i . The cross-

correlated response between the two domains is described by the
function pairs d1′

i (r) and d2′∗
i (r′) with relative weightings α12

i .

function in [V2,f2′
j (r)]. These basis functions are in one-to-one

correspondence, revealing generalized force distributions in
the two domains that are mutually fully coherent and uniquely
related. For example, one might correspond to an electric
field and the other to a magnetic field. The Hilbert-Schmidt
decomposition of the off-diagonal block n �= m therefore
describes the cross correlations between two different vector
spaces as a weighted linear combination of field pairs.
This approach generalizes Wolf’s formalism to include cross
correlations between different vector spaces.

The same decomposition can be carried out on the suscepti-
bility tensor. The reason for decomposing the on-diagonal and
off-diagonal blocks individually is that it is only necessary
to carry out partial interferometric measurements, say, using
two sources of the first kind, two of the second kind, or one
of each, in order to reveal collective behavior. It should also
be appreciated that the force can be described in terms of
one scheme, say, (30), and the system in terms of the other,
say, (34) and (37), and (12) still returns the correct result for
the absorbed power.

The process of decomposing the self-subspaces and cross
subspaces can be summarized as[ ∑

i α
1
i d1

i (r)d1∗
i (r′)

∑
i α

12
i d1′

i (r)d2′∗
i (r′)∑

i α
21
i d2′

i (r′)d1′∗
i (r)

∑
i α

2
i d2

i (r)d2∗
i (r′)

]
, (39)

which is shown schematically in Fig. 3. The top left block
in (39) corresponds to the decomposition obtained when
interferometric measurements are made using sources of
type 1 only. The Hilbert-Schmidt decomposition, which is
a diagonalization in this case, gives the individual natural
modes through which the structure can absorb power from
a partially coherent force of type 1; the eigenvalues are
the associated responsivities. In addition, the bottom right

block can be measured and decomposed in the same way,
giving a full description of the system’s ability to absorb
power from a partially coherent source of type 2. If only the
off-diagonal blocks in (39) are measured, the Hilbert-Schmidt
decomposition describes a cross-correlated response.

An interesting question is how the functions dm
i (r) and

dm′
i (r) relate to each other. Ordinarily it might be expected

that the modes responsible for absorbing power from the
sources individually are the same as the modes responsible
for modulating the behavior when two different kinds of force
are applied simultaneously: In other words, dm

i (r) and dm′
i (r)

are the same. The real elements on the leading diagonal of the
whole tensor account for all energy dissipation mechanisms
present. The off-diagonal blocks account for work done by
one kind of force on the conjugate variable associated with the
other source and therefore account for the modulation in the
dissipated power when sources of two kinds are present. They
do not represent power dissipation mechanisms in their own
right and certainly the absorbed power, given by (20), cannot
become negative as the phase between the interferometric
sources is varied.

The terms D
11

(r,r′) and D
22

(r,r′) have null spaces cor-
responding to those force distributions that cannot dissipate
power in the system. In other words, the αm

i tend rapidly to
zero above some critical index Im

c . Likewise, the α12
i tend

rapidly to zero above some critical index I 12
c . The null spaces

of the off-diagonal blocks span at least the null spaces of
the diagonal blocks, and Im

c � I 12
c , which can lessen the

amount of experimental work needed if the whole tensor is
measured. In fact, the sampling strategy can be chosen to
ensure that any cross correlations present will be found. The
natural basis functions dm

i (r) and dm′
i (r) do not have to be

the same, but the dm
i (r) must span the dm′

i (r). The cross-
correlated response can be described in terms of the modes
of the self-correlations. Ultimately, the precise relationship
between the decompositions depends on the nature of the
physical system being studied. To keep the analysis general,
we prefer to calculate the natural modes in the two domains
on the basis of the diagonal blocks, giving dm

i (r), and then to
project the natural modes of the cross correlations dm′

i (r) onto
those basis sets to look for spatial relationships between the
self-correlations and cross correlations.

To this point, we have assumed that both generalized forces
are vector fields, but consider what happens when one force is
a scalar and the other a vector. The overall generalized force is
then described by a four-vector. In the case of an electric scalar
potential and a magnetic vector potential, the use is clear. For
any general four-vector, the block decomposition becomes[ ∑

i α
1
i di(r)di(r′)

∑
i α

12
i d ′

i(r)d′∗
i (r′)∑

i α
21
i d′

i(r
′)d ′∗

i (r)
∑

i α
2
i di(r)d∗

i (r′)

]
. (40)

The top left block, which is spanned by the scalar functions
{di(r)∀i ∈ 1, . . . ,∞} over the domain V1, completely charac-
terizes the response to the scalar force alone. The bottom right
block, which is spanned by the vector functions {di(r)∀i ∈
1, . . . ,∞} over the domain V2, completely characterizes the
response to the vector force alone. The off-diagonal blocks
describe spatial cross correlations between the scalar and
vector fields. In other words, there are certain scalar fields that
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map in one-to-one correspondence with certain vector fields
and these characterize the spatial forms of the interactions in
the system.

V. SCATTERING

It is common practice to describe microscopic solid-state
behavior using quantum correlation functions and then to
wrap the solid-state behavior in a classical scattering model to
describe macroscopic behavior. Often, the quantum correlation
function is determined for an infinitely large system and the
boundary effects of a real sample are introduced through
scattering. For example, the dielectric properties of a material
may be calculated by using Kubo’s formula and then the
susceptibility used in an electromagnetic model based on
Maxwell’s equations [42]. For physically small systems, this
distinction is not possible. Ultimately, the boundary between
the two regimes depends on which interactions are included
in the Hamiltonian. Another example is when classical dipolar
interactions are used as the mediating force in spin waves, but
the individual precessing elements are quantized.

In the context of interferometry, scattering is important
because it determines the degree to which one can gain access
to the intrinsic properties of a material. For example, when
measuring the intrinsic properties of a magnetic material it
is desirable to correct for the demagnetization field, or when
trying to determine the bulk electromagnetic properties of a
material, it is necessary to correct for skin depth. Similar issues
arise in acoustics, where the boundary conditions at the edges
of the sample must be included.

In the case of sensors, there is an important relationship
between the coherence length of the intrinsic solid-state
absorption mechanism and the physical size of the absorber in
determining the number and form of the degrees of freedom
available for absorbing power. As the physical size approaches
the intrinsic coherence length, the number of degrees of
freedom and their individual efficiencies decrease rapidly,
which has implications for many applications such as far-
infrared sensors and near-field radiative heat transfer between
nanoscale structures.

In order not to hide the central message, we will consider
scattering in the case where only one type of force is present,
but the extension to two forces is straightforward. Suppose that
the generalized force at r has two parts

F(r) = Fe(r) + Fs(r), (41)

where Fe(r) is the applied external force and Fs(r) is the
additional generalized force that results from scattering. Here
we will assume that scattering occurs as a result of the
perturbation of the system itself, but situations where scattering
occurs as a consequence of some external body can be covered
by the same formalism.

The scattered field, which is the field reradiated by excited
elements in the system, is a linear function of the external field
and therefore the total field is a linear function of the external
field

F(r) =
∫
V

d3r′G(r,r′) · Fe(r′), (42)

where G(r,r′) is the appropriate dyadic scattering kernel. The
integral is taken over the volume of the sample and so the
scattering kernel does not take into account the propagation
of the impressed field from the source position to the sample.

Here G(r,r′) is intrinsic to the sample, accounting for sample-
dependent effects. Equation (42) is quite general and the
appropriate operator can be found by either analytical or
numerical means. In electromagnetism it gives rise to the
so-called electric-field integral equation and the magnetic-field
integral equation [42].

Using the total field from (42) in (10) gives

〈P 〉 = 2ω

∫
V

d3r′
∫
V

d3rK(r,r′,ω)·· F
e†

(r′,r,ω), (43)

where

K(r,r′,ω) =
∫
V

d3s′
∫
V

d3s

× G
†
(r,s,ω) · D(s,s′,ω) · G(s′,r′,ω) (44)

is the response dyadic of the complete sample. We call

K(r,r′,ω) the response dyadic of the sample, because it
describes the state of coherence of the field to which the
whole sample is sensitive. The natural modes of K(r,r′,ω)
give the amplitude, phase, and polarization patterns of the
individual channels through which the whole sample can
absorb energy from a generalized force, taking into account
internal scattering. Often, say, in the case of a detector,

K(r,r′,ω) is all that is needed to characterize behavior.

Equation (44) shows that G(s′,r′,ω) acts as a filter that
wraps around the intrinsic response and limits the amount
of spatial information available. This interpretation follows

because G(s′,r′,ω) is an operator having a finite throughput.
It limits the degrees of freedom available for absorbing
power and equally it limits the information that can be de-
termined about the intrinsic absorption mechanism described

by D(s,s′,ω).

The term G(s,r,ω) contains the full susceptibility dyadic,
including the nondissipative part, and rarely can it be decon-
volved from a measurement. For example, if one or both of

the points s and s′, in D(s,s′,ω), is deep inside a sample,
deeper than the skin depth, it is not possible to determine
information about the deep spatial structure by carrying out
external measurements. The degree to which screening is an
obstacle depends on what the experimenter wants to achieve.
Sometimes, say, in the case of detector characterization, it is
sufficient to know the response dyadic of the overall sample,
and only the parts that are accessible to external influences
can contribute to the absorption process and nothing else is of
importance. Sometimes the objective is to measure the intrinsic
nonlocal susceptibility of the material, and then the sample
geometry and scanning strategy must be chosen in accordance
with the particular need.

VI. THE k-DOMAIN FORMULATION

When calculating quantum correlation functions, it is
common practice to cast the Hamiltonian into the wave-vector
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k domain; for example, potential functions are often easier
to describe in the k domain than in the space domain. One
advantage is that for translationally invariant systems, which
require the system to have infinite extent, the response function
can be written solely in terms of a single k variable. As
discussed, it is possible, often desirable, to calculate the
intrinsic properties of a system having infinite extent and then
to take into account the finite size of the actual sample through
a classical scattering analysis [42]. The important point is that
response functions are often expressed in the k domain and so
it is desirable to describe EAI in the k domain.

We will use the k-domain representation of the response
tensor

D
mn

(r,r′,ω) = 1

(2π )3

∫ +∞

−∞
d3k

1

(2π )3

∫ +∞

−∞
d3k′

× D
mn

(k,k′,ω) exp[−ik · r] exp[+ik′ · r′]

(45)

and a similar expression for the force correlation tensor

F
mn

(r,r′,ω) = 1

(2π )3

∫ +∞

−∞
d3k

1

(2π )3

∫ +∞

−∞
d3k′

× F
mn

(k,k′,ω) exp[−ik · r] exp[+ik′ · r′].

(46)

Substituting (45) and (46) in (12) gives

〈P 〉 = 2ω
∑
mn

1

(2π )3

∫ +∞

∞
d3k

1

(2π )3

∫ +∞

∞
d3k′

× D
mn

(k,k′,ω)·· F
nm†

(k′,k,ω). (47)

The total power absorbed again takes the form of the contrac-
tion of two tensor fields to a scalar, but now the contraction is
carried out in the k domain.

In the case of an interferometric measurement (Fig. 4),
where the sources are fully coherent, (47) can be written

P = 2ω0

∑
mn

1

(2π )3

∫ +∞

∞
d3k

1

(2π )3

∫ +∞

∞
d3k′

× Fm∗(k,ω0) · D
mn

(k,k′,ω0) · Fn(k′,ω0). (48)

The matrix elements of the response tensor are now calculated
in the k domain. In those cases where the sources produce
plane waves, an interferometric measurement records specific
elements of the k-domain response tensor directly. If the
Hamiltonian is shift invariant, the response tensor has the form

D
mn

(k,k′,ω0) = (2π )3 D
mn

0 (k,ω0)δ(k − k′), which indicates
an infinitely small correlation angle, and (48) becomes

P = 2ω0

∑
mn

1

(2π )3

∫ +∞

∞
d3k

× Fm∗(k,ω0) · D
mn

0 (k,ω0) · Fn(k,ω0). (49)

Only a single source is needed to scan the angular response.
All structures have finite size, however, and regardless of
whether this is included in the Hamiltonian or as a classical

FIG. 4. Energy-absorption interferometer. Two phase-locked
sources produce generalized forces Fm

01,js(k) and Fn
02,j ′s′ (k′). The

time-averaged total power displays a fringe as the differential phase
φ is varied. The complex visibilities for different source locations

enable the complex-valued system response tensor D
mn

(k,k′) to be
determined in the k domain.

scattering process, the effect is to create an angular response
having a finite coherence angle. In the case of plane-wave
far-field measurements, the smallest feature that can be
resolved is determined by the wavelength of the impressed
field, which together with restrictions on the polarization
effectively induces angular correlations in the response tensor
of the field [43,44] and of the sample. We will not elaborate on
these issues here. In the context of sensors, the interferometric
method measures the far-field angular response tensor, which
can then be decomposed to give the amplitude, phase,
polarization patterns, and responsivities of the individual fully
coherent “antenna patterns” through which the sample can
absorb power.

The k-domain formulation is similar to aperture synthesis
interferometry used in astronomy [45], but the process is
carried out in absorption rather than in emission. In astronomy,
the Fourier components of the sky brightness distribution are
measured, using the fact that the projected relative separation
between the telescopes varies as the earth rotates. Great care
is taken to ensure that the telescopes are positioned in such
a way that the Fourier components are sampled fully for a
given class of source. In EAI, each pair of sources impresses
a certain Fourier field having some orientation. As the
differential phase is varied this impressed Fourier modulation
shifts along its length. One is therefore measuring the real
and imaginary parts of a Fourier component of the system’s
ability to absorb energy. Numerous elegant experimental and
data processing techniques have been developed for aperture
synthesis astronomy and we believe that many of these these
can be adapted to energy-absorption interferometry.
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VII. DATA ANALYSIS

It is valuable to describe a numerical implementation of
the proposed scheme, both from the perspective of simulating
data and also from the perspective of analyzing results. The
system of interest may intrinsically comprise a collection of
discrete elements or it may be divided into sample volumes, in
much the same way as the discrete dipole approximation [46].
Let fem ∈ C3J be a column vector containing the complex
amplitudes of the Cartesian components of applied force m at
the positions of the J sample points. If two kinds of force are
present simultaneously, the absorbed power is given by

P = 2ω0

∑
mn

fem†Dmnfen

= 2ω0

∑
mn

Tr[fem†Dmnfen],

〈P 〉 = 2ω0

∑
mn

Tr[DmnNnm†], (50)

where Nnm† = 〈fenfem†〉 ∈ C3J×3J is the (n,m)th block of the
adjoint of the spatial correlation matrix of the applied forces
and Dmn ∈ C3J×3J is the (m,n)th block of the response matrix
of the sample.

For brevity, it is convenient to assume that only one kind of
force is present m = n = 1, but the extension to two forces is
straightforward. Omitting the superscripts gives

P = 2ω0Tr[DN†], (51)

where D and N are Hermitian. The trace of the product of
a matrix with the adjoint of another is an inner product in
the abstract vector space of complex Hermitian matrices and
so (51) projects the state of coherence of the force onto the
state of coherence to which the system is maximally sensitive.
If scattering is included then D should be replaced by the
overall response matrix K = G†DG, where G is the scattering
matrix, which is the discretized version of (44). In addition,
D and K are Hermitian and can be diagonalized to give the
natural modes through which the structure can absorb energy.
The eigenvectors correspond to coherent dynamical modes of
the system, and the eigenvalues to their responsivities, and
therefore interferometry can be used to uncover the individual
coherent excitations.

Consider applying interferometry to Eq. (51). Assemble a
matrix Fsrc ∈ C3J×N where each column contains the sampled
force fe associated with some particular source position and
orientation. The number of source positions and orientations
is N and the minimum number needed to allow the source
distributions to be deconvolved from the data is 3J . Fewer
may be sufficient if interactions reduce the number of modes
available for absorbing energy or more may be used to
oversample the experiment.

If the columns of F̃src contain the dual vectors to the columns
of Fsrc, then by definition Fsrc†F̃src = I = F̃src†Fsrc, where I is
the identity matrix. The dual vectors span the same vector
space as the original source vectors and so it is possible to
represent the response matrix in terms of the dual-vector basis

D =
∑
nn′

Mnn′̃ fñf†n′ = F̃srcMF̃src†, (52)

where the matrix elements of D, in the dual basis, are contained
in M and n,n′ ∈ 1, . . . ,N .

Consider a single interferometric measurement, where two
phased-locked sources are present at m and m′ with a variable
phase difference φ between them. Using (50) and (52), the
absorbed power is given by

Pmm′ =
∑
nn′

Mnn′[f†m + f†m′e
−iφ ]̃fñf†n′[fm + fm′eiφ]

= Mmm + Mm′me−iφ + Mmm′eiφ + Mm′m′

= Mmm + Mm′m′ + 2|Mmm′ | cos(φ + φmm′ ), (53)

where in the second line we have used the biorthogonality of
the source vectors with their duals. Here |Mmm′ | and φmm′ are
the amplitude and phase of Mmm′ , respectively. If only source
m is turned on, the measured power is Mmm. If only source
m′ is turned on, the measured power is Mm′m′ . If both sources
are turned on and the differential phase varied, the power
displays a fringe, which gives the real and imaginary parts of
Mmm′ = M∗

m′m. Thus the measured fringe reveals elements of
the response matrix in the dual basis,

M = Fsrc†DFsrc. (54)

Here M can be populated experimentally and then the response
matrix D calculated using (52). The use of dual vectors in
Eq. (52) essentially deconvolves the forms of the source fields
from the measurement, over those regions that are accessible
by the sources.

Dual vectors are required to calculate the response tensor
in the space domain and by definition Fsrc†F̃src = I = F̃src†Fsrc.
Generally, N �= 3J and it is not possible to invert Fsrc directly.
It is possible to calculate the pseudoinverse through singular-
value decomposition (SVD). If Fsrc = U�V†, where � is
diagonal, then F̃src = U�−1V†. The pseudoinverse correctly
takes into account whether there are more source positions than
sample points or more sample points than source positions.

In what follows, assume that the interferometer uses point
sources, which could, for example, take the form of electric or
magnetic dipoles. Create the diagonal matrix Lsrc ∈ CN×N ,
where the diagonal entries are the complex amplitudes of
the dipole moments of the sources. Strictly, Lsrc has zero
diagonal entries if not all of the available sample positions
and orientations are used. Then

Fsrc = GsrcLsrc, (55)

where each column of Gsrc is the discretized source Green’s
function. Here Gsrc maps the complex amplitude of the dipole
moment of every possible source onto the vector components
of the force at each sample point in the system. In this case

M = Lsrc†Gsrc†DGsrcLsrc

= Lsrc†M′Lsrc. (56)

The response matrix M′ = Gsrc†DGsrc characterizes the re-
sponse of the system in terms of point sources at the positions
of the sources. It can be diagonalized to give the natural modes
referenced to the positions of the sources.

According to Eqs. (51) and (53), the complete process of
measuring the matrix elements of D through the fringes and
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then reconstructing D by using the duals is described by

D′ = F̃srcFsrc†DFsrcF̃src†, (57)

where D′ is the reconstruction after the measurement has been
made and we explicitly recognize that D may not be recovered
perfectly because the source fields may not span completely
the fields to which the structure is sensitive. If the measurement
set is complete or overcomplete, FsrcF̃src† = I and the response
D is recovered perfectly. If the basis is undercomplete, the
filter FsrcF̃src† = U��−1U† is applied by the measurement
and recovery process. Some of the singular values may be too
small to be recovered, because of noise, and information will
be lost. The operation U��−1U† projects the natural modes
onto the measurement space, applies a diagonal filter, and then
reconstructs the measured modes; information may be lost
during this process.

The measurement time increases as the square of the
number of individual source positions, but at the outset it is
not known how many measurements are needed. There are
various ways in which the number of measurements can be
minimized. If one source is held at fixed reference position
m and the other moved through all possible positions m′, the
complex visibility observed is given by

γmm′ = 2Dmm′

Dmm + Dm′m′
. (58)

It is possible to plot |γmm′ | by moving along the mth row of
D. Plots such as these reveal the transverse and longitudinal
coherence lengths, areas, volumes, and polarization states of
the collective modes. In an experiment, as one source is held
fixed, it is only necessary to scan the second source over the
region for which fringes are observed. Another approach is to
choose a small, but reasonable, set of sample points and then
to construct the natural modes by calculating the dual matrix
and diagonalizing the recovered response matrix. New sample
points can the be added and the new dual matrix calculated by
using incremental SVD [47] on the previous dual matrix. The
modes keep on being upgraded as more and more sample points
are added until all of the degrees of freedom have been found
and the spatial forms have converged. Similar reasoning can
be applied to calculate the cross response when two different
kinds of force are present.

VIII. CONCLUSION

Interferometry based on the absorption of energy can
be used to gain access to the information contained in the
response tensors of many-body systems. It can be implemented
at any wavelength, it can be applied to many kinds of
generalized force, and it can be used with low-power sources
to probe linear behavior and with high-power sources to
probe the differential response of nonlinear systems. It has

many advantages compared with attempting to measure the
spatial correlations in thermal fluctuations, particularly at low
temperatures. In fact, it probes different physics in situations
where the fluctuations are not thermal or where the temperature
is not uniform.

In the context of materials characterization, the complex-
valued response tensor can be diagonalized to give the forms
and responsivities of the natural dynamical modes through
which the material can absorb energy. The technique probes
the anti-Hermitian part of the quantum correlation function and
it allows the cross-correlated response to generalized forces
of different kinds to be explored. In the case of components
such as electromagnetic detectors, acoustic sensors, energy
harvesting absorbers, and indeed complete instruments, there
is no need to deconvolve the illumination patterns of the
sources because one is primarily interested in measuring the
modal content of the response with respect to some, possibly
external, reference surface and source.

The technique can be carried using near-field sources, such
as atomic force microscopy–like probes, or far-field sources
of the kind used in optical and radio antenna test ranges. In
the context of studying transport through low-dimensional
structures, the close relationship between the Landauer and
Kubo formalisms enables the ports of a sample to be probed
by lithographically fabricated leads. Surface acoustic wave
transducers oriented at different angles could be used to probe
the way in which elastic waves interact with normal metals
and superconductors [48]. We are particularly interested in
using EAI for probing spin waves, where, unlike ferromagnetic
resonance, it is not necessary to sweep the field in order to infer
modal content from spectra. One can measure modal content
at any specific readout frequency and static field strength. An
interesting idea is to suspended the sample at the center of a
three-axis Helmholtz system. A static field can be applied in
any direction and a small superposed modulated field applied
in some other direction to interferometrically explore the
directional forms of the collective excitations. There are many
different ways in which EAI can be implemented.

A key question is how one measures the total average
power absorbed. In the case of detectors, the output already
constitutes the quantity of interest. In the case of general
solid-state structures, there are often intrinsic characteristics
that are proportional to the power absorbed. For example, in
the case of thin-film superconducting resonators, quasiparticle
heating leads to a shift in the resonance curve, which is a direct
measure of power absorbed [49]. Tunnel junctions can also be
used to measure the temperatures of electron systems [50].
There are numerous other ways of monitoring electron and
phonon heating and these can be implemented depending on
the application. We are particularly interested in depositing the
material of interest on a suspended dielectric membrane and
then recording the power absorbed by using an ultrasensitive
transition edge sensor [51,52].
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